1
|
Sanabani SS. Impact of Gut Microbiota on Lymphoma: New Frontiers in Cancer Research. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e82-e89. [PMID: 39299827 DOI: 10.1016/j.clml.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome (GMB), which is made up of various microorganisms, plays a crucial role in maintaining the health of the host. Disruptions in this delicate ecosystem, known as microbial dysbiosis, have been linked to various diseases, including hematologic malignancies such as lymphoma. This review article explores the complex relationship between the GMB and the development of lymphoma and highlights its implications for diagnostic and therapeutic approaches. It discusses how GMB influences lymphoma development directly through the presence of certain microorganisms and indirectly through changes in the immune system. The clinical relevance of GMB is highlighted and its potential utility for diagnosis, predicting treatment outcomes and developing personalized therapeutic strategies for lymphoma patients is demonstrated. The review also looks at microbiome-targeted interventions such as fecal microbiome transplantation and dietary modification, which have shown promise for treating microbial dysbiosis and improving patient outcomes. In addition, it highlights the analytical challenges and the need for further research to fully elucidate the mechanistic functions of the GMB in the context of lymphoma. This review emphasizes the critical role of GMB in lymphomagenesis and its potential for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM 03, Hospital das Clínicas (HCFMU), School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, Croker BP, Michailidis G, Garrett TJ, Mohamadzadeh M, Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12:eaax2220. [PMID: 32641487 PMCID: PMC7739186 DOI: 10.1126/scitranslmed.aax2220] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Abstract
OPINION STATEMENT There are approximately 1.2 million new hematologic malignancy cases resulting in ~ 690,000 deaths each year worldwide, and hematologic malignancies remain the most commonly occurring cancer in children. Even though advances in anticancer treatment regimens in recent decades have considerably improved survival rates, their cytotoxic effects and the resulting long-term complications pose a significant burden on the patients and the health care system. Therefore, non-toxic treatment modalities are needed to decrease side effects. The human body is the host to approximately 40 trillion microbes, known as the human microbiota. The large majority of the microbiota is located in the gastrointestinal tract, and is primarily composed of bacteria. The microbiota plays several important physiological roles, ranging from digestive functions to immunological and neural development. Investigating the microbiota in patients with hematologic malignancies has several important implications. The microbiota affects hematopoiesis, and influences the efficacies of chemotherapy and antimicrobial treatments. Determination of the microbiota composition and diversity could be an important part of risk stratification in the future, and may also take part to personalize antimicrobial treatments. Modulation of the microbiota via probiotics or fecal transplant can potentially be involved in reducing side effects of chemotherapy, and eliminating multiple drug resistant strains in patients with hematologic malignancies.
Collapse
|
4
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
The Possible Role of Gut Microbiota and Microbial Translocation Profiling During Chemo-Free Treatment of Lymphoid Malignancies. Int J Mol Sci 2019; 20:ijms20071748. [PMID: 30970593 PMCID: PMC6480672 DOI: 10.3390/ijms20071748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between gut microbiota (GM) and the immune system is intense and complex. When dysbiosis occurs, the resulting pro-inflammatory environment can lead to bacterial translocation, systemic immune activation, tissue damage, and cancerogenesis. GM composition seems to impact both the therapeutic activity and the side effects of anticancer treatment; in particular, robust evidence has shown that the GM modulates the response to immunotherapy in patients affected by metastatic melanoma. Despite accumulating knowledge supporting the role of GM composition in lymphomagenesis, unexplored areas still remain. No studies have been designed to investigate GM alteration in patients diagnosed with lymphoproliferative disorders and treated with chemo-free therapies, and the potential association between GM, therapy outcome, and immune-related adverse events has never been analyzed. Additional studies should be considered to create opportunities for a more tailored approach in this set of patients. In this review, we describe the possible role of the GM during chemo-free treatment of lymphoid malignancies.
Collapse
|
6
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
7
|
Microbial Agents as Putative Inducers of B Cell Lymphoma in Sjögren's Syndrome through an Impaired Epigenetic Control: The State-of-The-Art. J Immunol Res 2019; 2019:8567364. [PMID: 30723750 PMCID: PMC6339763 DOI: 10.1155/2019/8567364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Understanding the mechanisms underlying the pathogenesis of Sjögren's syndrome (SS) is crucially important in order to be able to discriminate the steps that lead to B cell transformation and promptly identify the patients at risk of lymphomagenesis. The aim of this narrative review is to describe the evidence concerning the role that infections or dysbiosis plays in the epigenetic control of gene expression in SS patients and their possible involvement in B cell lymphomagenesis. Materials and Methods We searched the PubMed and Google Scholar databases and selected a total of 92 articles published during the last 25 years that describe experimental and clinical studies of the potential associations of microbiota and epigenetic aberrations with the risk of B cell lymphoma in SS patients. Results and Discussion The genetic background of SS patients is characterized by the hyperexpression of genes that are mainly involved in regulating the innate and adaptive immune responses and oncogenesis. In addition, salivary gland epithelial cells and lymphocytes both have an altered epigenetic background that enhances the activation of proinflammatory and survival pathways. Dysbiosis or chronic latent infections may tune the immune response and modify the cell epigenetic machinery in such a way as to give B lymphocytes an activated or transformed phenotype. It is also worth noting that transposable integrated retroelements may participate in the pathogenesis of SS and B cell lymphomagenesis by inducing DNA breaks, modulating cell gene expression, or generating aberrant transcripts that chronically stimulate the immune system. Conclusions Microorganisms may epigenetically modify target cells and induce their transcriptome to generate an activated or transformed phenotype. The occurrence of lymphoma in more than 15% of SS patients may be the end result of a combination of genetics, epigenetics, and dysbiosis or latent infections.
Collapse
|
8
|
Kovalchuk AL, Sakai T, Qi CF, Du Bois W, Dunnick WA, Cogné M, Morse HC. 3' Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations. Oncotarget 2018; 9:34528-34542. [PMID: 30349647 PMCID: PMC6195379 DOI: 10.18632/oncotarget.26160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-deregulating T(12;15) chromosomal translocations are the hallmark cytogenetic abnormalities of murine plasmacytomas (PCTs). In most PCTs, the immunoglobulin heavy chain (Igh) locus is broken between the Eμ enhancer and the 3’ regulatory region (3’RR), making the latter the major candidate for orchestrating Myc deregulation. To elucidate the role of the Igh3’RR in tumorigenesis, we induced PCTs in Bcl-xL-transgenic mice deficient for the major Igh3’RR enhancer elements, hs3b and hs4 (hs3b-4-/-). Contrary to previous observations using a mouse lymphoma model, which showed no tumors with peripheral B-cell phenotype in hs3b-4-/- mice, these animals developed T(12;15)-positive PCTs, although with a lower incidence than hs3b-4+/+ (wild-type, WT) controls. In heterozygous hs3b-4+/- mice there was no allelic bias in targeting Igh for T(12;15). Molecular analyses of Igh/Myc junctions revealed dominance of Sμ region breakpoints versus the prevalence of Sγ or Sα in WT controls. Myc expression and Ig secretion in hs3b-4-/- PCTs did not differ from WT controls. We also evaluated the effect of a complete Igh3’RR deletion on Myc expression in the context of an established Igh/Myc translocation in ARS/Igh11-transgenic PCT cell lines. Cre-mediated deletion of the Igh3’RR resulted in gradual reduction of Myc expression, loss of proliferative activity and increased cell death, confirming the necessity of the Igh3’RR for Myc deregulation by T(12;15).
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chen-Feng Qi
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Wendy Du Bois
- Animal Model and Genotyping Core Facility, Laboratory of Cancer Biology and Genetics, NCI, National Institute of Health, Bethesda, MD, USA
| | - Wesley A Dunnick
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michel Cogné
- Laboratory of Immunology, CNRS UMR 7276, Université de Limoges, Limoges, France
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|