1
|
Aydin N, Ouliass B, Ferland G, Hafizi S. Modification of Gas6 Protein in the Brain by a Functional Endogenous Tissue Vitamin K Cycle. Cells 2024; 13:873. [PMID: 38786095 PMCID: PMC11119062 DOI: 10.3390/cells13100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of this mechanism in the brain is not known. We report here the endogenous expression of multiple components of the vitamin K cycle within the mouse brain at various ages as well as in distinct brain glial cells. The brain expression of all genes was increased in the postnatal ages, mirroring their profiles in the liver. In microglia, the proinflammatory agent lipopolysaccharide caused the downregulation of all key vitamin K cycle genes. A secreted Gas6 protein was detected in the medium of both mouse cerebellar slices and brain glial cell cultures. Furthermore, the endogenous Gas6 γ-carboxylation level was abolished through incubation with the vitamin K antagonist warfarin and could be restored through co-incubation with vitamin K1. Finally, the γ-carboxylation level of the Gas6 protein within the brains of warfarin-treated rats was found to be significantly reduced ex vivo compared to the control brains. In conclusion, we demonstrated for the first time the existence of a functional vitamin K cycle within rodent brains, which regulates the functional modification of endogenous brain Gas6. These results indicate that vitamin K is an important nutrient for the brain. Furthermore, the measurement of vitamin K-dependent Gas6 functionality could be an indicator of homeostatic or disease mechanisms in the brain, such as in neurological disorders where Gas6/TAM signalling is impaired.
Collapse
Affiliation(s)
- Nadide Aydin
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Bouchra Ouliass
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Guylaine Ferland
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sassan Hafizi
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
2
|
DiStefano JK, Piras IS, Wu X, Sharma R, Garcia-Mansfield K, Willey M, Lovell B, Pirrotte P, Olson ML, Shaibi GQ. Changes in proteomic cargo of circulating extracellular vesicles in response to lifestyle intervention in adolescents with hepatic steatosis. Clin Nutr ESPEN 2024; 60:333-342. [PMID: 38479932 PMCID: PMC10937812 DOI: 10.1016/j.clnesp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Xiumei Wu
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Maya Willey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Brooke Lovell
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Micah L Olson
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| | - Gabriel Q Shaibi
- Division of Endocrinology and Diabetes, Phoenix Children's, Phoenix, AZ, USA; Center for Health Promotion and Disease Prevention, Edson College of Nursing, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
3
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
4
|
Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci 2022; 79:542. [PMID: 36203068 PMCID: PMC9537123 DOI: 10.1007/s00018-022-04555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing ‘model cells’ (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Kazuki Tatsumi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.,Regenerative Medicine Division, Analytical Research Department, Technology Development Unit, Life Science Institute, Inc., Tokyo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
5
|
Kamamoto T, Nakajima Y, Uchida Y, Nakagawa T, Tonegawa H, Tani Y, Nishimoto E, Takahashi Y, Nishikubo T, Nogami K. Protein C system in preterm babies with chronic lung disease: Prospective study. Pediatr Int 2022; 64:e15221. [PMID: 35912452 DOI: 10.1111/ped.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic lung disease (CLD) is a major neonatal pulmonary disorder associated with inflammation. Recent studies have shown that protein C anticoagulant pathways, such as those for protein C (PC), protein S (PS), and thrombomodulin (TM), could be useful indices for reflecting pulmonary injury. However, the involvement of these factors in preterm infants with very low birthweight (VLBW) who have developed CLD remains to be investigated. Here, we investigated whether PC pathway-related factors could predict the development of CLD in preterm infants with VLBW. METHODS We collected plasma samples from 26 preterm infants with VLBW (13 each from those with and without CLD) at the time of birth and measured TM, PC, and PS levels in their plasmas. We analyzed prospectively the relationship between these factors in infants with and without CLD. RESULTS There were significant differences in gestational age, birthweight, Apgar score (5 min), and duration of mechanical ventilation between the CLD and non-CLD groups. No significant differences in the PC and PS levels at birth were observed between the two groups, whereas the TM levels in the CLD group were significantly higher than those in the non-CLD group (P = 0.013). The TM levels correlated with gestational age and duration of mechanical ventilation. However, covariance analysis demonstrated that gestational age was significantly associated with TM levels, and consequently, development of CLD was not associated with TM level at birth. CONCLUSIONS Thrombomodulin, PC, and PS levels at birth could not predict the development of CLD in preterm infants with VLBW.
Collapse
Affiliation(s)
- Tomoyuki Kamamoto
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan.,Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | - Yumiko Uchida
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Takashi Nakagawa
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Hitoshi Tonegawa
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Yuki Tani
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Eri Nishimoto
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | | | - Toshiya Nishikubo
- Division of Neonatal Intensive Care, Center of Perinatal Medicine, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
6
|
Sugimoto M, Kondo M, Yasuma T, D'Alessandro-Gabazza CN, Toda M, Imai H, Nakamura M, Gabazza EC. Increased expression of Protein S in eyes with diabetic retinopathy and diabetic macular edema. Sci Rep 2021; 11:10449. [PMID: 34001977 PMCID: PMC8129118 DOI: 10.1038/s41598-021-89870-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Protein S (PS) is a multifunctional glycoprotein that ameliorates the detrimental effects of diabetes mellitus (DM). The aim of this study was to evaluate the distribution of PS in diabetic retinopathy (DR) and diabetic macular edema (DME). This was a study of 50 eyes with DM (37 with DME, 6 with proliferative DR, and 7 with no DR) and 19 eyes without DM. The level of PS was measured by enzyme immunoassay and was compared between eyes with or without DM, with or without DME, and with severe DME (≥ 350 μm) or mild DME (< 350 μm). We also performed immunohistopathologic evaluations of post-mortem eyes and the cystoid lesions excised during surgery. The aqueous free PS was significantly higher with DM (7.9 ± 1.2 ng/ml, P < 0.01) than without DM (6.1 ± 0.7). The aqueous free PS was significantly elevated with DME (8.2 ± 1.2, P < 0.05) compared to proliferative DR (7.0 ± 1.0) and no DR (7.0 ± 0.7). Eyes with severe DME had significantly higher aqueous free PS than mild DME (8.5 ± 1.3 vs. 7.7 ± 1.0, P < 0.05). Immunohistochemistry showed PS in the outer plexiform layer of the retina and cystoid lesion. The higher expression of PS with DR and DME suggests that PS is involved in their pathogenesis.
Collapse
Affiliation(s)
- Masahiko Sugimoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hisanori Imai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
7
|
Protein S is Protective in Acute Lung Injury by Inhibiting Cell Apoptosis. Int J Mol Sci 2019; 20:ijms20051082. [PMID: 30832349 PMCID: PMC6429595 DOI: 10.3390/ijms20051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a fatal disease characterized by inflammatory cell infiltration, alveolar-capillary barrier disruption, protein-rich edema, and impairment of gas exchange. Protein S is a vitamin K-dependent glycoprotein that exerts anticoagulant, immunomodulatory, anti-inflammatory, anti-apoptotic, and neuroprotective effects. The aim of this study was to evaluate whether human protein S inhibits cell apoptosis in acute lung injury. Acute lung injury in human protein S transgenic and wild-type mice was induced by intratracheal instillation of lipopolysaccharide. The effect of human protein S on apoptosis of lung tissue cells was evaluated by Western blotting. Inflammatory cell infiltration, alveolar wall thickening, myeloperoxidase activity, and the expression of inflammatory cytokines were reduced in human protein S transgenic mice compared to the wild-type mice after lipopolysaccharide instillation. Apoptotic cells and caspase-3 activity were reduced while phosphorylation of extracellular signal-regulated kinase was enhanced in the lung tissue from human protein S transgenic mice compared to wild-type mice after lipopolysaccharide instillation. The results of this study suggest that human protein S is protective in lipopolysaccharide-induced acute lung injury by inhibiting apoptosis of lung cells.
Collapse
|