1
|
Yang Y, Zhou X, Wang W, Dai H. Glycobiology of psoriasis: A review. J Autoimmun 2025; 151:103361. [PMID: 39808852 DOI: 10.1016/j.jaut.2025.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation. Abnormal glycosylation is associated with inflammation, tumors, autoimmunity, and several diseases. Glycan profiles and glycosylation-related enzymes are altered in patients with psoriasis. Specific glycan structures, such as glycosaminoglycans and gangliosides, inhibit the development of psoriasis through various pathways. Lectins are glycan-binding proteins that are widely involved in the pathogenesis of psoriasis. The differential serum, epidermal, and dermal expression of galectins in patients with psoriasis distinguishes psoriasis from other nonspecific psoriasis-like dermatitis. This article summarizes relevant literature on psoriasis-related glycans to help clarify the potential molecular mechanisms of psoriasis and identify novel biomarkers and targets for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yinuo Yang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Xin Zhou
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Wenhui Wang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China.
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China.
| |
Collapse
|
2
|
Kovacevic S, Mitovic N, Brkic P, Ivanov M, Zivotic M, Miloradovic Z, Nesovic Ostojic J. Hyperbaric Oxygenation: Can It Be a Novel Supportive Method in Acute Kidney Injury? Data Obtained from Experimental Studies. Cells 2024; 13:1119. [PMID: 38994971 PMCID: PMC11240597 DOI: 10.3390/cells13131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Despite constant achievements in treatment, acute kidney injury (AKI) remains a significant public health problem and a cause of mortality in the human population. In developed countries, AKI is a significant and frequent hospital complication, especially among patients admitted to intensive care units, where mortality rates can reach up to 50%. In addition, AKI has been implicated as an independent risk factor for the development of chronic kidney disease. Hyperbaric oxygenation (HBO) has been used as a primary or adjunctive therapy for the past 50 years, both in experimental and clinical studies. HBO is a treatment in which the patient is occasionally exposed to 100% oxygen at a pressure greater than atmospheric pressure at sea level. However, despite decades of extensive research, the potentially beneficial effects of this therapeutic approach are still not fully understood, although many potential mechanisms have been proposed, such as antioxidative, anti-inflammatory, anti-apoptotic, etc. Furthermore, the low cost and insignificant adverse events make HBO a potentially important strategy in the prevention and treatment of different diseases. Considering all of this, this review highlights the potential role of HBO in maintaining cellular homeostasis disrupted due to AKI, caused in different experimental models.
Collapse
Affiliation(s)
- Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (N.M.)
| | - Nikola Mitovic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (N.M.)
| | - Predrag Brkic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (Z.M.)
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.I.); (Z.M.)
| | - Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (N.M.)
| |
Collapse
|
3
|
Huang F, Ren X, Yuan B, Yang W, Xu L, Zhang J, Zhang H, Geng M, Li X, Zhang F, Xu J, Zhu W, Ren S, Meng L, Lu S. Systemic Mutation of Ncf1 Ameliorates Obstruction-Induced Renal Fibrosis While Macrophage-Rescued NCF1 Further Alleviates Renal Fibrosis. Antioxid Redox Signal 2023. [PMID: 37392014 DOI: 10.1089/ars.2022.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Aims: NCF1, a subunit of the NADPH oxidase 2 (NOX2), first described the expression in neutrophils and macrophages and participated in the pathogenesis from various systems. However, there are controversial findings on the role of NCF1 in different kinds of kidney diseases. In this study, we aim to pinpoint the specific role of NCF1 in the progression of renal fibrosis induced by obstruction. Results: In this study, NCF1 expression was upregulated in kidney biopsies of chronic kidney disease patients. The expression level of all subunits of the NOX2 complex was also significantly increased in the unilateral ureteral obstruction (UUO) kidney. Then, we used wild-type mice and Ncf1 mutant mice (Ncf1m1j mice) to perform UUO-induced renal fibrosis. Results demonstrated that Ncf1m1j mice exhibited mild renal fibrosis but increased macrophages count and CD11b+Ly6Chi macrophage proportion. Next, we compared the renal fibrosis degree between Ncf1m1j mice and Ncf1 macrophage-rescued mice (Ncf1m1j.Ncf1Tg-CD68 mice). We found that rescuing NCF1 expression in macrophages further alleviated renal fibrosis and decreased macrophage infiltration in the UUO kidney. In addition, flow cytometry data showed fewer CD11b+Ly6Chi macrophages in the kidney of the Ncf1m1j.Ncf1Tg-CD68 group than the Ncf1m1j group. Innovation: We first used the Ncf1m1j mice and Ncf1m1j.Ncf1Tg-CD68 mice to detect the role of NCF1 in the pathological process of renal fibrosis induced by obstruction. Also, we found that NCF1 expressed in different cell types exerts opposing effects on obstructive nephropathy. Conclusion: Taken together, our findings support that systemic mutation of Ncf1 ameliorates renal fibrosis induced by obstruction, and rescuing NCF1 in macrophages further alleviates renal fibrosis.
Collapse
Affiliation(s)
- Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xiaomin Ren
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyu Yuan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenbo Yang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lexuan Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haonan Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Manman Geng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fujun Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shuting Ren
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wu L, Qi S, Liu Y, Wang X, Zhu L, Yang Q, Du J, Xu H, Li Y. A novel ratiometric fluorescent probe for differential detection of HSO 3- and ClO - and application in cell imaging and tumor recognition. Anal Bioanal Chem 2021; 413:1137-1148. [PMID: 33404747 DOI: 10.1007/s00216-020-03077-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 03/17/2023]
Abstract
By connecting 1,8-naphthalimide and indole sulfonate, a ratio fluorescent probe capable of differential detection of hydrogen sulfite and hypochlorite was synthesized for the first time. It was able to achieve the qualitative detection of HSO3- and ClO- with high sensitivity and selectivity, respectively. It provides a multi-purpose probe and is based on different emission channels without mutual interference. The probe has the advantages of larger Stokes shift (ClO-: 115 nm, HSO3-: 88 nm), longer λem (ClO-: 515 nm, HSO3-: 548 nm) and better water solubility (DMF/PBS = 1:99, v/v). In addition, the probe is a ratio fluorescence probe, which can detect fluorescence intensity with two different emission waves. It provides internal self-calibration, reduces interference from the background and increases detection accuracy. In vitro cytotoxicity and imaging experiments show that the probe can effectively perform the detection of exogenous HSO3- and ClO- in cells. It can also achieve the detection of HSO3- and ClO- in the plasma environment. Because the probe can detect endogenous ClO-, it also has a good prospect for biological application in identifying tumor cells. Graphical abstract.
Collapse
Affiliation(s)
- Liangqiang Wu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| | - Shaolong Qi
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China.,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Yan Liu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| | - Xinyu Wang
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Lubao Zhu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China. .,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China.
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, Jilin, China.
| | - Hai Xu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China.
| | - Yaoxian Li
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
6
|
Kjellberg A, De Maio A, Lindholm P. Can hyperbaric oxygen safely serve as an anti-inflammatory treatment for COVID-19? Med Hypotheses 2020; 144:110224. [PMID: 33254531 PMCID: PMC7456590 DOI: 10.1016/j.mehy.2020.110224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION SARS-CoV-2 affects part of the innate immune response and activates an inflammatory cascade stimulating the release of cytokines and chemokines, particularly within the lung. Indeed, the inflammatory response during COVID-19 is likely the cause for the development of acute respiratory distress syndrome (ARDS). Patients with mild symptoms also show significant changes on pulmonary CT-scan suggestive of severe inflammatory involvement. HYPOTHESIS The overall hypothesis is that HBO2 is safe and reduces the inflammatory response in COVID-19 pneumonitis by attenuation of the innate immune system, increase hypoxia tolerance and thereby prevent organ failure and reduce mortality. EVALUATION OF THE HYPOTHESIS HBO2 is used in clinical practice to treat inflammatory conditions but has not been scientifically evaluated for COVID-19. Experimental and empirical data suggests that HBO2 may reduce inflammatory response in COVID-19. However, there are concerns regarding pulmonary safety in patients with pre-existing viral pneumonitis. EMPIRICAL DATA Anecdotes from "compassionate use" and two published case reports show promising results. CONSEQUENCES OF THE HYPOTHESIS AND DISCUSSION Small prospective clinical trials are on the way and we are conducting a randomized clinical trial.
Collapse
Affiliation(s)
- Anders Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Emergency Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Mo C, Shetti D, Wei K. Erianin Inhibits Proliferation and Induces Apoptosis of HaCaT Cells via ROS-Mediated JNK/c-Jun and AKT/mTOR Signaling Pathways. Molecules 2019; 24:molecules24152727. [PMID: 31357564 PMCID: PMC6695952 DOI: 10.3390/molecules24152727] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a recurrent skin disease described as keratinocyte hyperproliferation and aberrant differentiation. Erianin, a bibenzyl compound extracted from Dendrobium chrysotoxum, has displayed antitumor and anti-angiogenesis effects. However, the effects of erianin on a human keratinocyte cell line (HaCaT) are not fully understood. In the present study, we explored the effect of erianin on proliferation and apoptosis in HaCaT cells. Our results indicated that treatment with erianin ranging from 12.5 nM to 50 nM inhibited proliferation and induced apoptosis of HaCaT cells. In addition, erianin-induced apoptosis was accompanied by elevated reactive oxygen species (ROS). The ROS scavenger N-acetyl-cysteine (NAC) attenuated this elevation. Moreover, treatment with erianin induced activation of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway and suppressed the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, while pretreatment with NAC also reversed these effects. Collectively, these data demonstrated that erianin inhibited proliferation and induced apoptosis of HaCaT cells through ROS-mediated JNK/c-Jun and AKT/mTOR signaling pathways. Erianin could be recognized as a potential anti-psoriasis drug.
Collapse
Affiliation(s)
- Canlong Mo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dattatrya Shetti
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech 2019; 12:dmm036947. [PMID: 30858306 PMCID: PMC6451423 DOI: 10.1242/dmm.036947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.
Collapse
Affiliation(s)
- Chandan Sanghera
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Lok Man Wong
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Mona Panahi
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Muneer Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
9
|
Hoffmann MH, Griffiths HR. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med 2018; 125:62-71. [PMID: 29550327 DOI: 10.1016/j.freeradbiomed.2018.03.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Department of Medicine 3, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsklinikum Erlangen, Germany.
| | | |
Collapse
|
10
|
Hagert C, Sareila O, Kelkka T, Nandakumar KS, Collin M, Xu B, Guérard S, Bäcklund J, Jalkanen S, Holmdahl R. Chronic Active Arthritis Driven by Macrophages Without Involvement of T Cells: A Novel Experimental Model of Rheumatoid Arthritis. Arthritis Rheumatol 2018. [PMID: 29513929 DOI: 10.1002/art.40482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To develop a new chronic rheumatoid arthritis model that is driven by the innate immune system. METHODS Injection of a cocktail of 4 monoclonal antibodies against type II collagen, followed on days 5 and 60 by intraperitoneal injections of mannan (from Saccharomyces cerevisiae), was used to induce development of chronic arthritis in B10.Q mice. The role of the innate immune system as compared to the adaptive immune system in this arthritis model was investigated using genetically modified mouse strains. RESULTS A new model of chronic relapsing arthritis was characterized in B10.Q mice, in which a persistently active, chronic disease was found. This relapsing disease was driven by macrophages lacking the ability to mount a reactive oxygen species response against pathogens, and was associated with the classical/alternative pathway, but not the lectin pathway, of complement activation. The disease was independent of Fcγ receptor type III, and also independent of the activity of adaptive immune cells (B and T cells), indicating that the innate immune system, involving complement activation, could be the sole driver of chronicity. CONCLUSION Chronic active arthritis can be driven innately by macrophages without the involvement of T and B cells in the adaptive immune system.
Collapse
Affiliation(s)
- Cecilia Hagert
- Medicity, University of Turku and the National Doctoral Programme in Informational and Structural Biology, Turku, Finland
| | - Outi Sareila
- Medicity, University of Turku, Turku, Finland.,Karolinska Institute, Stockholm, Sweden
| | - Tiina Kelkka
- Medicity, University of Turku and the Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | | | | | - Bingze Xu
- Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Rikard Holmdahl
- Karolinska Institute, Stockholm, Sweden.,Southern Medical University, Guangzhou, China.,Lund University, Lund, Sweden.,Medicity, University of Turku, The National Doctoral Programme in Informational and Structural Biology, and The Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| |
Collapse
|
11
|
Zhong J, Scholz T, Yau ACY, Guerard S, Hüffmeier U, Burkhardt H, Holmdahl R. Mannan-induced Nos2 in macrophages enhances IL-17-driven psoriatic arthritis by innate lymphocytes. SCIENCE ADVANCES 2018; 4:eaas9864. [PMID: 29774240 PMCID: PMC5955621 DOI: 10.1126/sciadv.aas9864] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/06/2018] [Indexed: 05/29/2023]
Abstract
Previous identification of the inducible nitric oxide synthase (NOS2) gene as a risk allele for psoriasis (Ps) and psoriatic arthritis (PsA) suggests a possible pathogenic role of nitric oxide (NO). Using a mouse model of mannan-induced Ps and PsA (MIP), where macrophages play a regulatory role by releasing reactive oxygen species (ROS), we found that NO was detectable before disease onset in mice, independent of a functional nicotinamide adenine dinucleotide phosphate oxidase 2 complex. MIP was suppressed by either deletion of Nos2 or inhibition of NO synthases with NG-nitro-l-arginine methyl ester, demonstrating that Nos2-derived NO is pathogenic. NOS2 expression was also up-regulated in lipopolysaccharide- and interferon-γ-stimulated monocyte subsets from patients with PsA compared to healthy controls. Nos2-dependent interleukin-1α (IL-1α) release from skin macrophages was essential for arthritis development by promoting IL-17 production of innate lymphoid cells. We conclude that Nos2-derived NO by tissue macrophages promotes MIP, in contrast to the protective effect by ROS.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tatjana Scholz
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology and Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main 605 90, Germany
| | - Anthony C. Y. Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Simon Guerard
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 910 54, Germany
| | - Harald Burkhardt
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology and Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main 605 90, Germany
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|