1
|
Markasz L, Mobini-Far H, Sindelar R. Early and late postnatal lung distribution of collagen type VI in preterm and term infants. Respir Physiol Neurobiol 2025; 332:104366. [PMID: 39577825 DOI: 10.1016/j.resp.2024.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Collagen type VI (COL6) is an important component of the extracellular matrix (EM) and may have a major role in lung development and disease. Studies on COL6 expression during lung development are mainly based on animal models. The aim of the study was to define COL6 expression pattern in lung parenchyma in infants with different lung maturational stages. COL6 expression in 115 lung samples from deceased newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age) was studied by immunohistochemistry combined with digital image analysis. The distribution of COL6 expression was generally heterogeneous in the lung parenchyma of preterm and term infants. The size of the high-density and low-density areas appeared with logarithmic correlation and COL6 defined the basement membrane (BM) with a prominent expression around the air spaces in the canalicular stage during the first postnatal week. Infants at the alveolar stage showed linear correlation and a fine filamentous appearance during the first week of postnatal life, similarly to adults. COL6 is condensed to areas corresponding to the BM during the first postnatal week of the canalicular stage of lung development. After the first postnatal week COL6 expression changes to a microfibrillar appearance in the ECM, similar to the pattern that characterizes the later alveolar stage and adults. The localization of COL6 during the canalicular and saccular stages might have a higher impact on lung development than the amount of COL6.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden.
| | - Hamid Mobini-Far
- Department of Pathology, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
2
|
Culiat C, Soni D, Malkes W, Wienhold M, Zhang LH, Henry E, Dragan M, Kar S, Angeles DM, Eaker S, Biswas R. NELL1 variant protein (NV1) modulates hyper-inflammation, Th-1 mediated immune response, and the HIF-1α hypoxia pathway to promote healing in viral-induced lung injury. Biochem Biophys Res Commun 2025; 744:151198. [PMID: 39706056 DOI: 10.1016/j.bbrc.2024.151198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Research underscores the urgent need for technological innovations to treat lung tissue damage from viral infections and the lasting impact of COVID-19. Our study demonstrates the effectiveness of recombinant human NV1 protein in promoting a pro-healing extracellular matrix that regulates homeostasis in response to excessive tissue reactions caused by infection and injury. NV1 achieves this by calibrating multiple biological mechanisms, including reducing hyperinflammatory cytokine levels (e.g., IFN-γ, TNF-α, IL-10, and IP-10), enhancing the production of proteins involved in viral inactivation and clearance through endocytosis and phagocytosis (e.g., IL-9, IL-1α), regulating pro-clotting and thrombolytic pathways (e.g., downregulates SERPINE 1 and I-TAC during Th1-mediated inflammation), maintaining cell survival under hypoxic conditions via HIF-1α regulation through the M3K5-JNK-AP-1 and TSC2-mTOR pathways, and promoting blood vessel formation. Our findings reveal NV1 as a potential therapeutic candidate for treating severe lung injuries caused by inflammatory and hypoxic conditions from viral infections and related diseases.
Collapse
Affiliation(s)
| | - Dharmendra Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Mark Wienhold
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | | | | | | | | | | | - Shannon Eaker
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Shorey-Kendrick LE, McEvoy CT, Milner K, Harris J, Brownsberger J, Tepper RS, Park B, Gao L, Vu A, Morris CD, Spindel ER. Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age. Clin Epigenetics 2024; 16:35. [PMID: 38413986 PMCID: PMC10900729 DOI: 10.1186/s13148-024-01644-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Pape Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julia Harris
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julie Brownsberger
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Annette Vu
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
4
|
Bhattacharya S, Myers JA, Baker C, Guo M, Danopoulos S, Myers JR, Bandyopadhyay G, Romas ST, Huyck HL, Misra RS, Dutra J, Holden-Wiltse J, McDavid AN, Ashton JM, Al Alam D, Potter SS, Whitsett JA, Xu Y, Pryhuber GS, Mariani TJ. Single-Cell Transcriptomic Profiling Identifies Molecular Phenotypes of Newborn Human Lung Cells. Genes (Basel) 2024; 15:298. [PMID: 38540357 PMCID: PMC10970229 DOI: 10.3390/genes15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jacquelyn A. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Cameron Baker
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Minzhe Guo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - Jason R. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Stephen T. Romas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Ravi S. Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jennifer Dutra
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
| | - Jeanne Holden-Wiltse
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Andrew N. McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - John M. Ashton
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - S. Steven Potter
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Jeffrey A. Whitsett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Yan Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| |
Collapse
|
5
|
Mohamed AA, Nour AA, Mosbah NM, Wahba ASM, Esmail OE, Eysa B, Heiba A, Samir HH, El-Kassas AA, Adroase AS, Elamir AY, Mahmoud GM, Rafaat RS, Hassan HA, El Abd YS. Evaluation of circulating insulin-like growth factor-1, heart-type fatty acid-binding protein, and endotrophin levels as prognostic markers of COVID-19 infection severity. Virol J 2023; 20:94. [PMID: 37189123 PMCID: PMC10183690 DOI: 10.1186/s12985-023-02057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a worldwide pandemic challenge spreading enormously within a few months. COVID-19 is characterized by the over-activation of the immune system causing cytokine storm. Insulin-like growth factor-1 (IGF-1) pathway can regulate the immune response via interaction with various implicated cytokines. Heart-type fatty acid-binding protein (H-FABP) has been shown to promote inflammation. Given the fact that coronavirus infections induce cytokines secretion leading to inflammatory lung injury, it has been suggested that H-FABP levels are affected by COVID-19 severity. Moreover, endotrophin (ETP), the cleavage product of collagen VI, may be an indicator of an overactive repair process and fibrosis, considering that viral infection may predispose or exacerbate existing respiratory conditions, including pulmonary fibrosis. This study aims to assess the prognostic capacity of circulating IGF-1, HFABP, and ETP, levels for COVID-19 severity progression in Egyptian patients. METHODS The study cohort included 107 viral RNA-positive patients and an equivalent number of control individuals with no clinical signs of infection. Clinical assessments included profiling of CBC; serum iron; liver and kidney functions; inflammatory markers. Circulating levels of IGF-1; H-FABP, and ETP were estimated using the corresponding ELISA kits. RESULTS No statistical difference in the body mass index was detected between the healthy and control groups, while the mean age of infected patients was significantly higher (P = 0.0162) than the control. Patients generally showed elevated levels of inflammatory markers including CRP and ESR concomitant with elevated serum ferritin; D dimer and procalcitonin levels, besides the COVID-19 characteristic lymphopenia and hypoxemia were also frequent. Logistic regression analysis revealed that oxygen saturation; serum IGF-1, and H-FABP can significantly predict the infection progression (P < 0.001 each). Both serum IGF-1 and H-FABP as well as O2 saturation showed remarkable prognostic potentials in terms of large AUC values, high sensitivity/specificity values, and wide confidence interval. The calculated threshold for severity prognosis was 25.5 ng/mL; 19.5 ng/mL, 94.5, % and for IGF-1, H-FABP, and O2 saturation; respectively. The calculated thresholds of serum IGF-1; H-FABP, and O2 saturation showed positive and negative value ranges of 79-91% and 72-97%; respectively, with 66-95%, 83-94% sensitivity, and specificity; respectively. CONCLUSION The calculated cut-off values of serum IGF-1 and H-FABP represent a promising non-invasive prognostic tool that would facilitate the risk stratification in COVID-19 patients, and control the morbidity/mortality associated with progressive infection.
Collapse
Affiliation(s)
- Amal A Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Institute, Cairo, Egypt
| | - Aya A Nour
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mosbah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Alaa S M Wahba
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Omnia E Esmail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Basem Eysa
- Gastroenterology and Hepatology Department, National Hepatology and Tropical Medicine Institute, Cairo, Egypt
| | - Ahmed Heiba
- Internal Medicine Department, Medicine and Clinical Studies Research Institute, National Research Centre, Cairo, Egypt
| | - Hussin H Samir
- Nephrology Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Ahmed S Adroase
- Clinical Pathology Department, El-Sahel Teaching Hospital, Cairo, Egypt
| | - Ahmed Y Elamir
- Radiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada M Mahmoud
- Clinical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rasha S Rafaat
- Neurology and Psychiatry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hatem A Hassan
- Gastroenterology and Hepatology, Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Yasmine S El Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
6
|
Huang Q, An R, Wang H, Yang Y, Tang C, Wang J, Yu W, Zhou Y, Zhang Y, Wu D, Li B, Yang H, Lu S, Peng X. Aggravated pneumonia and diabetes in SARS-CoV-2 infected diabetic mice. Emerg Microbes Infect 2023; 12:2203782. [PMID: 37060137 PMCID: PMC10155636 DOI: 10.1080/22221751.2023.2203782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Multiple clinical and epidemiological studies have shown an interconnection between coronavirus disease 2019 (COVID-19) and diabetes, but experimental evidence is still lacking. Understanding the interplay between them is important because of the global health burden of COVID-19 and diabetes. We found that C57BL/6J mice were susceptible to the alpha strain of SARS-CoV-2. Moreover, diabetic C57BL/6J mice with leptin receptor gene deficiency (db/db mice) showed a higher viral load in the throat and lung and slower virus clearance in the throat after infection than C57BL/6J mice. Histological and multifactor analysis revealed more advanced pulmonary injury and serum inflammation in SARS-CoV-2 infected diabetic mice. Moreover, SARS-CoV-2 infected diabetic mice exhibited more severe insulin resistance and islet cell loss than uninfected diabetic mice. By RNA sequencing analysis, we found that diabetes may reduce the collagen level, suppress the immune response and aggravate inflammation in the lung after infection, which may account for the greater susceptibility of diabetic mice and their more severe lung damage after infection. In summary, we successfully established a SARS-CoV-2 infected diabetic mice model and demonstrated that diabetes and COVID-19 were risk factors for one another.
Collapse
Affiliation(s)
- Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Ran An
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yongmei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Bhattacharya S, Cherry C, Deutsch G, Glass IA, Mariani TJ, Alam DA, Danopoulos S. A Trisomy 21 Lung Cell Atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534839. [PMID: 37066313 PMCID: PMC10103948 DOI: 10.1101/2023.03.30.534839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated in utero. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Our results demonstrate differences in the proportion of cell populations and detail changes in gene expression at the time of initiation of histopathological abnormalities. Notably, we identify shifts in the distribution of alveolar epithelial progenitors, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell atlas of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.
Collapse
|
8
|
Hoffman ET, Uhl FE, Asarian L, Deng B, Becker C, Uriarte JJ, Downs I, Young B, Weiss DJ. Regional and disease specific human lung extracellular matrix composition. Biomaterials 2023; 293:121960. [PMID: 36580718 PMCID: PMC9868084 DOI: 10.1016/j.biomaterials.2022.121960] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.
Collapse
Affiliation(s)
- Evan T. Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Loredana Asarian
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Chloe Becker
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Juan J. Uriarte
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Isaac Downs
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Brad Young
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Daniel J. Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
9
|
Lamandé SR. Collagen VI Muscle Disorders: Mutation Types, Pathogenic Mechanisms and Approaches to Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:311-323. [PMID: 34807426 DOI: 10.1007/978-3-030-80614-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations in the genes encoding the major collagen VI isoform, COL6A1, COL6A2 and COL6A3, are responsible for the muscle disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. These disorders form a disease spectrum from mild to severe. Dominant and recessive mutations are found along the entire spectrum and the clinical phenotype is strongly influenced by the way mutations impede collagen VI protein assembly. Most mutations are in the triple helical domain, towards the N-terminus and they compromise microfibril assembly. Some mutations are found outside the helix in the C- and N-terminal globular domains, but because these regions are highly polymorphic it is difficult to discriminate mutations from rare benign changes without detailed structural and functional studies. Collagen VI deficiency leads to mitochondrial dysfunction, deficient autophagy and increased apoptosis. Therapies that target these consequences have been tested in mouse models and some have shown modest efficacy in small human trials. Antisense therapies for a common mutation that introduces a pseudoexon show promise in cell culture but haven't yet been tested in an animal model. Future therapeutic approaches await new research into how collagen VI deficiency signals downstream consequences.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Danopoulos S, Deutsch GH, Dumortier C, Mariani TJ, Al Alam D. Lung disease manifestations in Down syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L892-L899. [PMID: 34469245 PMCID: PMC8616621 DOI: 10.1152/ajplung.00434.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Down syndrome (DS) is one of the most prevalent chromosomal abnormalities worldwide, affecting 1 in 700 live births. Although multiple organ systems are affected by the chromosomal defects, respiratory failure and lung disease are the leading causes of morbidity and mortality observed in DS. Manifestations of DS in the respiratory system encompass the entire lung starting from the nasopharynx to the trachea/upper airways to the lower airways and alveolar spaces, as well as vascular and lymphatic defects. Most of our knowledge on respiratory illness in persons with DS arises from pediatric studies; however, many of these disorders present early in infancy, supporting developmental mechanisms. In this review, we will focus on the different lung phenotypes in DS, as well as the genetic and molecular pathways that may be contributing to these complications during development.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Gail H Deutsch
- Seattle Children's Research Institute, Seattle, Washington
| | - Claire Dumortier
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Thomas J Mariani
- Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, New York
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
11
|
Danopoulos S, Bhattacharya S, Deutsch G, Nih LR, Slaunwhite C, Mariani TJ, Al Alam D. Prenatal histological, cellular, and molecular anomalies in trisomy 21 lung. J Pathol 2021; 255:41-51. [PMID: 34050678 PMCID: PMC9109699 DOI: 10.1002/path.5735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Down syndrome (DS), also known as trisomy 21 (T21), is the most common human chromosomal anomaly. Although DS can affect many organ systems, lung and heart disease are the leading causes of death. An abundance of existing data suggests that lung abnormalities originate postnatally in DS. However, a single report of branching insufficiency in DS has inferred a potential prenatal origin. The histology of T21 fetal lungs (n = 15) was assessed by an experienced pathologist. Spatial differences in cellular phenotypes were examined using immunohistochemistry (IHC). Comprehensive gene expression in prenatal T21 lungs (n = 19), and age-matched controls (n = 19), was performed using high-throughput RNA sequencing (RNAseq) and validated by RT-qPCR. Histopathological abnormalities were observed in approximately half of T21 prenatal lung samples analyzed, which included dilated terminal airways/acinar tubules, dilated lymphatics, and arterial wall thickening. IHC for Ki67 revealed significant reductions in epithelial and mesenchymal cell proliferation, predominantly in tissues displaying pathology. IHC demonstrated that airway smooth muscle was reduced and discontinuous in the proximal airway in conjunction with reduced SOX2. RNAseq identified 118 genes significantly dysregulated (FDR < 0.05) in T21 lung when unadjusted and 316 genes when adjusted for age. Ontology analysis showed that IFN pathway genes were appreciably upregulated, whereas complement and coagulation cascades and extracellular matrix pathway genes were downregulated. RT-qPCR confirmed the changes in genes associated with these pathways in prenatal T21 lungs. Our data demonstrate that specific histological, cellular, and molecular abnormalities occur prenatally in different compartments of human T21 lung, which could be representative of premature stage progression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Soumyaroop Bhattacharya
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Gail Deutsch
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Lina R Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Slaunwhite
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Thomas J Mariani
- Pediatric Molecular and Personalized Medicine Program and Division of Neonatology, University of Rochester, Rochester, NY, USA
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
12
|
Dasdemir Ilkhan G, Demirci Üçsular F, Celikhisar H, Arman Y, Yalnız E, Tükek T. Original Article: Clinical Research. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2021; 38:e2021020. [PMID: 34319304 PMCID: PMC8288202 DOI: 10.36141/svdld.v38i2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/22/2021] [Indexed: 11/04/2022]
Abstract
Aim: In this study, we aimed to investigate the possible role of endotrophin, a profibrotic byproduct of collagen VI, in the complex process of fibrosis development in the disease group with pulmonary fibrosis among interstitial lung diseases. Material and Method: When the patients’ participation in the study were completed, smoking or alcohol drinking conditions, and family history were recorded. Their weights and heights were recorded and body mass index (BMI) was calculated. In every patient, Spirometry with bronchodilator testing, determination of single-breath DLCO, and plethysmographic measurement of thoracic gas volume and airway resistance were performed. Blood samples were obtained for the inflammation markers such as sedimentation rate, C-reactive protein (CRP), complete blood count, liver and renal function tests, and lactate dehydrogenase levels. Serum endotrophin levels were measured in all patients. Results: Thirty-five patients with interstitial lung disease who were having pulmonary fibrosis, 35 patients with interstitial lung disease without pulmonary fibrosis, and 20 control patients without any signs or symptoms of interstitial lung disease were included in the study. Age distribution was similar between groups. The fibrotic ILD group was more commonly smoker or ex-smoker compared with the non-fibrotic ILD patients or control cases. Fibrotic ILD patients were leaner, having significantly decreased total lung capacity, diffusion capacity, and higher LDH levels. In the comparison of the 3 study groups regarding the endotrophin levels, there was a significant difference between groups. The fibrotic and non-fibrotic patient groups were compared for the Endotrophin levels and the difference was also significant. However, there was not any significant difference regarding the endotrophin levels between control cases and non-fibrotic ILD patients. Smoked cigarette pocket x year showed a significant positive correlation and DLCO % and KCO % showed a significant negative correlation with the endotrophin levels. Conclusion: Serum endotrophin levels significantly increase in fibrotic ILD patients compared with the non-fibrotic ILD patients and control cases. Endotrophin may be suggested as a diagnostic marker in fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
| | - Fatma Demirci Üçsular
- Health Sciences University, Dr. Chest Diseases and Thoracic Surgery Training and Research Hospital, Chest Diseases Hospital, Izmir-Turkey
| | - Hakan Celikhisar
- Department of Chest Diseases, Esrefpasa Metropolitan Municipality Hospital, Izmir-Turkey
| | - Yücel Arman
- Department of Internal Medicine, Okmeydanı Training and Research Hospital, Okmeydanı- Istanbul, Turkey
| | - Enver Yalnız
- Health Sciences University, Dr. Chest Diseases and Thoracic Surgery Training and Research Hospital, Chest Diseases Hospital, Izmir-Turkey
| | - Tufan Tükek
- Department of Internal Medicine, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
13
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
14
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|