1
|
Bi M, Gao K, Bai B, Tian Z. Benchmark N-glycoproteomics study of common differential tissue and serum N-glycoproteins of patients with hepatocellular carcinoma. Anal Chim Acta 2024; 1322:343066. [PMID: 39182988 DOI: 10.1016/j.aca.2024.343066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
For hepatocellular carcinoma (HCC), N-glycosylation has been proved to be widely involved in various aspects of the disease, including development, metastasis, subtyping, diagnosis and prognosis. The common practice is to discover biomarkers in situ of cancer occurrence (i.e., cancer vs. adjacent tissues) yet to clinically monitor in sera because of non-invasiveness. This study benchmarks N-glycoproteomics characterization of common differential tissue and serum N-glycoproteins of patients with HCC. Differential N-glycosylation in matched tissue and serum samples from the same patients were quantitatively characterized at the intact N-glycopeptide molecular level, and 29 common N-glycoproteins were found. Subcellular localization analysis was carried out to confirm the tissue originality. Secreted N-glycoprotein APOH was up-regulated, and transmembrane and intracellular N-glycoproteins including OSMR, GAT2, CSF-1 and MAGI3 were down-regulated.
Collapse
Affiliation(s)
- Ming Bi
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Bai
- Department of Laboratory Medicine, Center of precision Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Yang S, Zhang R, Deng W, Chang S, Li Y, Li S. Pirfenidone ameliorates liver steatosis by targeting the STAT3-SCD1 axis. Inflamm Res 2023; 72:1773-1787. [PMID: 37659014 DOI: 10.1007/s00011-023-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Previous studies reported that pirfenidone (PFD) is associated with liver disease. However, the effects of pirfenidone on energy metabolism and hepatic lipid accumulation are still poorly understood. METHODS In this study, C57BL/6J mice were randomly divided into two groups, and fed a normal chow diet (NCD) or a high-fat diet (HFD) for 16 weeks. At the end of the eighth week, half of the mice fed on both diets were treated with PFD. Biochemical and lipid metabolism-related indices were analyzed. Furthermore, Hepa 1-6 cells and mouse primary hepatocytes (MPHs) were incubated with PFD with or without free fatty acid (FFA) treatment. Then, stattic (a p-STAT3 inhibitor) or Ad-shSTAT3 was used to further elucidate the effects of Signal Transducer and Activator of Transcription 3 (STAT3) signaling on PFD regulation of hepatic steatosis. RESULTS PFD ameliorated obesity and hepatic lipid deposition in HFD mice by decreasing stearoyl-CoA desaturase 1 (SCD1) expression and upregulating p-STAT3 in the liver. In Hepa 1-6 cells and MPHs, PFD also down-regulated the expression of SCD1. STAT3 inhibition treatment eliminated the benefits of PFD on both SCD1 and hepatic steatosis. CONCLUSION In summary, our data reveal that PFD may play an important role in mitigating hepatic steatosis in a STAT3-SCD1-dependent manner.
Collapse
Affiliation(s)
- Shan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renzi Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhen Deng
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, China
| | - Shichuan Chang
- Oncology Department, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Han H, Ge X, Komakula SSB, Desert R, Das S, Song Z, Chen W, Athavale D, Gaskell H, Lantvit D, Guzman G, Nieto N. Macrophage-derived Osteopontin (SPP1) Protects From Nonalcoholic Steatohepatitis. Gastroenterology 2023; 165:201-217. [PMID: 37028770 PMCID: PMC10986640 DOI: 10.1053/j.gastro.2023.03.228] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, hepatocyte ballooning degeneration, and fibrosis, all of which increase the risk of progression to end-stage liver disease. Osteopontin (OPN, SPP1) plays an important role in macrophage (MF) biology, but whether MF-derived OPN affects NASH progression is unknown. METHODS We analyzed publicly available transcriptomic datasets from patients with NASH, and used mice with conditional overexpression or ablation of Spp1 in myeloid cells and liver MFs, and fed them a high-fat, fructose, and cholesterol diet mimicking the Western diet, to induce NASH. RESULTS This study demonstrated that MFs with high expression of SPP1 are enriched in patients and mice with nonalcoholic fatty liver disease (NAFLD), and show metabolic but not pro-inflammatory properties. Conditional knockin of Spp1 in myeloid cells (Spp1KI Mye) or in hepatic macrophages (Spp1KI LvMF) conferred protection, whereas conditional knockout of Spp1 in myeloid cells (Spp1ΔMye) worsened NASH. The protective effect was mediated by induction of arginase-2 (ARG2), which enhanced fatty acid oxidation (FAO) in hepatocytes. Induction of ARG2 stemmed from enhanced production of oncostatin-M (OSM) in MFs from Spp1KI Mye mice. OSM activated STAT3 signaling, which upregulated ARG2. In addition to hepatic effects, Spp1KI Mye also protected through sex-specific extrahepatic mechanisms. CONCLUSION MF-derived OPN protects from NASH, by upregulating OSM, which increases ARG2 through STAT3 signaling. Further, the ARG2-mediated increase in FAO reduces steatosis. Therefore, enhancing the OPN-OSM-ARG2 crosstalk between MFs and hepatocytes may be beneficial for patients with NASH.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Harriet Gaskell
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Albiero M, Ciciliot S, Rodella A, Migliozzi L, Amendolagine FI, Boscaro C, Zuccolotto G, Rosato A, Fadini GP. Loss of Hematopoietic Cell-Derived Oncostatin M Worsens Diet-Induced Dysmetabolism in Mice. Diabetes 2023; 72:483-495. [PMID: 36657995 DOI: 10.2337/db22-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Innate immune cells infiltrate growing adipose tissue and propagate inflammatory clues to metabolically distant tissues, thereby promoting glucose intolerance and insulin resistance. Cytokines of the IL-6 family and gp130 ligands are among such signals. The role played by oncostatin M (OSM) in the metabolic consequences of overfeeding is debated, at least in part, because prior studies did not distinguish OSM sources and dynamics. Here, we explored the role of OSM in metabolic responses and used bone marrow transplantation to test the hypothesis that hematopoietic cells are major contributors to the metabolic effects of OSM. We show that OSM is required to adapt during the development of obesity because OSM concentrations are dynamically modulated during high-fat diet (HFD) and Osm-/- mice displayed early-onset glucose intolerance, impaired muscle glucose uptake, and worsened liver inflammation and damage. We found that OSM is mostly produced by blood cells and deletion of OSM in hematopoietic cells phenocopied glucose intolerance of whole-body Osm-/- mice fed a HFD and recapitulated liver damage with increased aminotransferase levels. We thus uncovered that modulation of OSM is involved in the metabolic response to overfeeding and that hematopoietic cell-derived OSM can regulate metabolism, likely via multiple effects in different tissues.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Rodella
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ludovica Migliozzi
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Ivan Amendolagine
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlotta Boscaro
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
6
|
Ding T, Chen S, Xiao W, Liu Z, Tu J, Yu Y, Dong B, Chen W, Zeng Y. Six-Transmembrane Epithelial Antigen of Prostate 3 Promotes Hepatic Insulin Resistance and Steatosis. J Lipid Res 2022; 64:100318. [PMID: 36495944 PMCID: PMC9823233 DOI: 10.1016/j.jlr.2022.100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by excessive deposition of fatty acids in the liver. Further deterioration leads to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, creating a heavy burden on human health and the social economy. Currently, there are no effective and specific drugs for the treatment of NAFLD. Therefore, it is important to further investigate the pathogenesis of NAFLD and explore effective therapeutic targets for the prevention and treatment of the disease. Six-transmembrane epithelial antigen of prostate 3 (STEAP3), a STEAP family protein, is a metalloreductase. Studies have shown that it can participate in the regulation of liver ischemia-reperfusion injury, hepatocellular carcinoma, myocardial hypertrophy, and other diseases. In this study, we found that the expression of STEAP3 is upregulated in NAFLD. Deletion of STEAP3 inhibits the development of NAFLD in vivo and in vitro, whereas its overexpression promotes palmitic acid/oleic acid stimulation-induced lipid deposition in hepatocytes. Mechanistically, it interacts with transforming growth factor beta-activated kinase 1 (TAK1) to regulate the progression of NAFLD by promoting TAK1 phosphorylation and activating the TAK1-c-Jun N-terminal kinase/p38 signaling pathway. Taken together, our results provide further insight into the involvement of STEAP3 in liver pathology.
Collapse
Affiliation(s)
- Ting Ding
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China
| | - Siping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China
| | - Wenchang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China,Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Yongjie Yu
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Wenping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China.
| | - Yong Zeng
- Department of Stomatology, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
7
|
Chen Z, Jin ZX, Cai J, Li R, Deng KQ, Ji YX, Lei F, Li HP, Lu Z, Li H. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022; 100:1721-1739. [PMID: 36396746 DOI: 10.1007/s00109-022-02269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhao-Xia Jin
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Ruyan Li
- Northfield Mount Hermon School, Gill, MA, 01354, USA
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huo-Ping Li
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
- School of Basic Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
9
|
Wang Z, Ye M, Zhang XJ, Zhang P, Cai J, Li H, She ZG. Impact of NAFLD and its pharmacotherapy on lipid profile and CVD. Atherosclerosis 2022; 355:30-44. [PMID: 35872444 DOI: 10.1016/j.atherosclerosis.2022.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death worldwide. Increasing evidence suggests that, in addition to traditional metabolic risk factors such as obesity, hypercholesterolemia, hypertension, diabetes mellitus, and insulin resistance (IR), nonalcoholic fatty liver disease (NAFLD) is an emerging driver of ASCVD via multiple mechanisms, mainly by disrupting lipid metabolism. The lack of pharmaceutical treatment has spurred substantial investment in the research and development of NAFLD drugs. However, many reagents with promising therapeutic potential for NAFLD also have considerable impacts on the circulating lipid profile. In this review, we first summarize the mechanisms linking lipid dysregulation in NAFLD to the progression of ASCVD. Importantly, we highlight the potential risks of/benefits to ASCVD conferred by NAFLD pharmaceutical treatments and discuss potential strategies and next-generation drugs for treating NAFLD without the unwanted side effects.
Collapse
Affiliation(s)
- Zhenya Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Mao Ye
- Department of Cardiology, Huanggang Central Hospital, HuBei Province, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Oncostatin M Induces Lipolysis and Suppresses Insulin Response in 3T3-L1 Adipocytes. Int J Mol Sci 2022; 23:ijms23094689. [PMID: 35563078 PMCID: PMC9104719 DOI: 10.3390/ijms23094689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Oncostatin M (OSM) is an immune cell-derived cytokine that is upregulated in adipose tissue in obesity. Upon binding its receptor (OSMR), OSM induces the phosphorylation of the p66 subunit of Src homology 2 domain-containing transforming protein 1 (SHC1), called p66Shc, and activates the extracellular signal-related kinase (ERK) pathway. Mice with adipocyte-specific OSMR deletion (OsmrFKO) are insulin resistant and exhibit adipose tissue inflammation, suggesting that intact adipocyte OSM–OSMR signaling is necessary for maintaining adipose tissue health. How OSM affects specific adipocyte functions is still unclear. Here, we examined the effects of OSM on adipocyte lipolysis. We treated 3T3-L1 adipocytes with OSM, insulin, and/or inhibitors of SHC1 and ERK and measured glycerol release. We also measured phosphorylation of p66Shc, ERK, and insulin receptor substrate-1 (IRS1) and the expression of lipolysis-associated genes in OSM-exposed 3T3-L1 adipocytes and primary adipocytes from control and OsmrFKO mice. We found that OSM induces adipocyte lipolysis via a p66Shc-ERK pathway and inhibits the suppression of lipolysis by insulin. Further, OSM induces phosphorylation of inhibitory IRS1 residues. We conclude that OSM is a stimulator of lipolysis and inhibits adipocyte insulin response. Future studies will determine how these roles of OSM affect adipose tissue function in health and disease.
Collapse
|
11
|
Qu W, Chen Z, Hu X, Zou T, Huang Y, Zhang Y, Hu Y, Tian S, Wan J, Liao R, Bai L, Xue J, Ding Y, Hu M, Zhang XJ, Zhang X, Zhao J, Cheng X, She ZG, Li H. Profound Perturbation in the Metabolome of a Canine Obesity and Metabolic Disorder Model. Front Endocrinol (Lausanne) 2022; 13:849060. [PMID: 35620391 PMCID: PMC9128610 DOI: 10.3389/fendo.2022.849060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Canine models are increasingly being used in metabolic studies due to their physiological similarity with humans. The present study aimed to identify changes in metabolic pathways and biomarkers with potential clinical utility in a canine model of obesity and metabolic disorders induced by a high-fat diet (HFD). Eighteen male beagles were included in this study, 9 of which were fed a HFD for 24 weeks, and the remaining 9 were fed normal chow (NC) during the same period. Plasma and urine samples were collected at weeks 12 and 24 for untargeted metabolomic analysis. Dogs fed a HFD showed a gradual body weight increase during the feeding period and had hyperlipidemia, increased leukocyte counts, and impaired insulin sensitivity at week 24. Plasma and urine metabonomics analysis displayed clear separations between the HFD-fed and NC-fed dogs. A total of 263 plasma metabolites varied between the two groups, including stearidonic acid, linolenic acid, carnitine, long-chain ceramide, 3-methylxanthine, and theophylline, which are mainly engaged in fatty acid metabolism, sphingolipid metabolism, and caffeine metabolism. A total of 132 urine metabolites related to HFD-induced obesity and metabolic disorders were identified, including 3-methylxanthine, theophylline, pyridoxal 5'-phosphate, and harmine, which participate in pathways such as caffeine metabolism and vitamin digestion and absorption. Eight metabolites with increased abundance (e.g., 3-methylxanthine, theophylline, and harmine) and 4 metabolites with decreased abundance (e.g., trigonelline) in both the plasma and urine of the HFD-fed dogs were identified. In conclusion, the metabolomic analysis revealed molecular events underlying a canine HFD model and identified several metabolites as potential targets for the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ze Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Hu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanyan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Hu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jinhua Xue
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Hu
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xin Zhang
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Jingjing Zhao
- Department of Cardiology, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
13
|
Wang S, Xu X. An Immune-Related Gene Pairs Signature for Predicting Survival in Glioblastoma. Front Oncol 2021; 11:564960. [PMID: 33859933 PMCID: PMC8042321 DOI: 10.3389/fonc.2021.564960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Glioblastoma (GBM) is the frequently occurring and most aggressive form of brain tumors. In the study, we constructed an immune-related gene pairs (IRGPs) signature to predict overall survival (OS) in patients with GBM. Methods: We established IRGPs with immune-related gene (IRG) matrix from The Cancer Genome Atlas (TCGA) database (Training cohort). After screened by the univariate regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, IRGPs were subjected to the multivariable Cox regression to develop an IRGP signature. Then, the predicting accuracy of the signature was assessed with the area under the receiver operating characteristic curve (AUC) and validated the result using the Chinese Glioma Genome Atlas (CGGA) database (Validation cohorts 1 and 2). Results: A 10-IRGP signature was established for predicting the OS of patients with GBM. The AUC for predicting 1-, 3-, and 5-year OS in Training cohort was 0.801, 0.901, and 0.964, respectively, in line with the AUC of Validation cohorts 1 and 2 [Validation cohort 1 (1 year: 0.763; 3 years: 0.786; and 5 years: 0.884); Validation cohort 2 (1 year: 0.745; 3 years: 0.989; and 5 years: 0.987)]. Moreover, survival analysis in three cohorts suggested that patients with low-risk GBM had better clinical outcomes than patients with high-risk GBM. The univariate and multivariable Cox regression demonstrated that the IRGPs signature was an independent prognostic factor. Conclusions: We developed a novel IRGPs signature for predicting OS in patients with GBM.
Collapse
Affiliation(s)
- Sheng Wang
- Zhejiang Jinhua Guangfu Hospital, Jinhua, China
| | - Xia Xu
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Sanchez-Infantes D, Stephens JM. Adipocyte Oncostatin Receptor Regulates Adipose Tissue Homeostasis and Inflammation. Front Immunol 2021; 11:612013. [PMID: 33854494 PMCID: PMC8039456 DOI: 10.3389/fimmu.2020.612013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023] Open
Abstract
Adipocytes are the largest cell type in terms of volume, but not number, in adipose tissue. Adipocytes are prominent contributors to systemic metabolic health. Obesity, defined by excess adipose tissue (AT), is recognized as a low-grade chronic inflammatory state. Cytokines are inflammatory mediators that are produced in adipose tissue (AT) and function in both AT homeostatic as well as pathological conditions. AT inflammation is associated with systemic metabolic dysfunction and obesity-associated infiltration and proliferation of immune cells occurs in a variety of fat depots in mice and humans. AT immune cells secrete a variety of chemokines and cytokines that act in a paracrine manner on adjacent adipocytes. TNFα, IL-6, and MCP-1, are well studied mediators of AT inflammation. Oncostatin M (OSM) is another proinflammatory cytokine that is elevated in AT in human obesity, and its specific receptor (OSMRβ) is also induced in conditions of obesity and insulin resistance. OSM production and paracrine signaling in AT regulates adipogenesis and the functions of AT. This review summarizes the roles of the oncostatin M receptor (OSMRβ) as a modulator of adipocyte development and function its contributions to immunological adaptations in AT in metabolic disease states.
Collapse
Affiliation(s)
- David Sanchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon, Spain
| | - Jacqueline M. Stephens
- Department of Biological Sciences and Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
15
|
Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int J Mol Sci 2021; 22:ijms22010436. [PMID: 33406763 PMCID: PMC7795122 DOI: 10.3390/ijms22010436] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and has become the major cause of chronic liver disease, especially in western countries. NAFLD encompasses a wide spectrum of hepatic histological alterations, from simple steatosis to steatohepatitis and cirrhosis with a potential development of hepatocellular carcinoma. Non-alcoholic steatohepatitis (NASH) is characterized by lobular inflammation and fibrosis. Several studies reported that insulin resistance, redox unbalance, inflammation, and lipid metabolism dysregulation are involved in NAFLD progression. However, the mechanisms beyond the evolution of simple steatosis to NASH are not clearly understood yet. Recent findings suggest that different oxidized products, such as lipids, cholesterol, aldehydes and other macromolecules could drive the inflammation onset. On the other hand, new evidence indicates innate and adaptive immunity activation as the driving force in establishing liver inflammation and fibrosis. In this review, we discuss how immunity, triggered by oxidative products and promoting in turn oxidative stress in a vicious cycle, fuels NAFLD progression. Furthermore, we explored the emerging importance of immune cell metabolism in determining inflammation, describing the potential application of trained immune discoveries in the NASH pathological context.
Collapse
|
16
|
An X, Liu J, Li Y, Dou Z, Li N, Suo Y, Ma Y, Sun M, Tian Z, Xu L. Chemerin/CMKLR1 ameliorates nonalcoholic steatohepatitis by promoting autophagy and alleviating oxidative stress through the JAK2-STAT3 pathway. Peptides 2021; 135:170422. [PMID: 33144092 DOI: 10.1016/j.peptides.2020.170422] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a global public health challenge. Overwhelmed oxidative stress and impaired autophagy play an important role in the progression of NASH. Chemerin is an adipokine that has attracted much attention in inflammation and metabolic diseases. This study aimed to examine the effects of chemerin in NASH and its association with oxidative stress and autophagy. In this study, chemerin was found to significantly ameliorate high-fat diet (HFD) induced NASH, marked by decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), decreased insulin resistance (IR) and leptin resistance (LR), and improved liver lesions. Besides, chemerin prevented enhanced oxidative stress in NASH mice by regulating the antioxidant defense system (MDA downregulation and upregulation of superoxide dismutase (SOD)). Moreover, chemerin contributed to the alleviation of NASH through autophagy activation (p62 downregulation, and upregulation of beclin-1 and LC3). Furthermore, these effects were related to increased phosphorylation of JAK2-STAT3 stimulated by chemerin, which could be inhibited by the CMKLR1 specific inhibitor α-NETA. In conclusion, excess chemerin highly probably ameliorated NASH by alleviating oxidative stress and promoting autophagy, the mechanism responsible for this process was related, at least in part, to the increased phosphorylation of JAK2-STAT3 stimulated by chemerin/CMKLR1. Rh-chemerin may represent promising therapeutic targets in the treatment of NASH.
Collapse
Affiliation(s)
- Xiuqin An
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jinchun Liu
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | - Yue Li
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhangfeng Dou
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ning Li
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yuhong Suo
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanan Ma
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Meiqing Sun
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhongyuan Tian
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lijun Xu
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
17
|
Ni Y, Xu Z, Li C, Zhu Y, Liu R, Zhang F, Chang H, Li M, Sheng L, Li Z, Hou M, Chen L, You H, McManus DP, Hu W, Duan Y, Liu Y, Ji M. Therapeutic inhibition of miR-802 protects against obesity through AMPK-mediated regulation of hepatic lipid metabolism. Am J Cancer Res 2021; 11:1079-1099. [PMID: 33391522 PMCID: PMC7738900 DOI: 10.7150/thno.49354] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The host-parasite relationship is based on subtle interplay between parasite survival strategies and host defense mechanisms. It is well known that helminth infection, which afflicts more than one billion people globally, correlates with a decreased prevalence of obesity. Dissecting the underlying mechanisms can provide new targets for treating obesity from the host-parasite interaction perspective. Methods: C57BL/6 mice received a normal or high-fat diet (HFD) with or without Sjp40 (one main component of schistosome-derived soluble egg antigens) treatment. Both the loss and gain-of-function experiments by the inhibitor suppression and lentivirus treatment of miR-802 were utilized to elucidate the role of miR-802/AMPK axis in host lipid metabolism. Hepatocyte lipogenesis assay and metabolic parameters were assessed both in vivo and in vitro. The potential interactions among Sjp40, CD36, miR-802, Prkab1, and AMPK were clarified by pull-down, miRNA expression microarray, quantitative RT-PCR, dual-luciferase reporter assay, and western blotting analysis. Results: We showed a link between decreased miR-802 and impaired lipid metabolism in Schistosoma japonicum infected mice. The decreased miR-802 promotes murine Prkab1 or human Prkaa1 expression, respectively, which increases levels of phosphorylated AMPK, resulting in a decrease in hepatic lipogenesis. Also, injection with schistosome-derived soluble egg antigens (SEA) attenuated metabolism. We demonstrated that Sjp40 as a main component of SEA interacted with CD36 on hepatocytes to inhibit miR-802, resulting in the activation of AMPK pathway and subsequent attenuation of lipogenesis. Collectively: Our study reveals the significant role of miR-802/AMPK axis in hepatic lipid metabolism and identifies the therapeutic potential of Sjp40 in treating obesity-related fatty liver.
Collapse
|
18
|
Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21207711. [PMID: 33081064 PMCID: PMC7589803 DOI: 10.3390/ijms21207711] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
It is well established that adipose tissue, apart from its energy storage function, acts as an endocrine organ that produces and secretes a number of bioactive substances, including hormones commonly known as adipokines. Obesity is a major risk factor for the development of cardiovascular diseases, mainly due to a low grade of inflammation and the excessive fat accumulation produced in this state. The adipose tissue dysfunction in obesity leads to an aberrant release of adipokines, some of them with direct cardiovascular and inflammatory regulatory functions. Inflammation is a common link between obesity and cardiovascular diseases, so this review will summarise the role of the main adipokines implicated in the regulation of the inflammatory processes occurring under the scenario of cardiovascular diseases.
Collapse
|
19
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 785] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
20
|
Cai J, Zhang XJ, Ji YX, Zhang P, She ZG, Li H. Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in Cardiovascular Diseases. Circ Res 2020; 126:679-704. [PMID: 32105577 DOI: 10.1161/circresaha.119.316337] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of death worldwide. Among the major risk factors for CVD, obesity and diabetes mellitus have received considerable attention in terms of public policy and awareness. However, the emerging prevalence of nonalcoholic fatty liver disease (NAFLD), as the most common liver and metabolic disease and a cause of CVD, has been largely overlooked. Currently, the number of individuals with NAFLD is greater than the total number of individuals with diabetes mellitus and obesity. Epidemiological studies have established a strong correlation between NAFLD and an increased risk of CVD and CVD-associated events. Although debate continues over the causal relationship between NAFLD and CVD, many mechanistic and longitudinal studies have indicated that NAFLD is one of the major driving forces for CVD and should be recognized as an independent risk factor for CVD apart from other metabolic disorders. In this review, we summarize the clinical evidence that supports NAFLD as a risk factor for CVD epidemics and discuss major mechanistic insights regarding the acceleration of CVD in the setting of NAFLD. Finally, we address the potential treatments for NAFLD and their potential impact on CVD.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (X.-J.Z.)
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Basic Medical School, Wuhan University, China (H.L.)
| |
Collapse
|
21
|
Zhao YC, Zhao GJ, Chen Z, She ZG, Cai J, Li H. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension. Hypertension 2020; 75:275-284. [PMID: 31865799 DOI: 10.1161/hypertensionaha.119.13419] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension, a multifactorial disorder resulting from the interplay between genetic predisposition and environmental risk factors, affects ≈30% of adults. Emerging evidence has shown that nonalcoholic fatty liver disease (NAFLD), as an underestimated metabolic abnormality, is strongly associated with an increased risk of incident prehypertension and hypertension. However, the role of NAFLD in the development of hypertension is still obscure and is highly overlooked by the general public. Herein, we highlight the epidemiological evidence and putative mechanisms focusing on the emerging roles of NAFLD in hypertension, with the purpose of reinforcing the notion that NAFLD may serve as an independent risk factor and an important driving force in the development and progression of hypertension. Finally, we also briefly summarize the current potential treatments for NAFLD that might also be beneficial approaches against hypertension.
Collapse
Affiliation(s)
- Yan-Ci Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Guo-Jun Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Ze Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
- Medical Research Institute, School of Medicine (Z.-G.S.), Wuhan University, P.R. China
| | - Jingjing Cai
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China (J.C.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (Y.-C.Z., G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Institute of Model Animal of Wuhan University, P.R. China (Y.-C.Z.,G.-J.Z., Z.C., Z.-G.S., J.C., H.L.)
- Basic Medical School (Z.-G.S., H.L.), Wuhan University, P.R. China
| |
Collapse
|
22
|
Chen Y, Yu D, Wang L, Du S. Identification of E2F8 as a Transcriptional Regulator of Gluconeogenesis in Primary Mouse Hepatocytes. BIOCHEMISTRY (MOSCOW) 2019; 84:1529-1536. [PMID: 31870257 DOI: 10.1134/s0006297919120125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dysregulation of hepatic gluconeogenesis is a major factor in the pathogenesis of type 2 diabetes mellitus (T2DM). Hepatic gluconeogenesis is known to be tightly regulated at the transcription/expression level. The aim of this study was to evaluate the role of the E2F8 transcription factor in glucose metabolism. Here, we found that hepatic expression levels of E2F8 were increased in db/db and high-fat-diet-induced obese mice. Adenovirus-mediated overexpression of E2F8 in primary mouse hepatocytes upregulated expression of gluconeogenic genes, including those for PGC-1α, PEPCK, and G6Pase, subsequently increasing cellular glucose output. We demonstrated that E2F8 overexpression impairs insulin sensitivity in vitro. Furthermore, knockdown of E2F8 expression increased insulin sensitivity in primary hepatocytes. In summary, these findings indicated that E2F8 is involved in gluconeogenesis and insulin resistance and may represent a new therapeutic target in T2DM prevention.
Collapse
Affiliation(s)
- Y Chen
- Emergency and Clinical Care Medicine Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - D Yu
- Emergency and Clinical Care Medicine Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - L Wang
- Emergency and Clinical Care Medicine Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - S Du
- Emergency and Clinical Care Medicine Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
23
|
Chen Z, Yu Y, Cai J, Li H. Emerging Molecular Targets for Treatment of Nonalcoholic Fatty Liver Disease. Trends Endocrinol Metab 2019; 30:903-914. [PMID: 31597607 DOI: 10.1016/j.tem.2019.08.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
In parallel with the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide. Disequilibrium of lipid metabolism and the subsequent metabolic-stress-induced inflammation are believed to be central in the pathogenesis of NAFLD. Of note, metabolic inflammation is primarily mediated by innate immune signaling, which is increasingly recognized as a driving force in NAFLD progression. Currently, a series of agents targeting one or more of these pathomechanisms have shown encouraging results in preclinical models and clinical trials. This review summarizes the emerging molecular targets involved in signaling in the lipid metabolism and innate immunity aspects of NAFLD, focusing on their mechanistic roles and translational potentials.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Yao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease and a major cause of related complications such as cirrhosis and hepatocellular carcinoma (HCC). NAFLD progresses through the stages of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. However, NAFLD usually cannot be diagnosed in a timely manner, which is largely attributed to the asymptomatic features of NAFLD patients and the lack of an effective and accurate noninvasive screening approach. Although liver biopsy has been recognized as a gold standard for diagnosing NAFLD, this approach is not suitable for screening and monitoring NAFLD because of its high cost and invasiveness. Several noninvasive screening and diagnostic systemic assessments have been developed in recent years for NAFLD evaluation. Here we summarize the current status and methods for NAFLD diagnosis, including both noninvasive (imaging, biomarkers) and invasive (liver biopsy) assessments. We further discuss the advantages and disadvantages of these developed diagnostic approaches for NAFLD.
Collapse
Affiliation(s)
- Jia-Zhen Zhang
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
25
|
Cai J, Zhang XJ, Li H. The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis. Hepatology 2019; 70:1026-1037. [PMID: 30653691 DOI: 10.1002/hep.30506] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Inflammation and metabolic dysfunction are hallmarks of nonalcoholic steatohepatitis (NASH), which is one of the fastest-growing liver diseases worldwide. Emerging evidence indicates that innate immune mechanisms are pivotal drivers of inflammation and other pathological manifestations observed in NASH, such as hepatosteatosis, insulin resistance (IR), and fibrosis. This robust innate immune reaction is intrinsic to the liver, which is an important immunological organ that contains a coordinated network of innate immune cells, including Kupffer cells (KCs), dendritic cells (DCs), and lymphocytes. Hepatocytes and liver sinusoidal endothelial cells (LSECs) are not formally innate immune cells, but they take on immune cell function when stressed. These cells can sense excess metabolites and bacterial products and translate those signals into immune responses and pathological hepatic changes during the development of NASH. In this review, we take a historical perspective in describing decades of research that aimed to identify the key molecular and cellular players in the innate immune system in the setting of NASH. Furthermore, we summarize the innate immune cells that are involved in the progression of NASH and illustrate how they sense disturbances in circulating metabolic factors by innate immune receptors and subsequently initiate the intercellular signaling cascades that lead to persistent inflammation and progression of hepatic complications.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
27
|
Santos-Parker JR, Santos-Parker KS, McQueen MB, Martens CR, Seals DR. Habitual aerobic exercise and circulating proteomic patterns in healthy adults: relation to indicators of healthspan. J Appl Physiol (1985) 2018; 125:1646-1659. [PMID: 30236049 PMCID: PMC6295489 DOI: 10.1152/japplphysiol.00458.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Habitual aerobic exercise enhances physiological function and reduces risk of morbidity and mortality throughout life, but the underlying molecular mechanisms are largely unknown. The circulating proteome reflects the intricate network of physiological processes maintaining homeostasis and may provide insight into the molecular transducers of the health benefits of physical activity. In this exploratory study, we assessed the plasma proteome (SOMAscan proteomic assay; 1,129 proteins) of healthy sedentary or aerobic exercise-trained young women and young and older men ( n = 47). Using weighted correlation network analysis to identify clusters of highly co-expressed proteins, we characterized 10 distinct plasma proteomic modules (patterns). In healthy young (24 ± 1 yr) men and women, 4 modules were associated with aerobic exercise status and 1 with participant sex. In healthy young and older (64 ± 2 yr) men, 5 modules differed with age, but 2 of these were partially preserved at young adult levels in older men who exercised; among all men, 4 modules were associated with exercise status, including 3 of the 4 identified in young adults. Exercise-linked proteomic patterns were related to pathways involved in wound healing, regulation of apoptosis, glucose-insulin and cellular stress signaling, and inflammation/immune responses. Importantly, several of the exercise-related modules were associated with physiological and clinical indicators of healthspan, including diastolic blood pressure, insulin resistance, maximal aerobic capacity, and vascular endothelial function. Overall, these findings provide initial insight into circulating proteomic patterns modulated by habitual aerobic exercise in healthy young and older adults, the biological processes involved, and their relation to indicators of healthspan. NEW & NOTEWORTHY This is the first study to assess the relation between plasma proteomic patterns and aerobic exercise status in healthy adults. Weighted correlation network analysis identified 10 distinct proteomic modules, including 5 patterns specific for exercise status. Additionally, 5 modules differed with aging in men, two of which were preserved in older exercising men. Exercise-associated modules included proteins related to inflammation, stress pathways, and immune function and correlated with clinical and physiological indicators of healthspan.
Collapse
Affiliation(s)
| | | | - Matthew B McQueen
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado
| | | | - Douglas R Seals
- Integrative Physiology, University of Colorado Boulder , Boulder, Colorado
| |
Collapse
|
28
|
Cai J, Zhang XJ, Li H. Progress and challenges in the prevention and control of nonalcoholic fatty liver disease. Med Res Rev 2018; 39:328-348. [PMID: 29846945 DOI: 10.1002/med.21515] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide. Individuals with NAFLD have a high frequency of developing progressive liver disease and metabolism-related comorbidities, which result from of a lack of awareness and poor surveillance of the disease and a paucity of approved and effective therapies. Managing the complications of NAFLD has already begun to place a tremendous burden on health-care systems. Although efforts to identify effective therapies are underway, the lack of validated preclinical NAFLD models that represent the biology and outcomes of human disease remains a major barrier. This review summarizes the characteristics and prevalence of the disease and the status of our understanding of its mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Komori T, Morikawa Y. Oncostatin M in the development of metabolic syndrome and its potential as a novel therapeutic target. Anat Sci Int 2017; 93:169-176. [PMID: 29103176 DOI: 10.1007/s12565-017-0421-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/28/2017] [Indexed: 01/01/2023]
Abstract
Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays an important role in various biologic actions, including cell growth, neuronal development, and inflammatory responses. Recently, we demonstrated the unique relationship between OSM and metabolic syndrome in mice. Mice lacking OSM receptor β subunit (OSMRβ-/- mice) exhibited late-onset obesity. Before the onset of obesity, adipose tissue inflammation and insulin resistance were observed in OSMRβ-/- mice. In addition, high-fat diet-induced metabolic disorders, including obesity, adipose tissue inflammation, insulin resistance, and hepatic steatosis, were aggravated in OSMRβ-/- mice compared to those in wild-type mice. Consistent with these findings, OSM treatment dramatically improved these metabolic disorders in the mouse model of metabolic syndrome. Interestingly, OSM directly changed the phenotypes of adipose tissue macrophages toward anti-inflammatory M2 type. Furthermore, fatty acid content in the hepatocytes was decreased by OSM through expression regulation of several key enzymes of hepatic lipid metabolism. These findings suggest that OSM is a novel therapeutic target for metabolic syndrome.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
30
|
Yan FJ, Zhang XJ, Wang WX, Ji YX, Wang PX, Yang Y, Gong J, Shen LJ, Zhu XY, Huang Z, Li H. The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis. Hepatology 2017; 65:1492-1511. [PMID: 27981609 DOI: 10.1002/hep.28971] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Tripartite motif 8 (TRIM8), an E3 ligase ubiquitously expressed in various cells, is closely involved in innate immunity. However, its role in nonalcoholic steatohepatitis is largely unknown. Here, we report evidence that TRIM8 is a robust enhancer of steatohepatitis and its complications induced by a high-fat diet or a genetic deficiency (ob/ob). Using gain-of-function and loss-of-function approaches, we observed dramatic exacerbation of insulin resistance, hepatic steatosis, inflammation, and fibrosis by hepatocyte-specific TRIM8 overexpression, whereas deletion or down-regulation of TRIM8 in hepatocytes led to a completely opposite phenotype. Furthermore, investigations of the underlying mechanisms revealed that TRIM8 directly binds to and ubiquitinates transforming growth factor-beta-activated kinase 1, thus promoting its phosphorylation and the activation of downstream c-Jun N-terminal kinase/p38 and nuclear factor κB signaling. Importantly, the participation of TRIM8 in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis was verified on the basis of its dramatically increased expression in the livers of these patients, suggesting a promising development of TRIM8 disturbance for the treatment of nonalcoholic steatohepatitis-related metabolic disorders. CONCLUSION The E3 ligase TRIM8 is a potent regulator that exacerbates steatohepatitis and metabolic disorders dependent on its binding and ubiquitinating capacity on transforming growth factor-beta-activated kinase 1. (Hepatology 2017;65:1492-1511).
Collapse
Affiliation(s)
- Feng-Juan Yan
- College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Wen-Xin Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yang Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Gong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Li-Jun Shen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Zhang X, Li J, Qin JJ, Cheng WL, Zhu X, Gong FH, She Z, Huang Z, Xia H, Li H. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017; 58:895-906. [PMID: 28258089 PMCID: PMC5408608 DOI: 10.1194/jlr.m074112] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
Oncostatin M (OSM) is a secreted cytokine mainly involved in chronic inflammatory and cardiovascular diseases through binding to OSM receptor β (OSMR-β). Recent studies demonstrated that the presence of OSM contributed to the destabilization of atherosclerotic plaque. To investigate whether OSMR-β deficiency affects atherosclerosis, male OSMR-β-/-ApoE-/- mice were generated and utilized. Here we observed that OSMR-β expression was remarkably upregulated in both human and mouse atherosclerotic lesions, which were mainly located in macrophages. We found that OSMR-β deficiency significantly ameliorated atherosclerotic burden in aorta and aortic root relative to ApoE-deficient littermates and enhanced the stability of atherosclerotic plaques by increasing collagen and smooth muscle cell content, while decreasing macrophage infiltration and lipid accumulation. Moreover, bone marrow transplantation of OSMR-β-/- hematopoietic cells to atherosclerosis-prone mice displayed a consistent phenotype. Additionally, we observed a relatively reduced level of JAK2 and signal transducer and activator of transcription (STAT)3 in vivo and under Ox-LDL stimulation in vitro. Our findings suggest that OSMR-β deficiency in macrophages improved high-fat diet-induced atherogenesis and plaque vulnerability. Mech-anistically, the protective effect of OSMR-β deficiency on atherosclerosis may be partially attributed to the inhibition of the JAK2/STAT3 activation in macrophages, whereas OSM stimulation can activate the signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Fu-Han Gong
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Science, Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Model Animals, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|