1
|
Cejalvo Andújar JM, Ayala de la Peña F, Margeli Vila M, Pascual J, Tolosa P, Pages C, Cuenca M, Guerrero Zotano Á. Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:5. [PMID: 39935426 PMCID: PMC11810462 DOI: 10.20517/cdr.2024.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
This review offers an expert perspective on biomarkers, CDK4/6 inhibitor efficacy, and therapeutic approaches for managing hormone receptor-positive (HR+), human epidermal growth factor receptor-negative (HER2-) advanced breast cancer (ABC), particularly after CDK4/6 inhibitor progression. Key trials have demonstrated that combining CDK4/6 inhibitors with endocrine therapy (ET) significantly improves progression-free survival (PFS), with median durations ranging from 14.8 to 26.7 months, and overall survival (OS), with median durations reaching up to 53.7 months. Actionable biomarkers, such as PIK3CA and ESR1 mutations, have emerged as pivotal tools to guide second-line treatment decisions, enabling the use of targeted therapies like alpelisib and elacestrant and emphasizing the important role of biomarkers in guiding the selection of therapy. This overview aims to provide clinicians with a practical and up-to-date framework to inform treatment decisions and improve patient care in the context of this challenging disease. Additionally, we review emerging biomarkers and novel treatment strategies to address this difficult clinical landscape.
Collapse
Affiliation(s)
- Juan Miguel Cejalvo Andújar
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia 46010, Spain
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid 28019, Spain
| | | | - Mireia Margeli Vila
- Medical Oncology Department, Instituto Catalán de Oncología, Badalona 08916, Spain
- CARE, the Translational Program in Cancer Research of Germans Trias i Pujol Research Institute (IGTP), Badalona 08916, Spain
| | - Javier Pascual
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid 28019, Spain
- Medical Oncology Department, UGC Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga 29010, Spain
| | - Pablo Tolosa
- Medical Oncology Department, Hospital Universitario 12 de octubre, Madrid 28041, Spain
| | - Cristina Pages
- Medical Department, Pfizer Oncology, Madrid 28108, Spain
| | - Mónica Cuenca
- Medical Department, Pfizer Oncology, Madrid 28108, Spain
| | - Ángel Guerrero Zotano
- Medical Oncology Department, Instituto Valenciano de Oncología, Valencia 46009, Spain
| |
Collapse
|
2
|
Li M, Lulla AR, Wang Y, Tsavaschidis S, Wang F, Karakas C, Nguyen TD, Bui TN, Pina MA, Chen MK, Mastoraki S, Multani AS, Fowlkes NW, Sahin A, Marshall CG, Hunt KK, Keyomarsi K. Low-Molecular Weight Cyclin E Confers a Vulnerability to PKMYT1 Inhibition in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3864-3880. [PMID: 39186665 PMCID: PMC11567801 DOI: 10.1158/0008-5472.can-23-4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Cyclin E is a regulatory subunit of CDK2 that mediates S phase entry and progression. The cleavage of full-length cyclin E (FL-cycE) to low-molecular weight isoforms (LMW-E) dramatically alters substrate specificity, promoting G1-S cell cycle transition and accelerating mitotic exit. Approximately 70% of triple-negative breast cancers (TNBC) express LMW-E, which correlates with poor prognosis. PKMYT1 also plays an important role in mitosis by inhibiting CDK1 to block premature mitotic entry, suggesting it could be a therapeutic target in TNBC expressing LMW-E. In this study, analysis of tumor samples of patients with TNBC revealed that coexpression of LMW-E and PKMYT1-catalyzed CDK1 phosphorylation predicted poor response to neoadjuvant chemotherapy. Compared with FL-cycE, LMW-E specifically upregulates PKMYT1 expression and protein stability, thereby increasing CDK1 phosphorylation. Inhibiting PKMYT1 with the selective inhibitor RP-6306 (lunresertib) elicited LMW-E-dependent antitumor effects, accelerating premature mitotic entry, inhibiting replication fork restart, and enhancing DNA damage, chromosomal breakage, apoptosis, and replication stress. Importantly, TNBC cell line xenografts expressing LMW-E showed greater sensitivity to RP-6306 than tumors with empty vector or FL-cycE. Furthermore, RP-6306 exerted tumor suppressive effects in LMW-E transgenic murine mammary tumors and patient-derived xenografts of LMW-E-high TNBC but not in the LMW-E null models examined in parallel. Lastly, transcriptomic and immune profiling demonstrated that RP-6306 treatment induced interferon responses and T-cell infiltration in the LMW-E-high tumor microenvironment, enhancing the antitumor immune response. These findings highlight the LMW-E/PKMYT1/CDK1 regulatory axis as a promising therapeutic target in TNBC, providing the rationale for further clinical development of PKMYT1 inhibitors in this aggressive breast cancer subtype. Significance: PKMYT1 upregulation and CDK1 phosphorylation in triple-negative breast cancer expressing low-molecular weight cyclin E leads to suboptimal responses to chemotherapy but sensitizes tumors to PKMYT1 inhibitors, proposing a personalized treatment strategy.
Collapse
Affiliation(s)
- Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Fuchenchu Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen D.T. Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
4
|
Ye M, Xu H, Ding J, Jiang L. Therapy for Hormone Receptor-Positive, Human Epidermal Growth Receptor 2-Negative Metastatic Breast Cancer Following Treatment Progression via CDK4/6 Inhibitors: A Literature Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:181-197. [PMID: 38617842 PMCID: PMC11016260 DOI: 10.2147/bctt.s438366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
Endocrine therapy (ET) with a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is currently the first-line standard treatment for most patients with hormone receptor-positive (HR+) and human epidermal growth receptor 2-negative (HER2-) metastatic or advanced breast cancer. However, the majority of tumors response to and eventually develop resistance to CDK4/6is. The mechanisms of resistance are poorly understood, and the optimal postprogression treatment regimens and their sequences continue to evolve in the rapidly changing treatment landscape. In this review, we generally summarize the mechanisms of resistance to CDK4/6is and ET, and describe the findings from clinical trials using small molecule inhibitors, antibody-drug conjugates and immunotherapy, providing insights into how these novel strategies may reverse treatment resistance, and discussing how some have not translated into clinical benefit. Finally, we provide rational treatment strategies based on the current emerging evidence.
Collapse
Affiliation(s)
- Meixi Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Hao Xu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Jinhua Ding
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| | - Li Jiang
- Department of General Practice, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| |
Collapse
|
5
|
Johnston S, Emde A, Barrios C, Srock S, Neven P, Martin M, Cameron D, Janni W, Gnant M. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors: existing and emerging differences. JNCI Cancer Spectr 2023; 7:pkad045. [PMID: 37369022 PMCID: PMC10415176 DOI: 10.1093/jncics/pkad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors palbociclib, ribociclib, and abemaciclib are standard-of-care therapy for hormone receptor-positive advanced or metastatic breast cancer, based on randomized trials showing improved progression-free survival for all 3 drugs and overall survival for ribociclib and abemaciclib. Results in early breast cancer are discordant, with sustained improvement in invasive disease-free survival demonstrated for abemaciclib but not other CDK4/6 inhibitors to date. We review nonclinical studies exploring mechanistic differences between the drugs, the impact of continuous dosing on treatment effect, and translational research into potential resistance mechanisms and prognostic and predictive markers. We focus particularly on how emerging findings may help us understand similarities and differences between the available CDK4/6 inhibitors. Even at late-stage clinical development, there remains much to learn about how agents in this class exert their varying effects.
Collapse
Affiliation(s)
| | | | - Carlos Barrios
- Grupo Oncoclínicas, Hospital São Lucas, PUCRS, Latin American Cooperative Oncology Group (LACOG), Porto Alegre, RS, Brazil
| | | | | | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañon, CIBERONC, Universidad Complutense, Madrid, Spain
| | - David Cameron
- Edinburgh Cancer Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University of Ulm, Ulm, Germany
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Patel JR, Banjara B, Ohemeng A, Davidson AM, Boué SM, Burow ME, Tilghman SL. Novel Therapeutic Combination Targets the Growth of Letrozole-Resistant Breast Cancer through Decreased Cyclin B1. Nutrients 2023; 15:1632. [PMID: 37049472 PMCID: PMC10097176 DOI: 10.3390/nu15071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
As breast cancer cells transition from letrozole-sensitive to letrozole-resistant, they over-express epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), and human epidermal growth factor receptor 2 (HER2) while acquiring enhanced motility and epithelial-to-mesenchymal transition (EMT)-like characteristics that are attenuated and reversed by glyceollin treatment, respectively. Interestingly, glyceollin inhibits the proliferation and tumor progression of triple-negative breast cancer (TNBC) and estrogen-independent breast cancer cells; however, it is unlikely that a single phytochemical would effectively target aromatase-inhibitor (AI)-resistant metastatic breast cancer in the clinical setting. Since our previous report indicated that the combination of lapatinib and glyceollin induced apoptosis in hormone-dependent AI-resistant breast cancer cells, we hypothesized that combination therapy would also be beneficial for hormone independent letrozole-resistant breast cancer cells (LTLT-Ca) compared to AI-sensitive breast cancer cells (AC-1) by decreasing the expression of proteins associated with proliferation and cell cycle progression. While glyceollin + lapatinib treatment caused comparable inhibitory effects on the proliferation and migration in both cell lines, combination treatment selectively induced S and G2/M phase cell cycle arrest of the LTLT-Ca cells, which was mediated by decreased cyclin B1. This phenomenon may represent a unique opportunity to design novel combinatorial therapeutic approaches to target hormone-refractory breast tumors.
Collapse
Affiliation(s)
- Jankiben R. Patel
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Bipika Banjara
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Afia Ohemeng
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - A. Michael Davidson
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Stephen M. Boué
- Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Syreeta L. Tilghman
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
7
|
Kariri YA, Joseph C, Alsaleem MA, Elsharawy KA, Alsaeed S, Toss MS, Mongan NP, Green AR, Rakha EA. Mechanistic and Clinical Evidence Supports a Key Role for Cell Division Cycle Associated 5 (CDCA5) as an Independent Predictor of Outcome in Invasive Breast Cancer. Cancers (Basel) 2022; 14:cancers14225643. [PMID: 36428736 PMCID: PMC9688237 DOI: 10.3390/cancers14225643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cell Division Cycle Associated 5 (CDCA5) plays a role in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling pathway involving cell division, cancer cell migration and apoptosis. This study aims to assess the prognostic and biological value of CDCA5 in breast cancer (BC). METHODS The biological and prognostic value of CDCA5 were evaluated at mRNA (n = 5109) and protein levels (n = 614) utilizing multiple well-characterized early stage BC cohorts. The effects of CDCA5 knockdown (KD) on multiple oncogenic assays were assessed in vitro using a panel of BC cell lines. RESULTS this study examined cohorts showed that high CDCA5 expression was correlated with features characteristic of aggressive behavior and poor prognosis, including the presence of high grade, large tumor size, lymphovascular invasion (LVI), hormone receptor negativity and HER2 positivity. High CDCA5 expression, at both mRNA and protein levels, was associated with shorter BC-specific survival independent of other variables (p = 0.034, Hazard ratio (HR) = 1.6, 95% CI; 1.1-2.3). In line with the clinical data, in vitro models indicated that CDCA5 depletion results in a marked decrease in BC cell invasion and migration abilities and a significant accumulation of the BC cells in the G2/M-phase. CONCLUSIONS These results provide evidence that CDCA5 plays an important role in BC development and metastasis and could be used as a potential biomarker to predict disease progression in BC.
Collapse
Affiliation(s)
- Yousif A. Kariri
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Chitra Joseph
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Mansour A. Alsaleem
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Applied Medical Science, Applied College, Qassim University, Unayzah 56435, Saudi Arabia
| | - Khloud A. Elsharawy
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Zoology, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Sami Alsaeed
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Northern Border University, Arar 73244, Saudi Arabia
| | - Michael S. Toss
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew R. Green
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Emad A. Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
- Correspondence: or ; Tel.: +44-0115-9691169; Fax: +44-0115-9627768
| |
Collapse
|
8
|
Al-Qasem AJ, Alves CL, Ehmsen S, Tuttolomondo M, Terp MG, Johansen LE, Vever H, Hoeg LVA, Elias D, Bak M, Ditzel HJ. Co-targeting CDK2 and CDK4/6 overcomes resistance to aromatase and CDK4/6 inhibitors in ER+ breast cancer. NPJ Precis Oncol 2022; 6:68. [PMID: 36153348 PMCID: PMC9509389 DOI: 10.1038/s41698-022-00311-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractResistance to aromatase inhibitor (AI) treatment and combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy (ET) are crucial clinical challenges in treating estrogen receptor-positive (ER+) breast cancer. Understanding the resistance mechanisms and identifying reliable predictive biomarkers and novel treatment combinations to overcome resistance are urgently needed. Herein, we show that upregulation of CDK6, p-CDK2, and/or cyclin E1 is associated with adaptation and resistance to AI-monotherapy and combined CDK4/6i and ET in ER+ advanced breast cancer. Importantly, co-targeting CDK2 and CDK4/6 with ET synergistically impairs cellular growth, induces cell cycle arrest and apoptosis, and delays progression in AI-resistant and combined CDK4/6i and fulvestrant-resistant cell models and in an AI-resistant autocrine breast tumor in a postmenopausal xenograft model. Analysis of CDK6, p-CDK2, and/or cyclin E1 expression as a combined biomarker in metastatic lesions of ER+ advanced breast cancer patients treated with AI-monotherapy or combined CDK4/6i and ET revealed a correlation between high biomarker expression and shorter progression-free survival (PFS), and the biomarker combination was an independent prognostic factor in both patients cohorts. Our study supports the clinical development of therapeutic strategies co-targeting ER, CDK4/6 and CDK2 following progression on AI-monotherapy or combined CDK4/6i and ET to improve survival of patients exhibiting high tumor levels of CDK6, p-CDK2, and/or cyclin E1.
Collapse
|
9
|
Zhang L, Long R, Li X, Jiang J, Chen H, Tian B, Long B, Yu Y, Gan Z. T-17, a novel cyclin-dependent kinases/histone deacetylases dual inhibitor, induces cancer cells death through cell cycle arrest and apoptosis. Drug Dev Res 2022; 83:1578-1588. [PMID: 35844039 DOI: 10.1002/ddr.21977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 07/02/2022] [Indexed: 11/06/2022]
Abstract
Combination of cyclin-dependent kinases (CDKs) and histone deacetylases (HDACs) inhibitors may have statistical synergy in suppressing cancer cell proliferation. Herein, a novel CDKs/HDACs dual inhibitor T-17 was rationally designed, synthesized, and evaluated. Our results demonstrated that T-17 concurrently exhibited potent and balanced inhibitory activity against CDKs (IC50 = 18.0 nM) and HDACs (IC50 = 6.6 nM) and also displayed good cell viability inhibitory effect on four cancer cell lines. Meanwhile, T-17 blocked the MDA-MB-231 and A549 cell cycle at G1 phase and S phase, respectively. In addition, T-17 induced MDA-MB-231 cells apoptosis and inhibited the HDACs and CDKs mediated signaling pathways. Finally, we also found that T-17 had good antitumor activity in vivo. In summary, these results indicated that T-17 would be a promising lead compound which deserves further research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junhao Jiang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Binghua Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Binyu Long
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
CDK Inhibition Primes for Anti-PD-L1 Treatment in Triple-Negative Breast Cancer Models. Cancers (Basel) 2022; 14:cancers14143361. [PMID: 35884422 PMCID: PMC9322647 DOI: 10.3390/cancers14143361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancers (TNBC) expressing PD-L1 qualify for checkpoint inhibitor immunotherapy. Cyclin E/CDK2 is a potential target axis in TNBC; however, small-molecule drugs at efficacious doses may be associated with toxicity, and treatment alongside immunotherapy requires investigation. We evaluated CDK inhibition at suboptimal levels and its anti-tumor and immunomodulatory effects. Transcriptomic analyses of primary breast cancers confirmed higher cyclin E/CDK2 expression in TNBC compared with non-TNBC. Out of the three CDK2-targeting inhibitors tested, the CDK 2, 7 and 9 inhibitor SNS-032 was the most potent in reducing TNBC cell viability and exerted cytotoxicity against all eight TNBC cell lines evaluated in vitro. Suboptimal SNS-032 dosing elevated cell surface PD-L1 expression in surviving TNBC cells. In mice engrafted with human immune cells and challenged with human MDA-MB-231 TNBC xenografts in mammary fat pads, suboptimal SNS-032 dosing partially restricted tumor growth, enhanced the tumor infiltration of human CD45+ immune cells and elevated cell surface PD-L1 expression in surviving cancer cells. In tumor-bearing mice engrafted with human immune cells, the anti-PD-L1 antibody avelumab, given sequentially following suboptimal SNS-032 dosing, reduced tumor growth compared with SNS-032 alone or with avelumab without prior SNS-032 priming. CDK inhibition at suboptimal doses promotes immune cell recruitment to tumors, PD-L1 expression by surviving TNBC cells and may complement immunotherapy.
Collapse
|
11
|
Cetin B, Wabl CA, Gumusay O. CDK4/6 inhibitors: mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol 2022; 18:1143-1157. [PMID: 35137602 DOI: 10.2217/fon-2021-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hormone receptor (HR)-positive, HER2-negative tumors represent the most common form of metastatic breast cancer (MBC), and endocrine therapy has been the mainstay treatment for several decades. Recently, a novel drug class called CDK4/6 inhibitors in combination with endocrine therapy have remarkably improved the outcome of patients with HR-positive, HER2-negative MBC by targeting the cell cycle machinery and overcoming aspects of endocrine resistance. Several potential cell-cycle-specific and nonspecific mechanisms of resistance to CDK4/6 inhibitors have been reported in recent studies. This review discusses potential resistance mechanisms to CDK4/6 inhibitors, the use of biomarkers to guide treatment for HR-positive, HER2-negative MBC and possible approaches to overcome resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Suleyman Demirel University Faculty of Medicine, Isparta, 32260, Turkey
| | - Chiara A Wabl
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Ozge Gumusay
- University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Novel N-bridged pyrazole-1-carbothioamides with potential antiproliferative activity: design, synthesis, in vitro and in silico studies. Future Med Chem 2021; 13:1743-1766. [PMID: 34427113 DOI: 10.4155/fmc-2021-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.
Collapse
|
13
|
Karakas C, Francis AM, Ha MJ, Wingate HF, Meena RA, Yi M, Rasaputra KS, Barrera AMG, Arun B, Do KA, Sahin A, Keyomarsi K, Hunt KK. Cytoplasmic Cyclin E Expression Predicts for Response to Neoadjuvant Chemotherapy in Breast Cancer. Ann Surg 2021; 274:e150-e159. [PMID: 31436549 PMCID: PMC7031042 DOI: 10.1097/sla.0000000000003551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pathologic complete response (pCR) has been shown to be associated with favorable outcomes in breast cancer. Predictors of pCR could be useful in guiding treatment decisions regarding neoadjuvant therapy. The objective of this study was to evaluate cyclin E as a predictor of response to neoadjuvant chemotherapy in breast cancer. METHODS Patients (n = 285) with stage II-III breast cancer were enrolled in a prospective study and received neoadjuvant chemotherapy with anthracyclines, taxanes, or combination of the two. Pretreatment biopsies from 190 patients and surgical specimens following chemotherapy from 192 patients were available for immunohistochemical analysis. Clinical and pathologic responses were recorded and associated with presence of tumor infiltrating lymphocytes, cyclin E, adipophilin, programmed cell death-ligand 1, and elastase staining and other patient, tumor and treatment characteristics. RESULTS The pCR rate was significantly lower in patients with cytoplasmic cyclin E staining compared with those who had no cyclin E expression (16.1% vs 38.9%, P = 0.0005). In multivariable logistic regression analysis, the odds of pCR for patients who had cytoplasmic negative tumors was 9.35 times (P value < 0.0001) that compared with patients with cytoplasmic positive tumors after adjusting for ER, PR, and HER2 status. Cytoplasmic cyclin E expression also predicts long-term outcome and is associated with reduced disease free, recurrence free, and overall survival rates, independent of increased pretreatment tumor infiltrating lymphocytes. CONCLUSIONS Cyclin E independently predicted response to neoadjuvant chemotherapy. Hence, its routine immunohistochemical analysis could be used clinically to identify those breast cancer patients expected to have a poor response to anthracycline/taxane-based chemotherapy.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashleigh M Francis
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hannah F Wingate
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard A Meena
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Komal S Rasaputra
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly K Hunt
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Lulla AR, Akli S, Karakas C, Ha MJ, Fowlkes NW, Mitani Y, Bui T, Wang J, Rao X, Hunt KK, Meijer L, El-Naggar AK, Keyomarsi K. LMW cyclin E and its novel catalytic partner CDK5 are therapeutic targets and prognostic biomarkers in salivary gland cancers. Oncogenesis 2021; 10:40. [PMID: 33990543 PMCID: PMC8121779 DOI: 10.1038/s41389-021-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
Salivary gland cancers (SGCs) are rare yet aggressive malignancies with significant histological heterogeneity, which has made prediction of prognosis and development of targeted therapies challenging. In majority of patients, local recurrence and/or distant metastasis are common and systemic treatments have minimal impact on survival. Therefore, identification of novel targets for treatment that can also be used as predictors of recurrence for multiple histological subtypes of SGCs is an area of unmet need. In this study, we developed a novel transgenic mouse model of SGC, efficiently recapitulating the major histological subtype (adenocarcinomas of the parotid gland) of human SGC. CDK2 knock out (KO) mice crossed with MMTV-low molecular weight forms of cyclin E (LMW-E) mice generated the transgenic mouse models of SGC, which arise in the parotid region of the salivary gland, similar to the common site of origin seen in human SGCs. To identify the CDK2 independent catalytic partner(s) of LMW-E, we used LMW-E expressing cell lines in mass spectrometric analysis and subsequent biochemical validation in pull down assays. These studies revealed that in the absence of CDK2, LMW-E preferentially binds to CDK5. Molecular targeting of CDK5, using siRNA, resulted in inhibition of cell proliferation of human SGCs overexpressing LMW-E. We also provide clinical evidence of significant association of LMW-E/CDK5 co-expression and decreased recurrence free survival in human SGC. Immunohistochemical analysis of LMW-E and CDK5 in 424 patients representing each of the four major histological subtypes of human salivary cancers (Aci, AdCC, MEC, and SDC) revealed that LMW-E and CDK5 are concordantly (positive/positive or negative/negative) expressed in 70% of these patients. The co-expression of LMW-E/CDK5 (both positive) robustly predicts the likelihood of recurrence, regardless of the histological classification of these tumors. Collectively, our results suggest that CDK5 is a novel and targetable biomarker for the treatment of patients with SGC presenting with LMW-E overexpressing tumors.
Collapse
Affiliation(s)
- Amriti R Lulla
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Said Akli
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cansu Karakas
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W Fowlkes
- Departments of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshitsugu Mitani
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tuyen Bui
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Departments of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Centre de Perharidy Roscoff, Roscoff, France
| | - Adel K El-Naggar
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Chen X, Yang D, Carey JPW, Karakas C, Albarracin C, Sahin AA, Arun BK, Guray Durak M, Li M, Kohansal M, Bui TN, Ha MJ, Hunt KK, Keyomarsi K. Targeting Replicative Stress and DNA Repair by Combining PARP and Wee1 Kinase Inhibitors Is Synergistic in Triple Negative Breast Cancers with Cyclin E or BRCA1 Alteration. Cancers (Basel) 2021; 13:cancers13071656. [PMID: 33916118 PMCID: PMC8036262 DOI: 10.3390/cancers13071656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer with an aggressive phenotype that has decreased survival compared with other types of breast cancers, due in part to the lack of biomarker driven targeted therapies. Here, we show that breast cancer patients whose tumors show high levels of cyclin E expression have a higher prevalence of BRCA1/2 alterations and have the worst clinical outcomes. In vitro and in vivo studies revealed that combination therapies with poly (ADP-ribose) polymerase (PARP) and Wee1 kinase inhibitors in TNBC cells with either BRCA1 mutations or high levels of cyclin E results in synergistic cell death due to induction of replicative stress and downregulation of DNA repair. These studies suggest that by preselecting patients whose tumors have high cyclin E levels or harbor mutations in BRCA1, only those cases with the highest replicative stress properties will be subjected to combination treatment and likely result in synergistic activity of the two agents. Abstract The identification of biomarker-driven targeted therapies for patients with triple negative breast cancer (TNBC) remains a major clinical challenge, due to a lack of specific targets. Here, we show that cyclin E, a major regulator of G1 to S transition, is deregulated in TNBC and is associated with mutations in DNA repair genes (e.g., BRCA1/2). Breast cancers with high levels of cyclin E not only have a higher prevalence of BRCA1/2 mutations, but also are associated with the worst outcomes. Using several in vitro and in vivo model systems, we show that TNBCs that harbor either mutations in BRCA1/2 or overexpression of cyclin E are very sensitive to the growth inhibitory effects of AZD-1775 (Wee 1 kinase inhibitor) when used in combination with MK-4837 (PARP inhibitor). Combination treatment of TNBC cell lines with these two agents results in synergistic cell killing due to induction of replicative stress, downregulation of DNA repair and cytokinesis failure that results in increased apoptosis. These findings highlight the potential clinical application of using cyclin E and BRCA mutations as biomarkers to select only those patients with the highest replicative stress properties that may benefit from combination treatment with Wee 1 kinase and PARP inhibitors.
Collapse
Affiliation(s)
- Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Dong Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Jason P. W. Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Constance Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Banu K. Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Min-Jin Ha
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
- Correspondence: ; Tel.: +1-713-792-4845
| |
Collapse
|
16
|
Ma J, Yang Y, Wang L, Jia X, Lu T, Zeng Y, Liu L, Gao Y. Follistatin-like 1 deficiency impairs T cell development to promote lung metastasis of triple negative breast cancer. Aging (Albany NY) 2021; 13:7211-7227. [PMID: 33639614 PMCID: PMC7993667 DOI: 10.18632/aging.202579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Our study aims to detect the underlying mechanism of the suppressive effect of Follistatin-like 1 (FSTL1) on lung metastasis of triple negative breast cancer (TNBC). We found that FSTL1 had no effect on the proliferation and metastasis of 4T1 cells in vitro, while in the tumor-bearing Fstl1 heterozygous (Fstl1+/-) mice, the number of anti-tumor T lymphocytes in the lung was significantly reduced with the increase in lung metastasis. Impaired development of T cells can cause dysfunction of adaptive immune system, which promotes cancer metastasis. Therefore the effect of FSTL1 on T cell development was further investigated. Lower population of T cells in periphery and decreased proliferation of CD4- CD8- double negative (DN) thymocytes and impairment development of T cells were found in Fstl1+/- mice. Furthermore, high expression of FSTL1 in medullary thymus epithelial (mTEC) cells and decreased mRNA expression of inducible costimulator on activated T-cell ligand (Icosl) in mTECsh Fstl1 were detected. Combining other studies that the generation of ICOSL by mTEC cells promotes CD4+ single positive (SP) thymocytes to produce IL-2, which promotes T cell development. Our results indicate FSTL1 deficiency in mTEC cells impairs T cell development to promote the lung metastasis of TNBC.
Collapse
Affiliation(s)
- Jie Ma
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiyan Zeng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Wei R, Dean DC, Thanindratarn P, Hornicek FJ, Guo W, Duan Z. Prognostic Significance of Cyclin E1 Expression in Patients With Chordoma: A Clinicopathological and Immunohistochemical Study. Front Oncol 2020; 10:596330. [PMID: 33282745 PMCID: PMC7705258 DOI: 10.3389/fonc.2020.596330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Chordomas are rare, slow-growing sarcomas without any accepted prognostic biomarkers. Owing to their proximity to critical neurovascular structures, discovering predictive biomarkers in chordoma has been a significant research effort because it may potentially reduce risky therapies in patients with less aggressive tumors. In response, because cyclin E1 overexpression correlates with patient prognosis in several malignancies, we investigated its expression in chordoma and whether it informs patient prognosis. METHODS Seventy-five chordoma patient specimens were enrolled in a tissue microarray (TMA) to evaluate cyclin E1 expression via immunohistochemical staining. Western blot was used to assess cyclin E1 expression in chordoma cell lines and fresh tissues. We then correlated cyclin E1 staining intensity in the TMA to clinicopathological features and chordoma patient outcomes. RESULTS Sixty-three percent of the chordoma patient specimens in the TMA, fifty-six percent of the fresh chordoma tissues, and all chordoma cell lines showed high cyclin E1 expression. In TMA analysis, cyclin E1 expression positively correlated to chordoma patient disease status. By survival analysis, high cyclin E1 expression was an independent prognostic risk factor for chordoma patients along with advanced disease status and positive surgical margin. CONCLUSION Cyclin E1 is a promising biomarker predicting chordoma patient prognosis.
Collapse
Affiliation(s)
- Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Orthopedic Surgery, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Wei Guo
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
18
|
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, Chen C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol 2020; 11:580251. [PMID: 33364954 PMCID: PMC7751736 DOI: 10.3389/fphar.2020.580251] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor-positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer-related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.
Collapse
Affiliation(s)
- Zhen Li
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zou
- Queen Mary Institute, Nanchang University, Nanchang, China
| | - Ji Zhang
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Zhang
- Kunming Medical University Haiyuan College, Kunming, China
| | - Qi Xu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX, United States
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Pang W, Li Y, Guo W, Shen H. Cyclin E: a potential treatment target to reverse cancer chemoresistance by regulating the cell cycle. Am J Transl Res 2020; 12:5170-5187. [PMID: 33042412 PMCID: PMC7540110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The cyclin family plays important roles in regulating the proliferative cycle of mammalian cells. Among the members of this family, cyclin E regulates multiple downstream molecules, such as the retinoblastoma susceptibility gene (RB1) and the transcription factor E2F, by interacting with cyclin-dependent kinases (CDKs) and plays an important role in the cell cycle transition from G1 to S phase. Over the years, studies have shown that cyclin E is closely related to the chemotherapy resistance of tumor cells and that its expression in tumor cells is closely related to prognosis. The dysregulated expression of cyclin E has a definite effect not only on the cell cycle regulation of tumor cells but also on the presence of low-molecular-weight cyclin E (LMW-E) and other cyclins that render tumor cells resistant. In addition, many studies in recent years have confirmed that chemotherapy resistance mediated by cyclin E can be reversed. For example, the combination of a cyclin-dependent kinase inhibitor (CKI) with anticancer drugs or the therapeutic targeting of related genes improves chemotherapy resistance by reducing the level or activity of cyclin E in tumor cells. This review summarizes the specific processes by which cyclin E regulates the cell cycle, its relationship to chemotherapy resistance in cancer, and its potential as a clinical therapeutic target to reverse chemotherapy resistance.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yashan Li
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Hong Shen
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
20
|
Guerrero Llobet S, van der Vegt B, Jongeneel E, Bense RD, Zwager MC, Schröder CP, Everts M, Fehrmann RSN, de Bock GH, van Vugt MATM. Cyclin E expression is associated with high levels of replication stress in triple-negative breast cancer. NPJ Breast Cancer 2020; 6:40. [PMID: 32964114 PMCID: PMC7477160 DOI: 10.1038/s41523-020-00181-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Replication stress entails the improper progression of DNA replication. In cancer cells, including breast cancer cells, an important cause of replication stress is oncogene activation. Importantly, tumors with high levels of replication stress may have different clinical behavior, and high levels of replication stress appear to be a vulnerability of cancer cells, which may be therapeutically targeted by novel molecularly targeted agents. Unfortunately, data on replication stress is largely based on experimental models. Further investigation of replication stress in clinical samples is required to optimally implement novel therapeutics. To uncover the relation between oncogene expression, replication stress, and clinical features of breast cancer subgroups, we immunohistochemically analyzed the expression of a panel of oncogenes (Cyclin E, c-Myc, and Cdc25A,) and markers of replication stress (phospho-Ser33-RPA32 and γ-H2AX) in breast tumor tissues prior to treatment (n = 384). Triple-negative breast cancers (TNBCs) exhibited the highest levels of phospho-Ser33-RPA32 (P < 0.001 for all tests) and γ-H2AX (P < 0.05 for all tests). Moreover, expression levels of Cyclin E (P < 0.001 for all tests) and c-Myc (P < 0.001 for all tests) were highest in TNBCs. Expression of Cyclin E positively correlated with phospho-RPA32 (Spearman correlation r = 0.37, P < 0.001) and γ-H2AX (Spearman correlation r = 0.63, P < 0.001). Combined, these data indicate that, among breast cancers, replication stress is predominantly observed in TNBCs, and is associated with expression levels of Cyclin E. These results indicate that Cyclin E overexpression may be used as a biomarker for patient selection in the clinical evaluation of drugs that target the DNA replication stress response.
Collapse
Affiliation(s)
- Sergi Guerrero Llobet
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Jongeneel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rico D. Bense
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mieke C. Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolien P. Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H. de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Wei R, Thanindratarn P, Dean DC, Hornicek FJ, Guo W, Duan Z. Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. J Orthop Res 2020; 38:1952-1964. [PMID: 32162720 DOI: 10.1002/jor.24659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
While amplified expressed cyclin E1 is a well-known tumorigenic factor and prognostic biomarker in several malignancies, its prognostic predictive potential and function in osteosarcoma is poorly understood. Here we reveal discrete expression pattern, correlation to clinicopathological characteristics and prognosis and overall function of cyclin E1 in osteosarcoma. Sixty-nine osteosarcoma patient tumor specimens were enrolled to construct a tissue microarray to evaluate cyclin E1 expression through immunohistochemical staining. Cyclin E1 expression in osteosarcoma cell lines and fresh tissues was assessed by Western blot. Cyclin E1 gene expression was evaluated using RNA sequencing data acquired from the public database. We correlated staining intensity to clinical characteristics. Cyclin E1 small interfering RNA was used to determine the effect of cyclin E1 silencing on osteosarcoma cell proliferation and chemotherapeutic sensitivity. Sixty-one percent of the osteosarcoma patient specimens in the tissue microarray had high cyclin E1 expression. Cyclin E1 gene was significantly highly expressed in osteosarcoma tissues and cell lines compared to normal tissues. The expression of cyclin E1 positively correlated with disease status, and inversely correlated to prognosis and response to neoadjuvant chemotherapy. The expression of cyclin E1 was an independent prognostic factor for osteosarcoma patients. In addition, silencing cyclin E1 expression in osteosarcoma cells significantly inhibited cell proliferation and increased sensitivity to chemotherapeutics. We conclude that cyclin E1 is overexpressed in osteosarcoma and is a promising biomarker for prognosis and chemotherapeutic response. We confirm aberrant cyclin E1 expression is a potent therapeutic target in osteosarcoma, and its selective inhibition is a rational treatment strategy for osteosarcoma.
Collapse
Affiliation(s)
- Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Wei Guo
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
22
|
Zhu JP, Ma YR, Teng Y, Chen J, Banwell MG, Lan P. Emulsifying Properties of an Homologous Series of Medium- and Long-Chain d-Maltotriose Esters and their Impacts on the Viabilities of Selected Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9004-9013. [PMID: 32698579 DOI: 10.1021/acs.jafc.0c02890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of functional as well as nutritional surfactants for the food industry remains a matter of great interest. In the present study, a series of 6″-O-acylmaltotriose monoesters bearing alkyl side chains of 10-18 carbons was prepared by enzymatic means. The emulsions derived from those monoesters incorporating palmitoyl, stearoyl, and oleoyl side chains generally displayed advantageous shelf-lives, superior resistance to environmental variations, and more favorable droplet size distributions as well as stronger cytotoxic effects against various cancer cell lines. Ester 6 was shown to significantly inhibit the proliferation of MCF-7 breast cancer cells by inducing G1 phase arrest. Specifically, the levels of the G1 phase-related markers cyclin D1 and cyclin E as well as the cycle-dependent kinase 4 were suppressed by this particular ester. This study thus reveals that maltotriose esters can not only serve as novel functional food emulsifiers but also act, in vitro, as notable cytotoxic agents through a well-defined mechanism-of-action.
Collapse
Affiliation(s)
- Jian-Peng Zhu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
| | - Ya-Ru Ma
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
| | - Yinglai Teng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Lan
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong 519070, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
23
|
Knudsen ES, Shapiro GI, Keyomarsi K. Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. Am Soc Clin Oncol Educ Book 2020; 40:115-126. [PMID: 32421454 PMCID: PMC7306922 DOI: 10.1200/edbk_281085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CDK4/6 inhibitors are now part of the standard armamentarium for hormone receptor-positive breast cancer. In this article, we review the biologic outcomes imposed by these drugs on cancer cells, determinants of response, mechanisms of intrinsic and acquired resistance, as well as combinatorial approaches emanating from mechanistic studies that may allow use of these agents to extend beyond breast cancer. In addition, we will address tumor-, imaging-, and blood-based pharmacodynamic biomarkers that can inform rationally designed trials as clinical development continues.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Center for Personalized Medicine and Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY
| | - Geoffrey I. Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Cytoplasmic Cyclin E Is an Independent Marker of Aggressive Tumor Biology and Breast Cancer-Specific Mortality in Women over 70 Years of Age. Cancers (Basel) 2020; 12:cancers12030712. [PMID: 32197318 PMCID: PMC7140020 DOI: 10.3390/cancers12030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023] Open
Abstract
Multi-cohort analysis demonstrated that cytoplasmic cyclin E expression in primary breast tumors predicts aggressive disease. However, compared to their younger counterparts, older patients have favorable tumor biology and are less likely to die of breast cancer. Biomarkers therefore require interpretation in this specific context. Here, we assess data on cytoplasmic cyclin E from a UK cohort of older women alongside a panel of >20 biomarkers. Between 1973 and 2010, 813 women ≥70 years of age underwent initial surgery for early breast cancer, from which a tissue microarray was constructed (n = 517). Biomarker expression was assessed by immunohistochemistry. Multivariate analysis of breast cancer-specific survival was performed using Cox's proportional hazards. We found that cytoplasmic cyclin E was the only biological factor independently predictive of breast cancer-specific survival in this cohort of older women (hazard ratio (HR) = 6.23, 95% confidence interval (CI) = 1.93-20.14; p = 0.002). At ten years, 42% of older patients with cytoplasmic cyclin E-positive tumors had died of breast cancer versus 8% of negative cases (p < 0.0005). We conclude that cytoplasmic cyclin E is an exquisite marker of aggressive tumor biology in older women. Patients with cytoplasmic cyclin E-negative tumors are unlikely to die of breast cancer. These data have the potential to influence treatment strategy in older patients.
Collapse
|
25
|
Schoninger SF, Blain SW. The Ongoing Search for Biomarkers of CDK4/6 Inhibitor Responsiveness in Breast Cancer. Mol Cancer Ther 2020; 19:3-12. [PMID: 31909732 PMCID: PMC6951437 DOI: 10.1158/1535-7163.mct-19-0253] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
CDK4 inhibitors (CDK4/6i), such as palbociclib, ribociclib, and abemaciclib, are approved in combination with hormonal therapy as a front-line treatment for metastatic HR+, HER2- breast cancer. Their targets, CDK4 and CDK6, are cell-cycle regulatory proteins governing the G1-S phase transition across many tissue types. A key challenge remains to uncover biomarkers to identify those patients that may benefit from this class of drugs. Although CDK4/6i addition to estrogen modulation therapy essentially doubles the median progression-free survival, overall survival is not significantly increased. However, in reality only a subset of treated patients respond. Many patients exhibit primary resistance to CDK4/6 inhibition and do not derive any benefit from these agents, often switching to chemotherapy within 6 months. Some patients initially benefit from treatment, but later develop secondary resistance. This highlights the need for complementary or companion diagnostics to pinpoint patients who would respond. In addition, because CDK4 is a bona fide target in other tumor types where CDK4/6i therapy is currently in clinical trials, the lack of target identification may obscure benefit to a subset of patients there as well. This review summarizes the current status of CDK4/6i biomarker test development, both in clinical trials and at the bench, with particular attention paid to those which have a strong biological basis as well as supportive clinical data.
Collapse
Affiliation(s)
| | - Stacy W Blain
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
26
|
Accumulated cytotoxicity of CDK inhibitor dinaciclib with first-line chemotherapy drugs in salivary adenoid cystic carcinoma cells. Odontology 2019; 108:300-311. [PMID: 31529315 DOI: 10.1007/s10266-019-00451-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common salivary gland malignant tumors. Its treatment failure is partly due to the limitations of chemotherapeutic agents and their adverse effects. The objective of this study was to determine the potential additive anti-cancer effect of a novel CDK inhibitor dinaciclib with first-line chemotherapy drugs in ACC. Protein expression of phosphorylated CDK2 (p-CDK2) in paraffin-embedded tissue specimens of ACC from 17 patients was investigated by immunohistochemistry (IHC). Cell Counting Kit (CCK-8), clone formation assay, and flow cytometry were used to test the proliferation and apoptosis of ACC-2 cells treated with dinaciclib with or without other first-line chemotherapy drugs. Protein expression was also determined by Western blot. Interestingly, we discovered that p-CDK2 protein was expressed in both cytoplasmic and nucleus in salivary ACC tissues, which was higher than that in normal salivary tissues, indicating that agents targeting CDK2 may be potential therapeutic strategies against this type of tumor. As expected, CDK inhibitor dinaciclib significantly induced ACC-2 cells apoptosis. Moreover, it sensitized cells to the chemotherapeutic agents such as cisplatin, pemetrexed, and etoposide (VP-16), and this effect by dinaciclib may induce cell cycle arrest via abrogating CDK2 activity. Therefore, combinational therapy of CDK inhibitor dinaciclib with first-line chemotherapy drugs may be a promising strategy in the treatment of salivary ACC.
Collapse
|
27
|
Cheng H, Chen L, Hu X, Qiu H, Xu X, Gao L, Tang G, Zhang W, Wang J, Yang J, Huang C. Knockdown of MAML1 inhibits proliferation and induces apoptosis of T-cell acute lymphoblastic leukemia cells through SP1-dependent inactivation of TRIM59. J Cell Physiol 2019; 234:5186-5195. [PMID: 30370525 DOI: 10.1002/jcp.27323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/03/2018] [Indexed: 11/06/2022]
Abstract
Notch exerts important functions in cell proliferation, survival, and differentiation, which plays a critical role in tumor development when aberrantly activated. Mastermind-like protein 1 (MAML1) has been functioning as crucial coactivators of Notch receptors and is required for stable formation of Notch transcriptional complexes. However, the mechanism whereby MAML1 induces T-cell acute lymphoblastic leukemia (T-ALL) tumorigenesis is largely unknown. The CCK-8 and flow cytometry assay were performed to examine the effect of MAML1 knockdown on T-ALL cell proliferation, apoptosis, and cell cycle. The expression of MAML1, cell cycle, and apoptosis-related gene, as well as TRIM family members and specific protein 1 (SP1) was measured by western blot analysis and qPCR. Our results showed that MAML1 knockdown significantly inhibited cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in Jurkat and MOLT-4 cells. Cell cycle and apoptosis-related gene expression, including CDK2, Bcl-2, Bax, and Bad, was modified by the MAML1 knockdown. MAML1 knockdown obviously inhibited the CDK2 and Bcl-2 expression and increased the Bax, p53, and Bad expression. Moreover, the TRIM family members, including TRIM13, TRIM32, TRIM44, and TRIM59, were significantly decreased by the MAML1 knockdown, with the highest decrease detected in TRIM59 expression. Interesting, overexpression of SP1 not only increased the expression of MAML1 and TRIM59, but also promoted the promoter activation of TRIM59. Taken together, knockdown of MAML1 inhibits proliferation and induces apoptosis of T-ALL cells through SP1-dependent inactivation of TRIM59, and therefore suggest that MAML1-SP1-TRIM59 axis may serve as potentially interesting therapeutic targets for treatment of T-ALL.
Collapse
Affiliation(s)
- Hui Cheng
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Chen
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huiying Qiu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoqian Xu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Gao
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weiping Zhang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chongmei Huang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Wood DJ, Korolchuk S, Tatum NJ, Wang LZ, Endicott JA, Noble MEM, Martin MP. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition. Cell Chem Biol 2019; 26:121-130.e5. [PMID: 30472117 PMCID: PMC6344228 DOI: 10.1016/j.chembiol.2018.10.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/15/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
Abstract
Dysregulation of the cell cycle characterizes many cancer subtypes, providing a rationale for developing cyclin-dependent kinase (CDK) inhibitors. Potent CDK2 inhibitors might target certain cancers in which CCNE1 is amplified. However, current CDK2 inhibitors also inhibit CDK1, generating a toxicity liability. We have used biophysical measurements and X-ray crystallography to investigate the ATP-competitive inhibitor binding properties of cyclin-free and cyclin-bound CDK1 and CDK2. We show that these kinases can readily be distinguished by such inhibitors when cyclin-free, but not when cyclin-bound. The basis for this discrimination is unclear from either inspection or molecular dynamics simulation of ligand-bound CDKs, but is reflected in the contacts made between the kinase N- and C-lobes. We conclude that there is a subtle but profound difference between the conformational energy landscapes of cyclin-free CDK1 and CDK2. The unusual properties of CDK1 might be exploited to differentiate CDK1 from other CDKs in future cancer therapeutic design.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Svitlana Korolchuk
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Lan-Zhen Wang
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin E M Noble
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
29
|
Portman N, Alexandrou S, Carson E, Wang S, Lim E, Caldon CE. Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocr Relat Cancer 2019; 26:R15-R30. [PMID: 30389903 DOI: 10.1530/erc-18-0317] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination with endocrine therapy, and they significantly increase the progression-free survival of patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line treatment setting. As the new standard of care in some countries, there is the clinical emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance. Finally, we consider the crucial question of how some of these changes are potentially amenable to therapy.
Collapse
Affiliation(s)
- Neil Portman
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Sarah Alexandrou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Emma Carson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Caruso JA, Duong MT, Carey JPW, Hunt KK, Keyomarsi K. Low-Molecular-Weight Cyclin E in Human Cancer: Cellular Consequences and Opportunities for Targeted Therapies. Cancer Res 2018; 78:5481-5491. [PMID: 30194068 PMCID: PMC6168358 DOI: 10.1158/0008-5472.can-18-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (CDK2), is central to the initiation of DNA replication at the G1/S checkpoint. Tight temporal control of cyclin E is essential to the coordination of cell-cycle processes and the maintenance of genome integrity. Overexpression of cyclin E in human tumors was first observed in the 1990s and led to the identification of oncogenic roles for deregulated cyclin E in experimental models. A decade later, low-molecular-weight cyclin E (LMW-E) isoforms were observed in aggressive tumor subtypes. Compared with full-length cyclin E, LMW-E hyperactivates CDK2 through increased complex stability and resistance to the endogenous inhibitors p21CIP1 and p27KIP1 LMW-E is predominantly generated by neutrophil elastase-mediated proteolytic cleavage, which eliminates the N-terminal cyclin E nuclear localization signal and promotes cyclin E's accumulation in the cytoplasm. Compared with full-length cyclin E, the aberrant localization and unique stereochemistry of LMW-E dramatically alters the substrate specificity and selectivity of CDK2, increasing tumorigenicity in experimental models. Cytoplasmic LMW-E, which can be assessed by IHC, is prognostic of poor survival and predicts resistance to standard therapies in patients with cancer. These patients may benefit from therapeutic modalities targeting the altered biochemistry of LMW-E or its associated vulnerabilities. Cancer Res; 78(19); 5481-91. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, California.
| | | | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
31
|
Chen X, Low KH, Alexander A, Jiang Y, Karakas C, Hess KR, Carey JPW, Bui TN, Vijayaraghavan S, Evans KW, Yi M, Ellis DC, Cheung KL, Ellis IO, Fu S, Meric-Bernstam F, Hunt KK, Keyomarsi K. Cyclin E Overexpression Sensitizes Triple-Negative Breast Cancer to Wee1 Kinase Inhibition. Clin Cancer Res 2018; 24:6594-6610. [PMID: 30181387 DOI: 10.1158/1078-0432.ccr-18-1446] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Poor prognosis in triple-negative breast cancer (TNBC) is due to an aggressive phenotype and lack of biomarker-driven targeted therapies. Overexpression of cyclin E and phosphorylated-CDK2 are correlated with poor survival in patients with TNBC, and the absence of CDK2 desensitizes cells to inhibition of Wee1 kinase, a key cell-cycle regulator. We hypothesize that cyclin E expression can predict response to therapies, which include the Wee1 kinase inhibitor, AZD1775. EXPERIMENTAL DESIGN Mono- and combination therapies with AZD1775 were evaluated in TNBC cell lines and multiple patient-derived xenograft (PDX) models with different cyclin E expression profiles. The mechanism(s) of cyclin E-mediated replicative stress were investigated following cyclin E induction or CRISPR/Cas9 knockout by a number of assays in multiple cell lines. RESULTS Cyclin E overexpression (i) is enriched in TNBCs with high recurrence rates, (ii) sensitizes TNBC cell lines and PDX models to AZD1775, (iii) leads to CDK2-dependent activation of DNA replication stress pathways, and (iv) increases Wee1 kinase activity. Moreover, treatment of cells with either CDK2 inhibitors or carboplatin leads to transient transcriptional induction of cyclin E (in cyclin E-low tumors) and result in DNA replicative stress. Such drug-mediated cyclin E induction in TNBC cells and PDX models sensitizes them to AZD1775 in a sequential treatment combination strategy.Conclusions: Cyclin E is a potential biomarker of response (i) for AZD1775 as monotherapy in cyclin E-high TNBC tumors and (ii) for sequential combination therapy with CDK2 inhibitor or carboplatin followed by AZD1775 in cyclin E-low TNBC tumors.
Collapse
Affiliation(s)
- Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Kwang-Huei Low
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Alexander
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yufeng Jiang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen N Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - D Christian Ellis
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwok-Leung Cheung
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian O Ellis
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Rosenberg S, Ducray F, Alentorn A, Dehais C, Elarouci N, Kamoun A, Marie Y, Tanguy ML, De Reynies A, Mokhtari K, Figarella-Branger D, Delattre JY, Idbaih A. Machine Learning for Better Prognostic Stratification and Driver Gene Identification Using Somatic Copy Number Variations in Anaplastic Oligodendroglioma. Oncologist 2018; 23:1500-1510. [PMID: 30018130 DOI: 10.1634/theoncologist.2017-0495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/03/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND 1p/19q-codeleted anaplastic gliomas have variable clinical behavior. We have recently shown that the common 9p21.3 allelic loss is an independent prognostic factor in this tumor type. The aim of this study is to identify less frequent genomic copy number variations (CNVs) with clinical importance that may shed light on molecular oncogenesis of this tumor type. MATERIALS AND METHODS A cohort of 197 patients with anaplastic oligodendroglioma was collected as part of the French POLA network. Clinical, pathological, and molecular information was recorded. CNV analysis was performed using single-nucleotide polymorphism arrays. Computational biology and feature selection based on the random forests method were used to identify CNV events associated with overall survival and other clinical-pathological variables. RESULTS Recurrent chromosomal events were identified in chromosomes 4, 9, and 11. Forty-six focal amplification events and 22 focal deletion events were identified. Twenty-four focal CNV areas were associated with survival, and five of them were significantly associated with survival after multivariable analysis. Nine out of 24 CNV events were validated using an external cohort of The Cancer Genome Atlas. Five of the validated events contain a cancer-related gene or microRNA: CDKN2A deletion, SS18L1 amplification, RHOA/MIR191 copy-neutral loss of heterozygosity, FGFR3 amplification, and ARNT amplification. The CNV profile contributes to better survival prediction compared with clinical-based risk assessment. CONCLUSION Several recurrent CNV events, detected in anaplastic oligodendroglioma, enable better survival prediction. More importantly, they help in identifying potential genes for understanding oncogenesis and for personalized therapy. IMPLICATIONS FOR PRACTICE Genomic analysis of 197 anaplastic oligodendroglioma tumors reveals recurrent somatic copy number variation areas that may help in understanding oncogenesis and target identification for precision medicine. A machine learning multivariable model built using this genomic information enables better survival prediction.
Collapse
Affiliation(s)
- Shai Rosenberg
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Paris, France
- Gaffin Center for Neuro-Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Francois Ducray
- Service de Neuro-Oncologie, Hôpital Neurologique, Hospices Civils de Lyon, Lyon, France
- Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Agusti Alentorn
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Paris, France
- Service de Neurologie 2-Mazarin, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Caroline Dehais
- Service de Neurologie 2-Mazarin, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Nabila Elarouci
- Programme cartes d'identite des tumeurs, Ligue nationale contre le cancer, Paris, France
| | - Aurelie Kamoun
- Programme cartes d'identite des tumeurs, Ligue nationale contre le cancer, Paris, France
| | - Yannick Marie
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Paris, France
| | - Marie-Laure Tanguy
- Service de Biostatistiques, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Aurélien De Reynies
- Programme cartes d'identite des tumeurs, Ligue nationale contre le cancer, Paris, France
| | - Karima Mokhtari
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Dominique Figarella-Branger
- Institut de Neurophysiopathologie, team GlioME, Faculte de Medecine, Universite d' Aix-Marseille, Marseille, France
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France
| | - Jean-Yves Delattre
- Sorbonne Université, INSERM U1127, CNRS UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, INSERM U1127, CNRS UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| |
Collapse
|
33
|
Zhang Z, Shen M, Zhou G. Upregulation of CDCA5 promotes gastric cancer malignant progression via influencing cyclin E1. Biochem Biophys Res Commun 2018; 496:482-489. [PMID: 29326043 DOI: 10.1016/j.bbrc.2018.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
The cell division cycle associated 5(CDCA5) was reported to be associated with progression of several human cancers, however, its clinical significance and biological role still remain unknown in gastric cancer(GC). By analyzing The Cancer Genome Atlas(TCGA), we found CDCA5 was significantly upregulated in GC tissues compared to adjacent normal tissues. Tissue microarray(TMA) indicated upregulation of CDCA5 was significantly correlated with more advanced clinicopathological features, and acts as an independent risk factor for worse overall survival(OS) in GC patients. Moreover, silence of CDCA5 suppresses proliferation of GC cells by inducing G1-phase arrest via downregulating Cyclin E1(CCNE1). Our results demonstrate upregulation of CDCA5 promotes GC malignant progression, which may offer a potential prognostic and therapeutic strategy.
Collapse
Affiliation(s)
- Zhengyuan Zhang
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China
| | - Mingyang Shen
- Department of Vascular Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China
| | - Guangrong Zhou
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China.
| |
Collapse
|
34
|
Potential biomarkers of CDK4/6 inhibitors in hormone receptor-positive advanced breast cancer. Breast Cancer Res Treat 2017; 168:287-297. [DOI: 10.1007/s10549-017-4612-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
|
35
|
Alexander A, Karakas C, Chen X, Carey JPW, Yi M, Bondy M, Thompson P, Cheung KL, Ellis IO, Gong Y, Krishnamurthy S, Alvarez RH, Ueno NT, Hunt KK, Keyomarsi K. Cyclin E overexpression as a biomarker for combination treatment strategies in inflammatory breast cancer. Oncotarget 2017; 8:14897-14911. [PMID: 28107181 PMCID: PMC5362453 DOI: 10.18632/oncotarget.14689] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a virulent form of breast cancer, and novel treatment strategies are urgently needed. Immunohistochemical analysis of tumors from women with a clinical diagnosis of IBC (n = 147) and those with non-IBC breast cancer (n = 2510) revealed that, whereas in non-IBC cases cytoplasmic cyclin E was highly correlated with poor prognosis (P < 0.001), in IBC cases both nuclear and cytoplasmic cyclin E were indicative of poor prognosis. These results underscored the utility of the cyclin E/CDK2 complex as a novel target for treatment. Because IBC cell lines were highly sensitive to the CDK2 inhibitors dinaciclib and meriolin 5, we developed a high-throughput survival assay (HTSA) to design novel sequential combination strategies based on the presence of cyclin E and CDK2. Using a 14-cell-line panel, we found that dinaciclib potentiated the activity of DNA-damaging chemotherapies treated in a sequence of dinaciclib followed by chemotherapy, whereas this was not true for paclitaxel. We also identified a signature of DNA repair–related genes that are downregulated by dinaciclib, suggesting that global DNA repair is inhibited and that prolonged DNA damage leads to apoptosis. Taken together, our findings argue that CDK2-targeted combinations may be viable strategies in IBC worthy of future clinical investigation.
Collapse
Affiliation(s)
- Angela Alexander
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Yi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa Bondy
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
| | | | - Ian O Ellis
- University of Nottingham, School of Medicine, Nottingham, UK
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas, USA
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Doostan I, Karakas C, Kohansal M, Low KH, Ellis MJ, Olson JA, Suman VJ, Hunt KK, Moulder SL, Keyomarsi K. Cytoplasmic Cyclin E Mediates Resistance to Aromatase Inhibitors in Breast Cancer. Clin Cancer Res 2017; 23:7288-7300. [PMID: 28947566 DOI: 10.1158/1078-0432.ccr-17-1544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 01/15/2023]
Abstract
Purpose: Preoperative aromatase inhibitor (AI) therapy has demonstrated efficacy in hormone receptor (HR)-positive postmenopausal breast cancer. However, many patients have disease that is either intrinsically resistant to AIs or that responds initially but develops resistance after prolonged exposure. We have shown that patients with breast tumors expressing the deregulated forms of cyclin E [low molecular weight forms (LMW-E)] have poor overall survival. Herein, we hypothesize that LMW-E expression can identify HR-positive tumors that are unresponsive to neoadjuvant AI therapy due to the inability of AIs to induce a cytostatic effect.Experimental Design: LMW-E was examined in breast cancer specimens from 58 patients enrolled in the American College of Surgeons Oncology Group Z1031, a neoadjuvant AI clinical trial. The mechanisms of LMW-E-mediated resistance to AI were evaluated in vitro and in vivo using an inducible model system of cyclin E (full-length and LMW-E) in aromatase-overexpressing MCF7 cells.Results: Breast cancer recurrence-free interval was significantly worse in patients with LMW-E-positive tumors who received AI neoadjuvant therapy, compared with those with LMW-E negative tumors. Upon LMW-E induction, MCF7 xenografts were unresponsive to letrozole in vivo, resulting in increased tumor volume after treatment with AIs. LMW-E expression overcame cell-cycle inhibition by AIs in a CDK2/Rb-dependent manner, and inhibition of CDK2 by dinaciclib reversed LMW-E-mediated resistance, whereas treatment with palbociclib, a CDK4/6 inhibitor, did not.Conclusions: Collectively, these findings suggest that cell-cycle deregulation by LMW-E mediates resistance to AIs and a combination of CDK2 inhibitors and AIs may be an effective treatment in patients with HR-positive tumors that express LMW-E. Clin Cancer Res; 23(23); 7288-300. ©2017 AACR.
Collapse
Affiliation(s)
- Iman Doostan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwang-Hui Low
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Ellis
- Department of Breast Cancer, Baylor College of Medicine, Houston, Texas
| | - John A Olson
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Surgery, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland
| | - Vera J Suman
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Kelly K Hunt
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
37
|
Li H, Yang D, Ning S, Xu Y, Yang F, Yin R, Feng T, Han S, Guo L, Zhang P, Qu W, Guo R, Song C, Xiao P, Zhou C, Xu Z, Sun J, Yu X. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin‐dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways. FASEB J 2017; 32:73-82. [PMID: 28842430 DOI: 10.1096/fj.201700418r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/14/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Hui Li
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
- Second Hospital, Shangdong University Jinan China
| | - Duxiao Yang
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | - Shanglei Ning
- Qilu Hospital and School of Life Science, Shangdong University Jinan China
| | - Yinghui Xu
- Cancer CenterFirst Hospital of Jilin University Jilin China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Rusha Yin
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Taihu Feng
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Shouqing Han
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Lu Guo
- Second Hospital, Shangdong University Jinan China
| | - Pengju Zhang
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | - Wenjie Qu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Renbo Guo
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Chen Song
- Center for Quantitative BiologyPeking University Beijing China
| | - Peng Xiao
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | | | - Zhigang Xu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
| | - Jin‐Peng Sun
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
- Duke University School of Medicine, Duke University Durham North Carolina USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| |
Collapse
|
38
|
Yan R, Zhang J, Zellmer L, Chen L, Wu D, Liu S, Xu N, Liao JD. Probably less than one-tenth of the genes produce only the wild type protein without at least one additional protein isoform in some human cancer cell lines. Oncotarget 2017; 8:82714-82727. [PMID: 29137297 PMCID: PMC5669923 DOI: 10.18632/oncotarget.20015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
To estimate how many genes produce multiple protein isoforms, we electrophoresed proteins from MCF7 and MDA-MB231 (MB231) human breast cancer cells in SDS-PAGE and excised narrow stripes of the gel at the 48kD, 55kD and 72kD. Proteins in these stripes were identified using liquid chromatography and tandem mass spectrometry. A total of 765, 750 and 679 proteins from MB231 cells, as well as 470, 390 and 490 proteins from MCF7 cells, were identified from the 48kD, 55kD and 72kD stripes, respectively. We arbitrarily allowed a 10% technical variation from the proteins' theoretical molecular mass (TMM) and considered those proteins with their TMMs within the 43-53 kD, 49-61 kD and 65-79 kD ranges as the wild type (WT) expected from the corresponding stripe, whereas those with a TMM above or below this range as a smaller- or larger-group, respectively. Only 263 (34.4%), 269 (35.9%) and 151 (22.2%) proteins from MB231 cells and 117 (24.9%), 135 (34.6%) and 130 (26.5%) proteins from MCF7 cells from the 48kD, 55kD and 72kD stripes, respectively, belonged to the WT, while the remaining majority belonged to the smaller- or larger-groups. Only about 3-16%, on average about 10% regardless of the stripe and cell line, of the proteins appeared in only one stripe and within the WT range, while the remaining preponderance appeared also in additional stripe(s) or had a larger or smaller TMM. We conclude that few (fewer than 10%) of the human genes produce only the WT protein without additional isoform(s).
Collapse
Affiliation(s)
- Rui Yan
- Nephrology Department, Guizhou Medical University Hospital, Guiyang, P.R. China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lucas Zellmer
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Di Wu
- Beijing Protein Innovation Co., Ltd, Beijing, P.R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Joshua D Liao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, P.R. China
| |
Collapse
|
39
|
Alonso-Lecue P, de Pedro I, Coulon V, Molinuevo R, Lorz C, Segrelles C, Ceballos L, López-Aventín D, García-Valtuille A, Bernal JM, Mazorra F, Pujol RM, Paramio J, Ramón Sanz J, Freije A, Toll A, Gandarillas A. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells. Cell Death Dis 2017; 8:e2901. [PMID: 28661481 PMCID: PMC5520915 DOI: 10.1038/cddis.2017.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022]
Abstract
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy.
Collapse
Affiliation(s)
- Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Vincent Coulon
- Institut de Genétique Moléculaire de Montpellier, CNRS/UM2, Montpellier, France
| | - Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Corina Lorz
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | | | | | - José M Bernal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Department of Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Francisco Mazorra
- Clínica Mompía, Mompía, Spain.,Department of Pathology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jesús Paramio
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), CIBERONC, Madrid, Spain
| | - J Ramón Sanz
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Clínica Mompía, Mompía, Spain.,Department of Plastic Surgery, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
40
|
CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nat Commun 2017; 8:15916. [PMID: 28653662 PMCID: PMC5490269 DOI: 10.1038/ncomms15916] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Deregulation of the cell cycle machinery is a hallmark of cancer. While CDK4/6 inhibitors are FDA approved (palbociclib) for treating advanced estrogen receptor-positive breast cancer, two major clinical challenges remain: (i) adverse events leading to therapy discontinuation and (ii) lack of reliable biomarkers. Here we report that breast cancer cells activate autophagy in response to palbociclib, and that the combination of autophagy and CDK4/6 inhibitors induces irreversible growth inhibition and senescence in vitro, and diminishes growth of cell line and patient-derived xenograft tumours in vivo. Furthermore, intact G1/S transition (Rb-positive and low-molecular-weight isoform of cyclin E (cytoplasmic)-negative) is a reliable prognostic biomarker in ER positive breast cancer patients, and predictive of preclinical sensitivity to this drug combination. Inhibition of CDK4/6 and autophagy is also synergistic in other solid cancers with an intact G1/S checkpoint, providing a novel and promising biomarker-driven combination therapeutic strategy to treat breast and other solid tumours. CDK4/6-Cyclin D pathway is often deregulated in cancer; therefore specific inhibitors have been developed. Here the authors show that treatment with CDK4/6 inhibitors activate autophagy in breast cancer cells; thus, combination of such inhibitors with autophagy inhibitors results in a synergistic effect on tumour growth.
Collapse
|
41
|
Abstract
Histological grade is one of the most commonly used prognostic factors for patients diagnosed with breast cancer. However, conventional grading has proven technically challenging, and up to 60% of the tumors are classified as histological grade 2, which represents a heterogeneous cohort less informative for clinical decision making. In an attempt to study and extend the molecular puzzle of histologically graded breast cancer, we have in this pilot project searched for additional protein biomarkers in a new space of the proteome. To this end, we have for the first time performed protein expression profiling of breast cancer tumor tissue, using recombinant antibody microarrays, targeting mainly immunoregulatory proteins. Thus, we have explored the immune system as a disease-specific sensor (clinical immunoproteomics). Uniquely, the results showed that several biologically relevant proteins reflecting histological grade could be delineated. In more detail, the tentative biomarker panels could be used to i) build a candidate model classifying grade 1 vs. grade 3 tumors, ii) demonstrate the molecular heterogeneity among grade 2 tumors, and iii) potentially re-classify several of the grade 2 tumors to more like grade 1 or grade 3 tumors. This could, in the long-term run, lead to improved prognosis, by which the patients could benefit from improved tailored care.
Collapse
|
42
|
Hunt KK, Karakas C, Ha MJ, Biernacka A, Yi M, Sahin AA, Adjapong O, Hortobagyi GN, Bondy M, Thompson P, Cheung KL, Ellis IO, Bacus S, Symmans WF, Do KA, Keyomarsi K. Cytoplasmic Cyclin E Predicts Recurrence in Patients with Breast Cancer. Clin Cancer Res 2016; 23:2991-3002. [PMID: 27881578 DOI: 10.1158/1078-0432.ccr-16-2217] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022]
Abstract
Purpose: Low molecular weight cyclin E (LMW-E) detected by Western blot analysis predicts for reduced breast cancer survival; however, it is impractical for clinical use. LMW-E lacks a nuclear localization signal that leads to accumulation in the cytoplasm that can be detected by IHC. We tested the hypothesis that cytoplasmic staining of cyclin E can be used as a predictor of poor outcome in different subtypes of breast cancer using patient cohorts with distinct clinical and pathologic features.Experimental Design: We evaluated the subcellular localization of cyclin E in breast cancer specimens from 2,494 patients from 4 different cohorts: 303 from a prospective study and 2,191 from retrospective cohorts [NCI, MD Anderson Cancer Center (MDA), and the United Kingdom (UK)]. Median follow-up times were 8.0, 10.1, 13.5, and 5.7 years, respectively.Results: Subcellular localization of cyclin E on IHC was associated with full-length (nuclear) and low molecular weight isoforms (cytoplasmic) of cyclin E on Western blot analysis. In multivariable analysis, cytoplasmic cyclin E staining was associated with the greatest risk of recurrence compared with other prognostic factors across all subtypes in three (NCI, MDA, and UK) of the cohorts. In the MDA cohort, cytoplasmic cyclin E staining outperformed Ki67 and all other variables as prognostic factors.Conclusions: Cytoplasmic cyclin E identifies patients with the highest likelihood of recurrence consistently across different patient cohorts and subtypes. These patients may benefit from alternative therapies targeting the oncogenic isoforms of cyclin E. Clin Cancer Res; 23(12); 2991-3002. ©2016 AACR.
Collapse
Affiliation(s)
- Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Biernacka
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Opoku Adjapong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa Bondy
- Department of Pathology Administration, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Thompson
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | | | - Ian O Ellis
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Sarah Bacus
- Quintiles Transnational Corp, Denver, Colorado, USA
| | - W Fraser Symmans
- Department of Pathology Administration, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
43
|
An approach for deciphering patient-specific variations with application to breast cancer molecular expression profiles. J Biomed Inform 2016; 63:120-130. [DOI: 10.1016/j.jbi.2016.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
|