1
|
Xu W, Li W, Kuai D, Li Y, Sun W, Liu X, Xu B. Identification of endoplasmic reticulum stress-related genes as prognostic markers in colon cancer. Cancer Biol Ther 2025; 26:2458820. [PMID: 40169935 PMCID: PMC11970746 DOI: 10.1080/15384047.2025.2458820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) has been implicated in the pathogenesis of various cancers, including colon cancer, by regulating tumor cell survival, growth, and immune response. However, the specific genes involved in ERS that could serve as prognostic markers in colon cancer remain underexplored. This study aims to identify and validate endoplasmic reticulum stress related genes (ERSRGs) in colon cancer that correlate with patient prognosis, thereby enhancing the understanding of ERS in oncological outcomes and potential therapeutic targeting. We utilized bioinformatics analyses to identify ERSRGs from publicly available colon cancer datasets. Differential expression analysis and survival analysis were performed to assess the prognostic significance of these genes. Validation was conducted through quantitative real-time PCR (RT-qPCR) on selected colon cancer cell lines. Our study identified nine ERS related genes (ASNS, ATF4, ATF6B, BOK, CLU, DDIT3, MANF, SLC39A14, TRAF2) involved in critical pathways including IL-12, PI3K-AKT, IL-7, and IL-23 signaling, and linked to 1-, 3-, and 5-year survival of patients with colon cancer. A multivariate Cox model based on these ERS related genes demonstrated significant prognostic power. Further, TRAF2 strong correlated with immune cells infiltration, suggesting its potential roles in modulating immune responses in the tumor microenvironment. The RT-qPCR validation confirmed the differential expression of these genes in human colon cancer cell lines versus human normal colonic epithelial cell line. The identified ERSRGs could serve as valuable prognostic markers and may offer new insights into the therapeutic targeting of ERS in colon cancer.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dayu Kuai
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yaqiang Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xian Liu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Chai H, Yao S, Gao Y, Hu Q, Su W. Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med 2025; 56:102. [PMID: 40341397 PMCID: PMC12081031 DOI: 10.3892/ijmm.2025.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) and epithelial‑mesenchymal transition (EMT) have important roles in fibrosis and tumour development. Moderate ERS activates cellular defence mechanisms in response to noxious stimuli; however, sustained or overly strong ERS induces apoptosis. In this disease process, EMT induces epithelial cells to acquire the ability to migrate and invade. Reportedly, ERS directly or indirectly regulates EMT processes through multiple mechanisms (such as key transcription factors, signalling pathways, ferroptosis, autophagy and oxidative stress), and both processes form a complex network of interactions. Given the critical roles of ERS and EMT in disease, targeted intervention of these two processes has emerged as a potential therapeutic strategy. In the present study, the molecular interaction mechanism of ERS and EMT was systematically explored, research progress in fibrotic and neoplastic diseases was reviewed and the potential application prospects of related targeted therapies were examined, which may provide new ideas for the development of drugs to reverse fibrosis and treat tumours.
Collapse
Affiliation(s)
- Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ya Gao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Su
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
3
|
Jadhav A, Menon A, Gupta K, Singh N. Molecular and therapeutic insight into ER stress signalling in NSCLC. J Drug Target 2025; 33:877-886. [PMID: 39883064 DOI: 10.1080/1061186x.2025.2461105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Endoplasmic Reticulum (ER) stress is intricately involved in cancer development, progression and response to chemotherapy. ER stress related genes might play an important role in predicting the prognosis in lung adenocarcinoma patients and may be manipulated to improve the treatment outcome and overall survival rate. In this review, we analysed the contribution of the three major ER stress pathways-IRE1, ATF6, and PERK-in lung cancer pathogenesis via modulation of tumour microenvironment (TME) and processes as metastasis, angiogenesis, apoptosis and N-glycosylation. Furthermore, we discuss the regulatory role of microRNAs in fine-tuning ER stress pathways in Non-Small Cell Lung Cancer (NSCLC). Our review also highlights various promising strategies to overcome chemoresistance by targeting ER stress pathways, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Aastha Jadhav
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arjun Menon
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kush Gupta
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Guo YJ, Zhu MY, Wang ZY, Chen HY, Qing YJ, Wang HZ, Xu JY, Hui H, Li H. Therapeutic Effect of V8 Affecting Mitophagy and Endoplasmic Reticulum Stress in Acute Myeloid Leukemia Mediated by ROS and CHOP Signaling. FASEB J 2025; 39:e70622. [PMID: 40347076 DOI: 10.1096/fj.202500599r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Acute myeloid leukemia (AML) is characterized by the malignant proliferation of abnormally or poorly differentiated myeloid cells in the hematopoietic system. However, there is a lack of effective drugs for treating non-M3 AML. V8, a newly synthesized derivative of the natural flavonoid wogonin, which is a potential anticancer drug, has demonstrated significant antitumor activity both in vitro and in vivo. Here, we investigated the effects of V8 on AML cell lines and primary AML cells as well as its underlying mechanisms. Our results showed that V8 exerted significant concentration-dependent growth inhibition and apoptosis induction in AML cells, accompanied by characteristic pathological features including lysosomal functions suppression, mitochondrial dysfunction, and endoplasmic reticulum stress (ERS) activation. Mechanistic investigations revealed that V8 induced mitochondrial membrane potential collapse through elevation of intracellular reactive oxygen species (ROS) levels, while concurrently blocking mitophagy via lysosomal functional inhibition. Furthermore, V8 selectively activated the PERK/p-eIF2α/ATF4 and IRE1α/XBP1 signaling axes of ERS, ultimately triggering CHOP-mediated apoptosis through the ERS-specific pathway. In vivo studies confirmed that V8 treatment significantly prolonged survival duration in NOD/SCID mice bearing primary AML xenografts and suppressed tumor progression in BALB/c nude mice with U937 cell xenografts, with antitumor efficacy closely associated with CHOP-dependent ERS pathway modulation. These findings not only elucidate the multi-targeted mechanism of V8 against AML through coordinated regulation of the ROS-mitochondria-lysosome-ERS signaling network, but also provide critical theoretical foundations for developing natural product-based therapeutics for AML. The multi-pathway synergistic characteristics exhibited by V8 underscore its considerable potential as a clinically translatable candidate drug.
Collapse
Affiliation(s)
- Yong-Jian Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Meng-Yuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhan-Yu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hong-Yu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ying-Jie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hong-Zheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing-Yan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Bertok T, Pinkeova A, Lorencova L, Datkova A, Hires M, Jane E, Tkac J. Glycoproteomics of Gastrointestinal Cancers and Its Use in Clinical Diagnostics. J Proteome Res 2025. [PMID: 40368336 DOI: 10.1021/acs.jproteome.5c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Cancer is a leading cause of death worldwide, resulting in substantial economic costs. Because cancer is a complex, heterogeneous group of diseases affecting a variety of cells, its detection may sometimes be difficult. Herein we review a large group of the gastrointestinal cancers (oral, esophageal, stomach, pancreatic, liver, and bowel cancers) and the possibility of using glycans conjugated to protein backbones for less-invasive diagnoses than the commonly used endoscopic approaches. The reality of bacterial N-glycosylation and the effect of epithelial mucosa on gut microbiota are discussed. Current advantages, barriers, and advantages in the prospective use of selected glycomic approaches in clinical practice are also detailed.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Anna Datkova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Sousa J, Martins LC, Moura J, Pereira A, Vasconcelos B, Ferro G, Vasconcelos P, Quaresma J. Endoplasmic Reticulum Stress in Tuberculosis: Molecular Bases and Pathophysiological Implications in the Immunopathogenesis of the Disease. Int J Mol Sci 2025; 26:4522. [PMID: 40429667 PMCID: PMC12111063 DOI: 10.3390/ijms26104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe pulmonary disease with high mortality, particularly in low-income countries. Early diagnosis and timely treatment, including both intensive and maintenance phases, are critical for controlling the disease and preventing its transmission. In Brazil, where TB incidence remains high, thousands of new cases are reported annually. Transmission occurs primarily through airborne droplets expelled by infected individuals. The immune response involves various cell types, such as lymphocytes and macrophages, which form granulomas to limit the spread of the bacillus. Upon entering the lungs, Mtb is phagocytosed by immune cells, where it evades destruction by blocking phagolysosome formation and inhibiting phagosome acidification. In response, the immune system forms granulomas that contain the infection, although these can become reactivated if immune function deteriorates. Mtb also interferes with host cellular organelles, particularly the endoplasmic reticulum (ER) and mitochondria, inducing cellular stress and apoptosis, which aids in its survival. Key Mtb-secreted proteins, such as BAG2 and CdhM, modulate autophagy and apoptosis pathways, influencing pathogen survival within immune cells. A deeper understanding of these molecular mechanisms, particularly the role of ER stress and its impact on immune responses, is essential for developing novel therapeutic strategies for TB prevention and treatment.
Collapse
Affiliation(s)
- Jorge Sousa
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
| | - Lívia Caricio Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
| | - Julia Moura
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Amanda Pereira
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | | | - Gustavo Ferro
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Pedro Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Juarez Quaresma
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| |
Collapse
|
7
|
Sun G, Wang Y, Ni K, Shen J, Liu D, Wang H. COL5A2-mediated endoplasmic reticulum stress promotes macrophage M2 polarization in lung adenocarcinoma. Cell Stress Chaperones 2025; 30:100081. [PMID: 40345640 DOI: 10.1016/j.cstres.2025.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Collagen is a major component of the extracellular matrix. Type V collagen α2 (COL5A2), a common collagen subtype, plays a crucial role in immune regulation, angiogenesis, and tumor metastasis. It is highly expressed in various malignancies, but its mechanistic role in lung adenocarcinoma (LUAD) remains unclear. Therefore, this study aims to investigate the regulatory mechanism of COL5A2 in mediating macrophage M2 polarization in LUAD. We analyzed COL5A2 expression in LUAD samples from the TCGA-LUAD database. Using GSEA, we sought to identify the signaling pathways influenced by COL5A2 expression. mRNA levels of COL5A2, TGF-β, and IL-10 were quantified via qPCR analysis, and protein levels of COL5A2, PD-L1, and endoplasmic reticulum (ER) stress-related proteins (GRP78 and CHOP) were assessed using western blot. Immunofluorescence assay detected the fluorescence signal of CD206 in M2 macrophages, while flow cytometry assessed the M2 macrophage marker CD206, flow cytometry determined the positive rates for CD68 and CD206. Exosome uptake by macrophages was examined using confocal microscopy, and cell viability was measured with cell counting kit-8. KI-67 protein expression was analyzed by immunohistochemistry, and in vivo assays in animals verified our findings. The results showed that elevated COL5A2 levels in LUAD were found to correlate with a shift toward M2 macrophage polarization. Specifically, the overexpression of COL5A2 amplified ER stress, which led to an increase in PD-L1 exosome release and macrophage uptake of PD-L1, thus driving the M2 phenotype. In conclusion, COL5A2 in LUAD induces ER stress, which is associated with elevated PD-L1 exosome secretion and macrophage PD-L1 uptake, ramping up M2 polarization in macrophages.
Collapse
Affiliation(s)
- Gaozhong Sun
- Department of Thoracic Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yanzhe Wang
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kewei Ni
- Department of Thoracic Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jian Shen
- Department of Thoracic Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Dongdong Liu
- Department of Thoracic Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Haitao Wang
- Department of Thoracic Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Ghemrawi R, Kremesh S, Mousa WK, Khair M. The Role of ER Stress and the Unfolded Protein Response in Cancer. Cancer Genomics Proteomics 2025; 22:363-381. [PMID: 40280715 PMCID: PMC12041869 DOI: 10.21873/cgp.20507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Dysregulation of protein synthesis, folding, and secretion leads to endoplasmic reticulum (ER) stress, triggering the unfolded protein response (UPR). While the UPR is essential for cell survival under stress, its chronic activation in cancer cells supports tumorigenesis, metastasis, and chemoresistance by enabling cellular adaptation to hypoxia, nutrient deprivation, and oxidative stress. This review provides a comprehensive overview of the roles of key UPR mediators - binding immunoglobulin protein (BiP), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) - in cancer progression and therapy resistance. Furthermore, it discusses strategies to target UPR pathways, including small molecule inhibitors, gene therapies, natural compounds, and combination therapies, while it evaluates their preclinical and clinical relevance. Finally, it explores how modulating UPR signaling can overcome therapeutic resistance, improve immunotherapy outcomes, and reshape the tumor microenvironment. This review emphasizes the promise of UPR-targeted approaches in enhancing the efficacy of current cancer treatments and achieving better patient outcomes.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Walaa K Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Zhao G, Qi J, Li F, Ma H, Wang R, Yu X, Wang Y, Qin S, Wu J, Huang C, Ren H, Zhang B. TRAF3IP3 Induces ER Stress-Mediated Apoptosis with Protective Autophagy to Inhibit Lung Adenocarcinoma Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411020. [PMID: 40068093 PMCID: PMC12061266 DOI: 10.1002/advs.202411020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
TNF receptor-associated factor 3 interacting protein 3 (TRAF3IP3/T3JAM) exhibits dual roles in cancer progression. While upregulated in most malignancies and critical for immune regulation. However, the specific effects and molecular mechanisms of TRAF3IP3 on the progression of lung adenocarcinoma (LUAD) remains poorly understood. This study reveals TRAF3IP3 is upregulated in several tumor tissues but exclusively decreased in LUAD and Lung squamous cell carcinoma (LUSC) tissues, consequential in a favorable overall survival (OS) in LUAD rather than LUSC. Herein, it is reported that TRAF3IP3 can suppress cell proliferation and promote the apoptosis rate of LUAD cells by inducing excessive ER stress-related apoptosis. Importantly, TRAF3IP3 triggers ER stress via the PERK/ATF4/CHOP pathway, accompanied by stimulated ER stress-induced cytoprotective autophagy in LUAD cells. Through IP-MS analysis, STRN3 is identified as a direct downstream interactor with TRAF3IP3 and corroborated to regulate ER stress positively. Mechanistically, TRAF3IP3 facilitates the recruitment of STRN3 to the ER lumen through its transmembrane domain and fulfills its functional role in ER stress in an STRN3-dependent manner in LUAD cells. Given its dual role in orchestrating ER stress-associated apoptosis and autophagy in LUAD cell fate determination, the importance of TRAF3IP3 is highlighted as novel therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Guang Zhao
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
- Department of Thoracic SurgerySichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's HospitalChengduSichuan610072China
| | - Jun Qi
- Department of DermatologyGansu Provincial Maternity and Child‐care Hospital (Gansu Provincial Central Hospital)Lan ZhouGansu730079China
| | - Fang Li
- Institute of Basic Medical SciencesXi'an Medical UniversityNo.1 XinWang Road, Weiyang DistrictXi'anShaanxi710021China
| | - Haotian Ma
- Health Science CenterXi'an Jiaotong UniversityXi'an710061China
| | - Rui Wang
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Xiuyi Yu
- Department of Thoracic Surgerythe First Affiliated Hospital of Xiamen UniversityXiamen361003China
| | - Yufei Wang
- Health Science CenterXi'an Jiaotong UniversityXi'an710061China
| | - Sida Qin
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Jie Wu
- Department of Radiation OncologyShaanxi Provincial People's HospitalXi'anShaanxi710061China
| | - Chen Huang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Hong Ren
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Boxiang Zhang
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| |
Collapse
|
10
|
Heravi G, Liu Z, Herroon M, Wilson A, Fan YY, Jiang Y, Vakeesan N, Tao L, Peng Z, Zhang K, Li J, Chapkin RS, Podgorski I, Liu W. Targeting polyunsaturated fatty acids desaturase FADS1 inhibits renal cancer growth via ATF3-mediated ER stress response. Biomed Pharmacother 2025; 186:118006. [PMID: 40121894 PMCID: PMC12034426 DOI: 10.1016/j.biopha.2025.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain polyunsaturated fatty acids (PUFAs). Increasing studies suggest that FADS1 is a potential cancer target. Our previous research has demonstrated the significant role of FADS1 in cancer biology and patient survival, especially in kidney cancers. We aim to explore the underlying mechanism in this study. METHOD AND RESULTS We found that pharmacological inhibition or knockdown of the expression of FADS1 significantly reduced the intracellular conversion of long-chain PUFAs, effectively inhibits renal cancer cell proliferation, and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we showed that while FADS1 inhibition induces endoplasmic reticulum (ER) stress, FADS1 expression is augmented by ER-stress inducer, suggesting a necessary role of PUFA production in response to ER stress. FADS1-inhibition sensitized cellular response to ER stress inducers, leading to cell apoptosis. Also, FADS1 inhibition-induced ER stress leads to activation of the PERK/eIF2α/ATF4/ATF3 pathway. Inhibiting PERK or knockdown of ATF3 rescued FADS1 inhibition-induced ER stress and cell growth suppression, while ATF3-overexpression aggravates the FADS1 inhibition-induced cell growth suppression and leads to cell death. Metabolomic analysis revealed that FADS1 inhibition results in decreased level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response, as well as impaired biosynthesis of nucleotides, possibly accounting for the cell cycle arrest. CONCLUSION Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexis Wilson
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Yang-Yi Fan
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | - Yang Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nivisa Vakeesan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Tao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jing Li
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Robert S Chapkin
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA; CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX 77843, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Li X, Hu F, Lu T, Wu S, Ma G, Lin Y, Zhang H. Endoplasmic reticulum stress in non-small cell lung cancer. Am J Cancer Res 2025; 15:1829-1851. [PMID: 40371139 PMCID: PMC12070083 DOI: 10.62347/rgrq7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
The Endoplasmic reticulum (ER), an organelle present in various eukaryotic cells, is responsible for protein synthesis, modification, folding, and transport, as well as for the regulation of lipid metabolism and Ca2+ homeostasis. ER stress plays a pivotal role in the pathogenesis and therapeutic response of non-small cell lung cancer (NSCLC), significantly influencing cellular fate decisions through its unique sensing and regulatory mechanisms. This review aims to elucidate the key role of ER stress sensors and to explore how they mediate cell autophagy, apoptosis, and non-apoptotic modes of cell death in the context of drug-treated NSCLC. This investigation lays a solid foundation for optimizing future treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Fangning Hu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Tong Lu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Shuo Wu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Yani Lin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, School of Laboratory Animal and Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical SciencesJinan, Shandong, China
| | - Hua Zhang
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| |
Collapse
|
12
|
Pan X, Che Q, Liu D, Xie Y, Li B, Zhang S, Li T, Li G, Li X, Zheng Q, Zhao K, Liu M. Development and validation of a novel endoplasmic reticulum stress-related lncRNA signature in laryngeal squamous cell carcinoma. Sci Rep 2025; 15:12497. [PMID: 40216868 PMCID: PMC11992065 DOI: 10.1038/s41598-025-96576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) is an intracellular process in which improperly folded proteins lead to a cellular stress response. How endoplasmic reticulum stress contributes to the onset and progression of laryngeal squamous cell carcinoma remains unclear. Our research aimed to find an ERS signature to forecast the prognosis of laryngeal squamous cell carcinoma and to investigate its potential biological functions. LSCC sample data obtained from The Cancer Genome Atlas (TCGA) database were co-expressed with ERS- related genes, and then a prognostic signature on the basis of endoplasmic reticulum stress- related lncRNAs (ERS-related lncRNAs) was constructed by differential analysis and Cox regression analysis. Survival analysis, TMB, consensus cluster analysis, drug sensitivity analysis, immune analysis and clinical drug prediction were carried out on the model. Finally, the function of LHX1-DT was verified by in vitro experiments. From the TCGA-LSCC cohort, 35 significantly different ERS-related lncRNAs were identified. A prognostic signature consisting of three lncRNAs (AC110611.2, LHX1-DT, and AL157373.2) was identified. Kaplan-Meier analysis demonstrated the predictive ability of the model for overall survival. Calibration curves and receiver operating characteristic curves were validated and showed high predictive accuracy. Ultimately, the experimental results verified the expression of LHX1-DT in LSCC.
Collapse
Affiliation(s)
- Xiazhi Pan
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China
| | - Qin Che
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Duanshali Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China
| | - Yingli Xie
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Beicheng Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Shanshan Zhang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China
| | - Gege Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Xiaohan Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Qiuchen Zheng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Kai Zhao
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China.
| | - Mingbo Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China.
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China.
- Senior Department of Otolaryngology Head and Neck Surgery, the 6Th Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China.
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Dabsan S, Zur G, Abu-Freha N, Sofer S, Grossman-Haham I, Gilad A, Igbaria A. Cytosolic and endoplasmic reticulum chaperones inhibit wt-p53 to increase cancer cells' survival by refluxing ER-proteins to the cytosol. eLife 2025; 14:e102658. [PMID: 40202782 PMCID: PMC11981610 DOI: 10.7554/elife.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or 'ERCYS'). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gali Zur
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Naim Abu-Freha
- Institute of Gastroenterology and Liver Diseases, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the NegevBeer ShevaIsrael
| | - Shahar Sofer
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Grossman-Haham
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ayelet Gilad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
14
|
Shi M, Zhang L, Bi F, Zhou Z. ALKBH5 Inhibits YTHDF2-m6A-Mediated Degradation of RCN1 mRNA to Promote Keloid Formation by Activating IRE1α-XBP1-Mediated ER Stress. J Cosmet Dermatol 2025; 24:e70177. [PMID: 40214031 PMCID: PMC11987481 DOI: 10.1111/jocd.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/11/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Reticulocalbin 1 (RCN1) was reported to be upregulated in keloid, but its molecular mechanism remains unclear. The aim of this study is to investigate the role of RCN1 in keloid. METHODS The expression of RCN1 was detected in keloid tissues. Keloid fibroblasts were transfected with RCN1 overexpression vector. Cell viability, collagen production, apoptosis, and cell invasion were measured. Then, the m6A modification level of RCN1 mRNA was detected by methylated RNA immunoprecipitation (MeRIP), and the effect of overexpression of ALKB homolog5 (ALKBH5) on the m6A modification level of RCN1 mRNA was evaluated. Subsequently, the relationship between RCN1 and XBP1 was verified by co-immunoprecipitation (Co-IP) assay. pcDNA-RCN1 and XBP1 shRNA were transfected into keloid fibroblasts to for reversal experiments, and changes in the endoplasmic reticulum (ER) structure of keloid fibroblasts were observed by transmission electron microscopy (TEM). Finally, we established a mouse keloid model and injected mice with the RCN1 shRNA lentiviral vectors to monitor the keloid formation in mice. RESULTS RCN1 was highly expressed in keloid tissues and keloid fibroblasts. Overexpression of RCN1 significantly increased keloid fibroblast viability, collagen production, and invasion, but inhibited cell apoptosis. ALKBH5 upregulated RCN1 expression by reducing m6A-YTHDF2-mediated degradation of RCN1 mRNA, and RCN1 knockdown reversed the promoting effect of ALKBH5 overexpression on cell viability collagen production and invasion, and the inhibitory effect of ALKBH5 overexpression on apoptosis in keloid fibroblasts. Moreover, overexpression of RCN1 significantly upregulated the protein levels of XBP1, GRP78, and IRE1α, and promoted ER stress in keloid fibroblasts, but this change was eliminated by sh-XBP1 intervention. In vivo experiments showed that knockdown of RCN1 significantly inhibited keloid formation by alleviating cell apoptosis and ER stress in mice. CONCLUSION Our data revealed that RCN1 was upregulated by ALKBH5 to promote keloid formation by activating IRE1α-XBP1-mediated ER stress, RCN1 may be a potential biomarker for treatment of keloid.
Collapse
Affiliation(s)
- Min Shi
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Lu Zhang
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Fangfang Bi
- School of Medicine, Xi'an Peihua UniversityXi'anShaanxiChina
| | - Zhuo Zhou
- Department of Obstetrics and GynecologyNorthwest University First HospitalXi'anShaanxiChina
| |
Collapse
|
15
|
Li H, Zhang L, Shu B, Wang X, Yang S. Endoplasmic reticulum stress-related signatures: a game-changer in prognostic stratification for hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2025; 37:454-465. [PMID: 39589828 DOI: 10.1097/meg.0000000000002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has limited therapeutic options and a poor prognosis. The endoplasmic reticulum (ER) plays a crucial role in tumor progression and response to stress, making it a promising target for HCC stratification. This study aimed to develop a risk stratification model using ER stress-related signatures. METHODS We utilized transcriptome data from The Cancer Genome Atlas and Gene Expression Omnibus, which encompass whole-genome expression profiles and clinical annotations. Machine learning algorithms, including the least absolute shrinkage and selection operator, random forest, and support vector machine recursive feature elimination, were applied to the key genes associated with HCC prognosis. A prognostic system was developed using univariate Cox hazard analysis and least absolute shrinkage and selection operator Cox regression, followed by validation using Kaplan-Meier analysis and receiver operating characteristic curves. Tumor immune dysfunction and exclusion tools were used to predict immunotherapy responsiveness. RESULTS Two distinct clusters associated with ER stress were identified in HCC, each exhibiting unique clinical and biological features. Using a computational approach, a prognostic risk model, namely the ER stress-related signature, was formulated, demonstrating enhanced predictive accuracy compared with that of existing prognostic models. An effective clinical nomogram was established by integrating the risk model with clinicopathological factors. Patients with lower risk scores exhibited improved responsiveness to various chemotherapeutic, targeted, and immunotherapeutic agents. CONCLUSION The critical role of ER stress in HCC is highlighted. The ER stress-related signature developed in this study is a powerful tool to assess the risk and clinical treatment of HCC.
Collapse
Affiliation(s)
| | - Lei Zhang
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Bin Shu
- Hepatopancereatobiliary Center
| | | | - Shizhong Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Institute for Precision Medicine, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education), Tsinghua University
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Ak G, Metintas S, Gunes HV, Cosan DT, Kurt H, Yilmaz S, Metintas M. The relationship between serum levels of GRP78, GRP94, calnexin, and calreticulin and prognosis in patients with lung cancer. Cancer Biomark 2025; 42:18758592241301690. [PMID: 40289385 DOI: 10.1177/18758592241301690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
BackgroundTo determine the serum levels of endoplasmic reticulum (ER) chaperones, glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94), calnexin, and calreticulin in patients with lung cancer and in the control group and to evaluate the relationship between chaperone levels and clinical data and patient survival.MethodsGRP78, GRP94, calnexin and calreticulin were measured in serum by ELISA. The serum chaperone levels of patients with lung cancer and the control group were compared. The relationship between serum chaperone levels and clinical data and patient prognosis was evaluated. The median survival time was calculated using the Kaplan-Meier method. Cox regression analysis was performed to determine the hazard ratio of ER chaperones considering prognostic factors.ResultsThe serum levels of all ER chaperones GRP78, GRP94, calnexin, and calreticulin were higher in patients with lung cancer than in the control group and correlated with each other. Serum calreticulin levels were not affected by demographic and clinical characteristics. Serum levels of GRP78, GRP94, and calnexin were not associated with survival. However, median survival ± SE (95%CI) was 16.00 ± 1.72 (12.62-19.38) months in patients with serum calreticulin levels of 250.52 ng/ml and above, while it was 8.00 ± 1.38 (5.29-10.71) months in patients with calreticulin levels below the cut-off value (log-rank = 6.919; p = 0.009). Calreticulin impacted survival, even after adjustment for sex, histologic subtype, stage, treatment, and response to chemotherapy, which impacted survival [HR (95%CI): 0.656 (0.433-0.995); p = 0.047].ConclusionCalreticulin is promising for delineating risk groups in lung cancer screening studies, guiding treatment and monitoring outcomes.
Collapse
Affiliation(s)
- Guntulu Ak
- Eskisehir Osmangazi University Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
- Medical Faculty Department of Chest Diseases, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selma Metintas
- Eskisehir Osmangazi University Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
- Medical Faculty Department of Public Health, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hasan Veysi Gunes
- Medical Faculty Department of Medical Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Didem Turgut Cosan
- Medical Faculty Department of Medical Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hulyam Kurt
- Medical Faculty Department of Medical Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Senay Yilmaz
- Medical Faculty Department of Chest Diseases, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Muzaffer Metintas
- Eskisehir Osmangazi University Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
- Medical Faculty Department of Chest Diseases, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
17
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, An H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-Phosphate-Cathelicidin Axis Plays a Pivotal Role in the Development of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2025; 145:854-863.e6. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Hahyun An
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
18
|
Chen YM, Yang WQ, Fan YY, Chen Z, Liu YZ, Zhao BS. Trichostatin A augments cell migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma through BRD4/ c-Myc endoplasmic reticulum-stress pathway. World J Gastroenterol 2025; 31:103449. [PMID: 40124272 PMCID: PMC11924005 DOI: 10.3748/wjg.v31.i11.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The causes of death in patients with advanced esophageal cancer are multifactorial, with tumor metastasis being one of the important factors. Histone acetylation promotes the migration of esophageal squamous cell carcinoma (ESCC) cells, while the histone deacetylase inhibitor (HDACi) shows complex effects on tumor functions. AIM To comprehensively elucidate the impact and molecular mechanisms of trichostatin A (TSA), an HDACi, on cell migration in ESCC through bromodomain-containing protein (BRD4)/cellular myelocytomatosis oncogene (c-Myc)/endoplasmic reticulum (ER)-stress. METHODS The effects of TSA on ESCC cell lines Eca109 and EC9706 migration were evaluated using Transwell assays, with small interfering transfection and pathway-specific inhibitors to elucidate underlying mechanisms. The mRNA levels involved were examined by quantitative real-time polymerase chain reaction. Protein levels of acetylated histones H3 (acH3) and acetylated histones H4, BRD4, c-Myc, as well as markers of ER stress and epithelial-mesenchymal transition (EMT), were analyzed using western blot. Additionally, this method was also used to examine acH3 levels in esophageal cancer tissues and adjacent tissues. Patient outcomes were subsequently tracked to identify prognostic indicators using Log-Rank tests and Cox multivariate analysis. RESULTS TSA promoted the migration of ESCC cells by stimulating the EMT process. TSA-mediated histone acetylation facilitated the recruitment of BRD4, a bromodomain-containing protein, triggering the expression of c-Myc. This cascade induced ER stress and enhanced EMT in ESCC cells. To further elucidate the underlying mechanism, we employed various interventions including the ER stress inhibitor 4-phenylbutyric acid, knockdown of c-Myc and BRD4 expression, and utilization of the BRD4 inhibitor carboxylic acid as well as the inhibitor of TSA 1. Mechanistically, these studies revealed that TSA-mediated histone acetylation facilitated the recruitment of BRD4, which in turn triggered the expression of c-Myc. This sequential activation induced ER stress and subsequently enhanced EMT, thereby promoting the migration of ESCC cells. Additionally, we examined histone acetylation levels in specimens from 43 patients with ESCC, including both tumor tissues and paired adjacent tissues. Statistical analysis unveiled a negative correlation between the level of histone acetylation and the long-term prognosis of patients with ESCC. CONCLUSION TSA promoted ESCC cell migration through the BRD4/c-Myc/ER stress pathway. Moreover, elevated histone acetylation in ESCC tissues correlated with poor ESCC prognosis. These findings enhance our understanding of ESCC migration and HDACi therapy.
Collapse
Affiliation(s)
- Yan-Min Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Ying-Ying Fan
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Zhi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
19
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
20
|
Liu F, Zhang T, Yang Y, Wang K, Wei J, Shi JH, Zhang D, Sheng X, Zhang Y, Zhou J, Zhao F. Integrated analysis of single-cell and bulk transcriptomics reveals cellular subtypes and molecular features associated with osteosarcoma prognosis. BMC Cancer 2025; 25:280. [PMID: 39962461 PMCID: PMC11834279 DOI: 10.1186/s12885-025-13714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone malignancy with variable molecular biology and prognosis. However, our understanding of the association between cell types and OS progression remains poor. METHODS We generated a human OS cell atlas by integrating over 110,000 single cells from 17 samples. Multiple machine learning algorithms were applied to develop tumor purity prediction models based on transcriptomic profile of OS. The Scissor algorithm and gene enrichment analyses were conducted to delve into cell-intrinsic molecular characteristics linked to OS prognosis. Moreover, the study investigated the impact of ATF6α in OS aggressiveness through genetic and pharmacological loss of function analyses. Lastly, the CellChat algorithm was employed to investigate cell-cell communications. RESULTS Utilizing the high-quality human OS cell atlas, we identified tumor purity as a prognostic indicator and developed a robust tumor purity prediction model. We respectively delineated cancer cell- and immune cell-intrinsic molecular characteristics associated with OS prognosis at single-cell resolution. Interestingly, tumor cells with activated unfolded protein response (UPR) pathway were significantly associated with disease aggressiveness. Notably, ATF6α emerged as the top-activated transcription factor for this tumor subcluster. Subsequently, we confirmed that ATF6α was markedly associated with OS progression, while both genetic and pharmacological inhibition of ATF6α impaired the survival of HOS cells. Lastly, we depicted the landscape of signal crosstalk between the UPR-related subcluster and other cell types within the tumor microenvironment. CONCLUSION In summary, our work provides novel insights into the molecular biology of OS, and offers valuable resource for OS biomarker discovery and treatment strategy development.
Collapse
Affiliation(s)
- Feng Liu
- Department of Hand/Foot/Ankle Surgery, Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655099, China
| | - Tingting Zhang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yongqiang Yang
- Department of Hand/Foot/Ankle Surgery, Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655099, China
| | - Kailun Wang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jinlan Wei
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Ji-Hua Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dong Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, China
| | - Xia Sheng
- Department of Hand/Foot/Ankle Surgery, Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655099, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Faming Zhao
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Zhang J, Fan X, Chen Y, Han Y, Yu W, Zhang S, Yang B, Zhang J, Chen Y. An unfolded protein response (UPR)-signature regulated by the NFKB-miR-29b/c axis fosters tumor aggressiveness and poor survival in bladder cancer. Front Mol Biosci 2025; 12:1542650. [PMID: 40026699 PMCID: PMC11867963 DOI: 10.3389/fmolb.2025.1542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Background Bladder cancer continues to pose a substantial global health challenge, marked by a high mortality rate despite advances in treatment options. Therefore, in-depth understanding of molecular mechanisms related to disease onset, progression, and patient survival is of utmost importance in bladder cancer research. Here, we aimed to investigate the underlying mechanisms using a stringent differential expression and survival analyses-based pipeline. Methods Gene and miRNA expression data from TCGA and NCBI GEO databases were analyzed. Differentially expressed genes between normal vs tumor, among tumor aggressiveness groups and between early vs advanced stage were identified using Student's t-test and ANOVA. Kaplan-Meier survival analyses were conducted using R. Functional annotation, miRNA target and transcription factor prediction, network construction, random walk analysis and gene set enrichment analyses were performed using DAVID, miRDIP, TransmiR, Cytoscape, Java and GSEA respectively. Results We identified elevated endoplasmic reticulum (ER) stress response as key culprit, as an eight-gene unfolded protein response (UPR)-related gene signature (UPR-GS) drives aggressive disease and poor survival in bladder cancer patients. This elevated UPR-GS is linked to the downregulation of two miRNAs from the miR-29 family (miR-29b-2-5p and miR-29c-5p), which can limit UPR-driven tumor aggressiveness and improve patient survival. At further upstream, the inflammation-related NFKB transcription factor inhibits miR-29b/c expression, driving UPR-related tumor progression and determining poor survival in bladder cancer patients. Conclusion These findings highlight that the aberrantly activated UPR, regulated by the NFKB-miR-29b/c axis, plays a crucial role in tumor aggressiveness and disease progression in bladder cancer, highlighting potential targets for therapeutic interventions and prognostic markers in bladder cancer management.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaosong Fan
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yu Chen
- Zhejiang Hisoar Pharmaceutical Co Ltd., Hangzhou, Zhejiang, China
| | - Yichao Han
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weixing Yu
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shaolin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bicheng Yang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junlong Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanling Chen
- Digestive Endoscopy Center, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
22
|
Jang Y, Bunz F. Dynamic Modulation of IRE1α-XBP1 Signaling by Adenovirus. Pathogens 2025; 14:132. [PMID: 40005508 PMCID: PMC11857978 DOI: 10.3390/pathogens14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The abundant production of foreign proteins and nucleic acids during viral infection elicits a variety of stress responses in host cells. Viral proteins that accumulate in the endoplasmic reticulum (ER) can trigger the unfolded protein response (UPR), a coordinated signaling program that culminates in the expression of downstream genes that collectively restore protein homeostasis. The model pathogen adenovirus serotype 5 (HAdV5) activates the UPR via the signaling axis formed by inositol-requiring enzyme type 1 (IRE1α) and the X-box binding protein 1 (XBP1), a transcription factor required for immune function. Recent studies have suggested that IRE1α-XBP1 activity supports adenovirus replication. Here, we show that HAdV5 exerted opposing effects on IRE1α and XBP1. IRE1α was activated in response to HAdV5, but the production of the XBP1 isoform, XBP1s, was post-transcriptionally blocked. The tumor suppressor p53, which is eliminated by HAdV5 after infection, inhibited IRE1α activation. The de-repression of IRE1α following the degradation of p53 conceivably reflects a novel antiviral mechanism, which HAdV5 ultimately evades by co-opting IRE1α and suppressing XBP1s. Our findings illustrate the opposing mechanisms used by adenoviruses and their host cells to exert control over the UPR, a critical determinant of cell fate.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Food Science and Nutrition, College of Human Ecology, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
23
|
Zhang M, Xu J, Liu Q, Yan X, Li N. TROP2 regulates cisplatin sensitivity of triple-negative breast cancer cells by regulating endoplasmic reticulum stress. Histol Histopathol 2025; 40:259-268. [PMID: 38884164 DOI: 10.14670/hh-18-771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer with a high metastasis rate and poor prognosis. As a transmembrane glycoprotein, tumor-associated calcium signal transducer 2 (TROP2) plays a certain role in the cancers. This study aimed to explore the potential mechanism of TROP2 affecting cisplatin (CDDP) resistance in TNBC from endoplasmic reticulum stress (ERS). MDA-MB-231 and CDDP-resistant cell lines MDA-MB-231/CDDP were used in this study, and the expression of TROP2 was detected by western blotting. After transfecting with the interference sequence of siRNA targeting TROP2, cell proliferation and apoptosis were detected by the cell counting kit-8, colony formation, and flow cytometry, and the expression of ERS-marker proteins was detected by western blotting. Furthermore, the effects of ERS in TROP2 on drug resistance of TNBC cells were explored by using ERS inhibitor 4-phenylbutyric acid (4-PBA). Results found that TROP2 expression in MDA-MB-231/CDDP was significantly upregulated compared with MDA-MB-231. The expression of TROP2 in MDA-MB-231/CDDP was significantly decreased after transfection with siRNA-TROP2, and the proliferation of MDA-MB-231 and MDA-MB-231/CDDP cells was significantly decreased after further induction with CDDP. TROP2 significantly affected TNBC cell cloning, apoptosis, and the expression of ERS-related marker proteins, while 4-PBA reversed the promoting effects of siRNA-TROP2 on apoptosis and ERS, as well as the inhibitory effects on cell proliferation, suggesting that TROP2 affected the resistance of TNBC cells to CDDP through ERS. In conclusion, TROP2 inhibited apoptosis of TNBC cells, improved the cell cloning ability, and regulated the sensitivity of TNBC cells to CDDP through ERS.
Collapse
Affiliation(s)
- Mingqi Zhang
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, China
| | - Jianzhong Xu
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, China
| | - Qing Liu
- Department of Emergency, Changzhi People's Hospital, Changzhi, China
| | - Xi Yan
- Department of Pharmacy, Changzhi People's Hospital, Changzhi, China
| | - Ning Li
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, China.
| |
Collapse
|
24
|
Kennedy BB, Raza M, Mirza S, Rajan AR, Oruji F, Storck MM, Lele SM, Reznicek TE, Li L, Rowley MJ, Wan S, Mohapatra BC, Band H, Band V. ECD co-operates with ERBB2 to promote tumorigenesis through upregulation of unfolded protein response and glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635284. [PMID: 39975123 PMCID: PMC11838291 DOI: 10.1101/2025.01.28.635284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ecdysoneless (ECD) mRNA and protein are overexpressed in breast cancer (BC), and its overexpression correlates with poor prognosis and short patient survival, particularly in ERBB2/HER2-positive BC. This study investigates the co-operative oncogenic mechanism of ECD and ERBB2 by deriving transgenic mice overexpressing ECD and/or ERBB2 (huHER2) in mammary epithelium under MMTV promoter, as well as human mammary immortal epithelial cell lines (hMECs) overexpressing ECD and/or ERBB2. While huHER2 Tg mice developed more homogenous solid nodular carcinomas, double transgenic mice ( ECD;huHER2 Tg) developed heterogenous and histologically aggressive mammary tumors with basal-like phenotype and epithelial mesenchymal transition (EMT) features, like ECD Tg tumors, resembling more to patient tumors. Importantly, transcriptomic profile of ECD;huHER2 Tg tumors revealed upregulation of two major oncogenic pathways, unfolded protein response (UPR) and glycolysis. Similarly, hMECs expressing both ECD and ERBB2 as compared to single gene expressing cells showed increase in oncogenic traits, and RNA-seq analysis showed a significant upregulation of glycolysis and UPR pathways. ECD is an RNA binding protein, and directly associates with three key glycolytic enzymes ( LDHA , PKM2 and HK2 ) and mRNA of a major UPR regulated gene GRP78, that results in increased mRNA stability. Lastly, we show an increase in glucose uptake and enhanced glycolytic rate in ECD+ERBB2-overexpressing cells as compared to ECD- or ERBB2-overexpressing hMECs. Taken together, our findings support a co-operative role of ECD and ERBB2 in oncogenesis by enhancing two major oncogenic pathways, UPR and glycolysis. Significance This study provides mechanistic insights that overexpression of ECD in ERBB2+ breast cancer patients correlates with shorter patient survival, by identifying direct ECD binding to mRNAs for UPR and glycolysis pathways.
Collapse
|
25
|
Wang J, Chen J, Fan K, Wang M, Gao M, Ren Y, Wu S, He Q, Tu K, Xu Q, Zhang Y. Inhibition of Endoplasmic Reticulum Stress Cooperates with SLC7A11 to Promote Disulfidptosis and Suppress Tumor Growth upon Glucose Limitation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408789. [PMID: 39739602 PMCID: PMC11831432 DOI: 10.1002/advs.202408789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Indexed: 01/02/2025]
Abstract
Disulfidptosis is a newly discovered type of regulated cell death triggered by disulfide bond accumulation and NADPH (nicotinamide adenine dinucleotide phosphate) depletion due to glucose deprivation. However, the regulatory mechanisms involving additional cellular circuits remain unclear. Excessive disulfide bond accumulation can impair endoplasmic reticulum (ER) homeostasis and activate the ER stress response. In this study, we found that SLC7A11-mediated disulfidptosis upon glucose deprivation is accompanied by ER stress induction. Pharmacological inhibition of SLC7A11-mediated cystine uptake or cystine withdrawal not only blocks disulfidptosis under glucose starvation but also suppresses the ER stress response, indicating a close link between these processes. Moreover, inhibitors targeting the ER stress response promote disulfidptosis, while ER stress inducers suppress glucose starvation-induced disulfidptosis in SLC7A11-high-expressing cells, suggesting a protective role for ER stress during disulfidptosis. Similar effects are observed in cells treated with glucose transporter inhibitors (GLUTi). Finally, combined treatment with ER stress inhibitors and GLUTi significantly suppresses tumor growth both in vitro and in vivo by inducing disulfide stress and subsequent disulfidptosis. In summary, these findings reveal a novel role for ER stress in regulating disulfidptosis and provide theoretical insights into the potential application of GLUTi and ER stress inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineHangzhou Medical CollegeHangzhouZhejiang311300China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang311300China
| | - Jing Chen
- Shaanxi Stem Cell Engineering Application Research CenterShaanxi Jiuzhou Biomedical Science and Technology GroupXi'anShaanxi710065China
| | - Kexin Fan
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Minglin Wang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Min Gao
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yakun Ren
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Shaobo Wu
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Qian He
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineHangzhou Medical CollegeHangzhouZhejiang311300China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang311300China
| | - Yilei Zhang
- Department of Hepatobiliary Surgerythe First Affiliated HospitalDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of EducationXi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
26
|
Burton JB, Gascard P, Pan D, Bons J, Bai R, Chen-Tanyolac C, Caruso JA, Hunter CL, Schilling B, Tlsty TD. Proteomic Analysis of Breast Cancer Subtypes Identifies Stromal Contributions that Dictate Aggressive Malignant Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634187. [PMID: 39896465 PMCID: PMC11785059 DOI: 10.1101/2025.01.21.634187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Breast cancer manifests as multiple subtypes with distinct patient outcomes and treatment strategies. Here, we optimized proteomic analysis of Formalin-Fixed Paraffin-Embedded (FFPE) specimens from patients diagnosed with five breast cancer subtypes, luminal A, luminal B, Her2, triple negative (TNBC) and metaplastic breast cancers (MBC), and from disease-free individuals undergoing reduction mammoplasty (RM). We identified and quantified ∼6,000 protein groups (with >2 peptides per protein) with significant changes in over 26% of proteins comparing each cancer subtype with control RM. Stringent statistical filters allowed us to deeply mine 576 significant conserved protein changes shared by all subtypes and protein changes unique to each subtype. The most aggressive subtype, MBC, revealed exacerbated stromal stress responses, as illustrated by a collagenolytic extracellular matrix (ECM) and immune participation biased towards neutrophils and eosinophils. Immunostaining of breast tissue sections confirmed differences across subtypes, in particular, a dramatic upregulation of SERPINH1, neutrophil-specific myeloperoxidase and eosinophil cationic protein in MBC. In summary, deep proteomic, digitalized protein abundance profiles, generated from FFPE breast cancer tissues, revealed significant changes in ECM and cellular proteins providing insight into clinically relevant states.
Collapse
|
27
|
Ghionescu AV, Uta M, Sorop A, Lazar C, Flintoaca-Alexandru PR, Chiritoiu G, Sima L, Petrescu SM, Dima SO, Branza-Nichita N. The endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 3 attenuates the unfolded protein response and has pro-survival and pro-viral roles in hepatoma cells and hepatocellular carcinoma patients. J Biomed Sci 2025; 32:11. [PMID: 39838427 PMCID: PMC11752926 DOI: 10.1186/s12929-024-01103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a major risk for development of hepatocellular carcinoma (HCC), a frequent malignancy with a poor survival rate. HBV infection results in significant endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling, a contributing factor to carcinogenesis. As part of the UPR, the ER-associated degradation (ERAD) pathway is responsible for removing the burden of misfolded secretory proteins, to re-establish cellular homeostasis. Emerging evidence indicates consistent upregulation of ERAD factors, including members of the ER degradation-enhancing alpha-mannosidase-like protein (EDEM) family in infection and various tumor types. However, the significance of this gene expression pattern in HBV-driven pathology is just beginning to be deciphered. METHODS In this study we quantified the expression of the ERAD factor EDEM3, in a cohort of HCC patients with and without HBV infection, and validated our results by analysis of publically available transcriptomic and microarray data sets. We performed mechanistic studies in HepaRG cells with modulated EDEM3 expression to address UPR, ERAD, autophagy and apoptosis signaling, and their consequences on HBV infection. RESULTS Our work revealed significantly elevated EDEM3 expression in HCC tissues irrespective of HBV infection, while the highest levels were observed in tissues from HBV-infected patients. Investigation of published transcriptomic data sets confirmed EDEM3 upregulation in independent HCC patient cohorts, associated with tumor progression, poor survival prognosis and resistance to therapy. EDEM3-overexpressing hepatic cells exhibited attenuated UPR and activated secretory autophagy, which promoted HBV production. Conversely, cell depletion of EDEM3 resulted in significant ER stress inducing pro-apoptotic mechanisms and cell death. CONCLUSIONS We provide evidence of major implications of the ERAD pathway in HBV infection and HCC development and progression. Our results suggest that ERAD activation in HBV-infected cells is a protective mechanism against prolonged ER stress, potentially contributing to establishment of chronic HBV infection and promoting tumorigenesis. Developing specific inhibitors for ERAD factors may be an attractive approach to improve efficiency of current antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Alina-Veronica Ghionescu
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Soseaua Fundeni 258, Sector 2, 022328, Bucharest, Romania
| | - Mihaela Uta
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Soseaua Fundeni 258, Sector 2, 022328, Bucharest, Romania
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Soseaua Fundeni 258, Sector 2, 022328, Bucharest, Romania
| | - Catalin Lazar
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania
| | | | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Livia Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Stefana-Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Soseaua Fundeni 258, Sector 2, 022328, Bucharest, Romania.
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Soseaua Fundeni 258, Sector 2, 022328, Bucharest, Romania.
| | - Norica Branza-Nichita
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, Sector 6, 060031, Bucharest, Romania.
| |
Collapse
|
28
|
Rahmani-Kukia N, Keshavarzi F, Salehi MS, Bozorg-Ghalati F, Mojtahedi Z, Zamani M, Azarpira N, Mokarram P. The effect of chemotherapeutic agents on epidermal neural crest stem cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:167-175. [PMID: 40028474 PMCID: PMC11865930 DOI: 10.22099/mbrc.2024.49755.1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Human Epidermal Neural Crest Stem Cells (hEPI-NCSCs), as a transient population of multipotent migratory stem cells can differentiate into multiple types of neural and non-neural cells and tissues in the body. Here, we tried to determine the role of chemo agents in mediating the stress induced pathways like autophagy and unfolded protein responses (UPR), as well as the migratory potential of NCSCs. hEPI-NCSCs were treated with chemo agents including Dithiothreitol [(DTT) 10µM)], Salinomycin (9mM), Ebselen (10mM), 5-Fluorouracil [(5-FU) 8µM] and Cisplatin (6mM) for 72 hours. The reverse transcription-quantitative polymerase chain reaction (RT- qPCR) and scratch wound healing assays were used to assess the effect of chemo agents on NCSCs function. After treatment with DTT, hEPI-NCSCs upregulated the expression of genes related to autophagy and UPR pathways including LC3, P62 and CHOP. These genes were also overexpressed when NCSCs were treated with Salinomycin. Reverse results were verified by 5-FU, Ebselen and Cisplatin treatment. Salinomycin and Cisplatin upregulated the expression of XBP-1, which down regulated with DTT, 5-FU and Ebselen. Inhibition in migratory capacity of NCSCs was detected following treatment by Salinomycin, 5-FU, Ebselen and Cisplatin. DTT and 5-FU promoted the expression of BDNF, while Salinomycin, Cisplatin and Ebselen treatment reduced its expression. During exposition to DTT, the autophagy pathway was activated, implying that autophagy functions as a survival mechanism for deactivating the inhibitory effects of DTT on the migratory capacity of NCSCs. Chemotherapeutic agents like 5-FU and cisplatin exert cytotoxic effects on NCSCs by suppressing autophagy, UPR pathways, and the migratory potential of NCSCs.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases. Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The first two authors contributed equally to this work
| | - Fatemeh Keshavarzi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- The first two authors contributed equally to this work
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mojtahedi
- School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
30
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
31
|
Sun Z, He W, Meng H, Li P, Qu J. Endoplasmic reticulum stress in acute lung injury and pulmonary fibrosis. FASEB J 2024; 38:e70232. [PMID: 39651914 DOI: 10.1096/fj.202401849rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive and irreversible lung disease that leads to diminished lung function, respiratory failure, and ultimately death and typically has a poor prognosis, with an average survival time of 2 to 5 years. Related articles suggested that endoplasmic reticulum (ER) stress played a critical role in the occurrence and progression of PF. The ER is responsible for maintaining protein homeostasis. However, factors such as aging, hypoxia, oxidative stress, or inflammation can disrupt this balance, promoting the accumulation of misfolded proteins in the ER and triggering ER stress. To cope with this situation, cells activate the unfolded protein response (UPR). Since acute lung injury (ALI) is one of the key onset events of PF, in this review, we will discuss the role of ER stress in ALI and PF by activating multiple signaling pathways and molecular mechanisms that affect the function and behavior of different cell types, with a focus on epithelial cells, fibroblasts, and macrophages. Linking ER stress to these cell types may broaden our understanding of the mechanisms underlying lung fibrosis and help us target these cells through these mechanisms. The relationship between ER stress and PF is still evolving, and future research will explore new strategies to regulate UPR pathways, providing novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Peizhi Li
- Department of Anesthesiology, Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China
| |
Collapse
|
32
|
Jang Y, Bunz F. Dynamic modulation of IRE1α-XBP1 signaling by adenovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626188. [PMID: 39677734 PMCID: PMC11642829 DOI: 10.1101/2024.11.30.626188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The abundant production of foreign proteins and nucleic acids during viral infection elicits a variety of stress responses in host cells. Viral proteins that accumulate in the endoplasmic reticulum (ER) can trigger the unfolded protein response (UPR), a coordinated signaling program that culminates in the expression of downstream genes that collectively restore protein homeostasis. The model pathogen adenovirus serotype 5 (HAdV5) activates the UPR via the signaling axis formed by inositol-requiring enzyme type 1 (IRE1α) and the X-box binding protein 1 (XBP1), a transcription factor required for immune function. Recent studies have suggested that IRE1α-XBP1 activity supports adenovirus replication. Here, we show that HAdV5 exerted opposing effects on IRE1α and XBP1. IRE1α was activated in response to HAdV5 but the production of the XBP1 isoform, XBP1s, was post-transcriptionally blocked. The tumor suppressor p53, which is eliminated by HAdV5 after infection, inhibited IRE1α activation. The de-repression of IRE1α following the degradation of p53 conceivably reflects a novel antiviral mechanism, which HAdV5 ultimately evades by suppressing XBP1s. Our findings highlight the defective antiviral defenses in cancer cells and further illustrate the opposing mechanisms used by adenoviruses and their host cells to exert control over the UPR, a critical determinant of cell fate.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
- Department of Food Science and Nutrition, College of Human Ecology, University of Ulsan, Ulsan, Republic of Korea
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
33
|
Qiao E, Ye J, Huang K. An endoplasmic reticulum stress related signature for clinically predicting prognosis of breast cancer patients. Hum Mol Genet 2024:ddae170. [PMID: 39656629 DOI: 10.1093/hmg/ddae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Endoplasmic Reticulum Stress (ER stress) was an important event in the development of breast cancer. We aimed to predict prognosis based on ER stress related key genes. METHODS Data of the RNA-seq and clinical information of breast cancer cases were downloaded from the TCGA database. A total of 4 genes related with ER stress was identified by the univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO)-penalized Cox proportional hazards regression analysis. The predictive ability of the ER stress model was evaluated by utilizing Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves. Moreover, we verified 4 genes expression and its relationship with clinical breast cancer cases in real-world. RESULTS 4 genes including RNF186, BCAP31, SERPINA1, TAPBP were identified as a prognostic risk score model. Based on that, we found patients of breast cancer had a better survival with low-risk score. And also, ER stress model showed a good diagnostic efficacy with AUC curve. The risk score was significantly associated with patients' age, T stage and clinical stage. A nomogram was constructed to estimate individual survival. Further GO and KEGG analysis showed our model was related with immune infiltration. Patients of breast cancer with high-risk scores were usually accompanied with poor immune infiltration. It was predicted that high risk group was more sensitive to Vinorelbine, Docetaxel and Cisplatin. At last, we verified the expression of four signature genes using qRT-PCR and immunohistochemistry. CONCLUSION Our ER stress model performed a valuable prediction on breast cancer patients.
Collapse
Affiliation(s)
- Enqi Qiao
- Breast Surgical Department, Shaoxing Maternity & Child Health Hospital, 305 Dongjie Steet, Yuecheng District, Shaoxing, Zhejiang 312006, China
| | - Jiayi Ye
- Department of Urological Surgery, Suichang County People's Hospital, 143 North Street, Miaogao Street, Suichang County, Lishui City, Zhejiang 323300, China
| | - Kaiming Huang
- Department of Thyroid Gland and Breast Surgery, Lishui People's Hospital, 6th Affiliated Hospital of Wenzhou Medical University, 15 Dazhong Street, Liandu District, Lishui, Zhejiang 323000, China
| |
Collapse
|
34
|
Liu L, Chen Y, Han Y, Zhang X, Wu Y, Lin J, Cao L, Wu M, Zheng H, Fang Y, Wei L, Sferra TJ, Jafri A, Ke X, Peng J, Shen A. Qing Hua Chang Yin ameliorates chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2024; 62:607-620. [PMID: 39034914 PMCID: PMC11265301 DOI: 10.1080/13880209.2024.2378012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1β and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.
Collapse
Affiliation(s)
- Liya Liu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Yuying Han
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Xinran Zhang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yulun Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Jing Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Liujing Cao
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Meizhu Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Huifang Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yi Fang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Histology Core, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| |
Collapse
|
35
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
36
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
37
|
Urra H, Aravena R, González-Johnson L, Hetz C. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10:1161-1173. [PMID: 39472237 DOI: 10.1016/j.trecan.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024]
Abstract
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Aravena
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago 7510602, Chile
| | - Lucas González-Johnson
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
38
|
Li Q, Zhao X, Yang H, Zhu X, Sui X, Feng J. Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1599. [PMID: 39770441 PMCID: PMC11676909 DOI: 10.3390/ph17121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) play critical roles in tumorigenesis, cancer progression, and drug resistance. Persistent activation of the ER stress system enhances the survival capacities of malignant tumor cells, including increased proliferation, invasion, and resistance to treatment. Dysregulation of ER function and the resultant stress is a common cellular response to cancer therapies and may lead to cancer cell death. Currently, growing evidence suggests that Traditional Chinese medicine (TCM), either as a monotherapy or in combination with other treatments, offers significant advantages in preventing cancer, inhibiting tumor growth, reducing surgical complications, improving drug sensitivity, and mitigating drug-induced damage. Some of these natural products have even entered clinical trials as primary or complementary anticancer agents. In this review, we summarize the anticancer effects of TCM monomers/natural products on the gastrointestinal (GI) tumors and explore their mechanisms through ER stress modulation. We believe that ongoing laboratory research and the clinical development of TCM-based cancer therapies hold considerable potential for advancing future cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Q.L.); (X.Z.); (H.Y.); (X.Z.); (X.S.)
| |
Collapse
|
39
|
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL, Chen JJ. Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther 2024; 24:400. [PMID: 39550552 PMCID: PMC11568601 DOI: 10.1186/s12906-024-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In China, Tongguanteng injection (TGT) is widely used in the treatment or adjuvant treatment of various types of cancer. However, the effect and mechanism of TGT in osteosarcoma is not clear. METHODS The 143B and MG-63 cells were treated with different concentrations of TGT. Cell proliferation, migration, invasion and apoptosis were detected using CCK8 assay, transwell assay and flow cytometry. Differentially expressed genes (DEGs) were screened using RNA sequencing (RNA-seq). The identified mRNA and protein expression associated with the IRE1/CHOP pathway was validated by RT-PCR and western blot assay. To explore the underlying mechanisms, 4-phenylbutyric acid (4-PBA) was selected as a specific endoplasmic reticulum (ER) stress inhibitor. Small interfering RNA (siRNA) or pEX-3-ERN1 plasmid was transfected into 143B cells to silence or overexpress IRE1, respectively. The potential downstream proteins, including CHOP, and apoptosis associated proteins, caspase-3 and PARP1 were determined. Furthermore, the effect of TGT was demonstrated in 143B cell tumor-bearing mice in vivo. H&E staining, TUNEL staining and immunohistochemistry were conducted in tumor tissues obtained from the xenograft mouse model. RESULTS TGT was shown to dramatically suppress the proliferation, migration and invasion, and induce apoptosis of osteosarcoma 143B and MG-63 cells in vitro. The identified DEGs included HSPA5 (encoding BiP) and ERN1 (encoding the IRE1 protein), as well as apoptosis-associated gene DDIT3 (encoding the CHOP protein). The term "IRE1-mediated unfolded protein response" was screened to be the most enriched biological process GO term. The expression of ER stress-associated proteins including ATF6, BiP, p-IRE1, XBP1s and CHOP, as well as apoptosis-associated cleaved caspase-3 and cleaved PARP1 proteins, was significantly upregulated by TGT treatment in osteosarcoma 143B cells, suggesting that TGT might promote the apoptosis of osteosarcoma 143B cells through the IRE1/CHOP pathway. Furthermore, knocking down IRE1 with si-IRE1 or inhibiting of ER stress with 4-PBA suppressed the expression of ATF6, BiP, XBP1s and CHOP induced by TGT, as well as the expression of cleaved caspase-3 and cleaved PARP1. On the contrary, overexpressing IRE1 promoted CHOP expression and induced osteosarcoma cell apoptosis. Consistent with in vitro results, TGT dramatically inhibited the tumor growth and promoted the expression of p-IRE1 and CHOP in tumor-bearing mice. CONCLUSION The findings suggest that TGT exerts an anti-osteosarcoma effect in vitro and in vivo. The underlying mechanism might be associated with the activation of IRE1/CHOP pathway in ER stress. Our findings suggest that targeting IRE1/CHOP pathway might be a potential novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiao-Chuan Xue
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling-Yan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lan-Yi Wei
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Meng-Yue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
40
|
Wu M, Yan J, Qin S, Fu L, Sun S, Li W, Lv J, Chen L. Connections Between Endoplasmic Reticulum Stress and Prognosis of Hepatocarcinoma. Bioengineering (Basel) 2024; 11:1136. [PMID: 39593796 PMCID: PMC11591847 DOI: 10.3390/bioengineering11111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a state in which misfolded or unfolded proteins accumulate in the lumen of the ER as a result of some exogenous or endogenous factors. It plays a crucial role in the pathogenesis of malignancies, affecting cell survival, proliferation, and metastasis in cancer. ER stress genes could provide new ideas for potential therapeutic targets in cancer. In our study, we aimed to construct an ER stress-related genes (ERGs) model for hepatocellular carcinoma (HCC). ERGs with differential expression and significant survival were screened to construct a prognostic model. The effectiveness of the model was successfully validated by external datasets. High and low-risk groups were classified based on risk scores. Functional analysis showed risk groups involved in the unfolded protein response, DNA repair, and other differential pathways. When compared to patients with low risk, the prognosis for HCC patients in the high-risk group might be worsened by disruptions in these pathways. Importantly, we considered genomic druggability and predicted drugs. Sorafenib-induced autophagy in HCC cells through an ES stress mechanism. Sorafenib was more sensitive for high-risk patients. In brief, our model predicted the prognosis of HCC and provided novel treatment strategies for the study of other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| |
Collapse
|
41
|
Sun Z, He W, Meng H, Ji Z, Qu J, Yu G. Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res 2024; 25:401. [PMID: 39522031 PMCID: PMC11550544 DOI: 10.1186/s12931-024-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive lung disease characterized by fibroblast proliferation, extensive extracellular matrix and collagen deposition, accompanied by inflammatory damage, ultimately leading to death due to respiratory failure. Endoplasmic reticulum (ER) stress in pulmonary fibrotic tissue is indeed recognized as a significant factor exacerbating PF development. Emerging evidences indicated a potential association between ER stress induced by lactate and cellular apoptosis in PF. However, the mechanisms in this process need further elucidation. In this paper, pulmonary fibrosis model was induced by bleomycin (BLM) intratracheally in mice. In the cellular model, type II epithelial cells were treated by lactate and TGF-β to detect ER stress and apoptosis markers. Lactate could promote ER stress response and apoptosis. Mechanically, lactate activated Caspase-12 via ATF4-Chop axis to induce cell apoptosis and promote fibrosis. ER stress inhibitor could effectively suppress alveolar epithelial cells apoptosis and pulmonary fibrosis. We concluded that pro-fibrotic properties of lactate are associated with alveolar epithelial cells apoptosis by causing ER stress and thus provide new potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China.
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| |
Collapse
|
42
|
Mafi S, Dehghani M, Khalvati B, Abidi H, Ghorbani M, Jalali P, Whichelo R, Salehi Z, Markowska A, Reyes A, Pecic S, Łos MJ, Ghavami S, Nikseresht M. Targeting PERK and GRP78 in colorectal cancer: Genetic insights and novel therapeutic approaches. Eur J Pharmacol 2024; 982:176899. [PMID: 39153651 DOI: 10.1016/j.ejphar.2024.176899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Colorectal cancer (CRC) ranks among the leading causes of cancer-related deaths worldwide. Enhancing CRC diagnosis and prognosis requires the development of improved biomarkers and therapeutic targets. Emerging evidence suggests that the unfolded protein response (UPR) plays a pivotal role in CRC progression, presenting new opportunities for diagnosis, treatment, and prevention. This study hypothesizes that genetic variants in endoplasmic reticulum (ER) stress response genes influence CRC susceptibility. We examined the frequencies of SNPs in PERK (rs13045) and GRP78/BiP (rs430397) within a South Iranian cohort. We mapped the cellular and molecular features of PERK and GRP78 genes in colorectal cancer, observing their differential expressions in tumor and metastatic tissues. We constructed co-expression and protein-protein interaction networks and performed gene set enrichment analysis, highlighting autophagy as a significant pathway through KEGG. Furthermore, the study included 64 CRC patients and 60 control subjects. DNA extraction and genotyping were conducted using high-resolution melting (HRM) analysis. Significant differences in PERK and GRP78 expressions were observed between CRC tissues and controls. Variations in PERK and GRP78 genotypes were significantly correlated with CRC risk. Utilizing a Multi-Target Directed Ligands approach, a dual PERK/GRP78 inhibitor was designed and subjected to molecular modeling studies. Docking experiments indicated high-affinity binding between the proposed inhibitor and both genes, PERK and GRP78, suggesting a novel therapy for CRC. These findings highlight the importance of understanding genetic backgrounds in different populations to assess CRC risk. Polymorphisms in UPR signaling pathway elements may serve as potential markers for predicting CRC susceptibility, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Mafi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Dehghani
- Hematology and Medical Oncology Department, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marziyeh Ghorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rachel Whichelo
- College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aleksandra Markowska
- Faculty of Health Sciences, Medical University of Warsaw, 03-242, Warsaw, Poland
| | - Amanda Reyes
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, 92834, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, 92834, United States
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland; Linkocare LifeSciences AB, Linkoping, Sweden
| | - Saeid Ghavami
- Faculty of Medicine, Rolna 43, Katowice, Poland; Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada; Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Mohsen Nikseresht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
43
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
44
|
Vivier S, Bray F, Flament S, Guilbert L, Renaud F, Rolando C, Launay D, Dubucquoi S, Sobanski V. Analysis of Unfolded Protein Response Activation in Colon Adenocarcinoma Epithelial Cells: A Proteomic Study. Proteomics Clin Appl 2024; 18:e202400008. [PMID: 39226110 DOI: 10.1002/prca.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE High throughput technologies have identified molecular patterns in colorectal cancer (CRC) cells, aiding in modeling responses to anti-cancer treatments. The different responses observed depend on the type of cancer, the tumour grade and the functional programme of the cancer cells. Recent studies suggest that the unfolded protein response (UPR), autophagy and apoptosis could be involved in treatment resistance mechanisms by interacting with the tumour microenvironment (TME). EXPERIMENTAL DESIGN We analysed by LC-MS/MS the proteome of two representative colon adenocarcinoma epithelial cell lines from different tumour grades (CCL-233 and CCL-221) at the basal state or after the UPR induction. RESULTS Cell lines expressed a different proteome on about 10% of their total proteins identified, especially on UPR, autophagy and apoptosis pathways proteins at basal state. After UPR induction, the proteome of the cells was modified with a greater adaptive response to cellular stress in CCL-221 cells where the UPR was strongly activated at the basal state. CONCLUSIONS AND CLINICAL RELEVANCE CRC cell lines at different tumour grades expressed different functional programmes at the proteomic level and were characterised by different responses to the UPR induction. This study suggests that baseline cancer cell stress status could have an impact on the efficiency of cancer therapies.
Collapse
Affiliation(s)
- Solange Vivier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, UAR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Stéphanie Flament
- Univ. Lille, CNRS, UAR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Lucile Guilbert
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Institut d'Immunologie, Centre de Biologie Pathologie, CHU Lille, Lille, Hauts-de-France, France
| | - Florence Renaud
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Christian Rolando
- Univ. Lille, CNRS, UAR 3290 - MSAP - Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes et Auto-inflammatoires Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, Hauts-de-France, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Institut d'Immunologie, Centre de Biologie Pathologie, CHU Lille, Lille, Hauts-de-France, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes et Auto-inflammatoires Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, Hauts-de-France, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
45
|
Qiao L, Chang J, Yang G, Deng T, Liu P, Wang J, Xu C. Prophylactic supplementation with selenium nanoparticles protects against foodborne toxin zearalenone-induced intestinal barrier dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116914. [PMID: 39182281 DOI: 10.1016/j.ecoenv.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Selenium nanoparticles (SeNPs) have been used as a potential alternative to other forms of selenium in nutritional supplements for the treatment and prevention of inflammatory and oxidative stress-related diseases. Zearalenone (ZEA) is a foodborne mycotoxin present in grains that poses a health threat. Here, we investigated the adverse impacts of ZEA on intestinal homeostasis and explored the protective effects of probiotic-synthesized SeNPs against its damage. Results showed that ZEA reduced mucin and tight junction proteins expression in jejunum, induced inflammatory process and oxidative stress which in turn increased intestinal permeability in mice. ZEA-induced intestinal toxicity was further verified in vitro. Intracellular redox imbalance triggered endoplasmic reticulum (ER) stress in intestinal epithelial cells, which caused structural damage to the ER. Remarkably, SeNPs exhibited a counteractive effect by inducing a decrease in intracellular levels of Inositol 1,4,5-trisphosphate (IP3) and Ca2+, along with a reduction in the expression level of IP3 receptor. SeNPs effectively mitigated ZEA-induced ER stress was related to the increased activity of selenium-dependent antioxidant enzymes and the expression of ER-resident selenoproteins. Furthermore, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4/CHOP pathway in vitro and in vivo. In addition, SeNPs effectively reversed ZEA-induced gut microbiota dysbiosis and increased the abundance of short-chain fatty acid-producing beneficial bacteria (Alloprevotella and Muribaculaceae). The Spearman correlation analysis suggested that the structure of gut microbiota was closely related to the SeNPs attenuation of ZEA-induced intestinal toxicity. This study provides new insights into ZEA-induced intestinal toxicity and identifies a novel potential nutrient SeNPs to overcome adverse effects.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tianjing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peiyun Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
46
|
Zhang T, Zheng B, Xia C, Wu P, Zheng B, Jiang L, Li J, Lv G, Zhou H, Huang W, Zou M. Hypoxic Upregulation of IER2 Increases Paracrine GMFG Signaling of Endoplasmic Reticulum Stress-CAF to Promote Chordoma Progression via Targeting ITGB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405421. [PMID: 39207055 PMCID: PMC11515918 DOI: 10.1002/advs.202405421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.
Collapse
Affiliation(s)
- Tao‐Lan Zhang
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bo‐Wen Zheng
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- Musculoskeletal Tumor CenterPeking University People's HospitalPeking UniversityBeijing100044China
| | - Chao Xia
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Peng‐Fei Wu
- Department of Genetics and EndocrinologyNational Children's Medical Center for South Central RegionGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623China
| | - Bo‐Yv Zheng
- Department of Orthopedics SurgeryGeneral Hospital of the Central Theater CommandWuhan430061China
| | - Ling‐Xiang Jiang
- Department of Radiation OncologyMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Hong Zhou
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Wei Huang
- The First Affiliated HospitalHealth Management CenterHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
47
|
Ying Y, Zhang J, Ren D, Zhao P, Zhang W, Lu X. ERP29 regulates the proliferation of endometrial carcinoma via M6A modification. Life Sci 2024; 354:122976. [PMID: 39142507 DOI: 10.1016/j.lfs.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
AIMS Endoplasmic reticulum protein 29 (ERP29) is crucial for endoplasmic reticulum stress (ERS). M6A plays an important role in the progression of endometrial cancer (EC). The study investigated the role of ERS-related gene (ERP29) and m6A in EC. MATERIALS AND METHODS We screened ERS-related genes based on the GEO dataset, GSEA dataset and TCGA-UCEC database using WGCNA and two machine learning algorithms. The m6A-related GEO dataset was employed to identify the ERS-related hub genes with m6A. Expression of hub genes in different cell types were visualize through scRNA-seq data analyzing. Using qPCR, Western blot, and Immunohistochemical assays to detect the expression of ERP29, the effect of ERP29 on cancer cell proliferation was investigated through CCK8, EdU and clone formation experiments. M6A modifications were studied using m6A Dot blot and MeRIP-qPCR. Finally, we conducted rescue experiments. KEY FINDINGS Ten ERS-related hub genes with m6A were identified. ERP29 is highly expressed in EC. ERP29 knockdown inhibits EC cell proliferation. METTL3 overexpression increases the ERP29 mRNA m6A and decreases the expression of ERP29. Cycloleucine (Cyc), a nucleic acid methylation inhibitor, treatment reduces ERP29 mRNA m6A and increases the expression of ERP29. Cyc rescue the low expression of ERP29 caused by overexpression of METTL3 through m6A. ERP29 knockdown rescued the increased proliferation of EC cells caused by low m6A. SIGNIFICANCE ERP29 is highly expressed in EC. m6A regulates ERP29 expression and affects the proliferation of endometrial cancer cells. This represents the premise for applying ERP29 and m6A modifications in diagnosing and treating EC.
Collapse
Affiliation(s)
- Yanqi Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Jingyan Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Dan Ren
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Panpan Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Wenyi Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Xiaoqin Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China.
| |
Collapse
|
48
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
49
|
Du X, He Y, Dong P, Yan C, Wei Y, Yao H, Sun J. A novel gene signature based on endoplasmic reticulum stress for predicting prognosis in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4574-4592. [PMID: 39430815 PMCID: PMC11483465 DOI: 10.21037/tcr-24-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common human cancers, the death cases induced by HCC are increasing these years. Endoplasmic reticulum stress (ERS) occurs when misfolded proteins cannot be disposed of properly. It is reported that ERS plays a crucial role in the pathogenesis of human malignant tumors. The aim of this study is to construct a novel gene signature based on ERS for predicting prognosis in HCC. Methods The data of HCC patients were downloaded from public databases. The Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to construct ERS-related gene signature. The cases were divided into high- and low-risk groups based on the ERS-related gene signature in The Cancer Genome Atlas (TCGA) cohort. Subsequently, the differences in messenger ribonucleic acid (mRNA) expression patterns, immune status, tumor mutation burden (TMB) and copy number variants (CNV) were investigated between high- and low-risk groups. Then, a predictive nomogram according to the ERS-related gene signature and clinicopathological variables was established. At last, we explored the biological functions of TMX1 which had the biggest coefficient and we investigated the effect of BRSK2 on apoptosis in HCC. Results In our study, a 9-gene ERS-related gene signature was constructed. The results showed that patients in the low-risk group had a better prognosis than the high-risk group patients. The results of receiver operating characteristic (ROC) curves revealed that the area under the curve (AUC) was 0.784 at 1 year, 0.780 at 2 years, 0.793 at 3 years in the training set. While in validation cohort, this index was 0.694 at 1 year, 0.622 at 2 years, 0.613 at 3 years respectively. The analysis of immune status revealed an immunosuppressive microenvironment in the high-risk group. The analysis of TMB and CNV revealed that the high-risk group patients had a higher genomic mutation frequency. In Univariate Cox regression analysis, the hazard ratio of RiskScore was 2.718 [95% confidence interval (CI): 2.173-3.399]. In Multivariate Cox regression analysis, the hazard ratio of RiskScore was 2.422 (95% CI: 1.805-3.25). Then, we established a nomogram according to the RiskScore and Eastern Cooperative Oncology Group performance status. The AUCs of the nomogram were 0.851 at 1 year, 0.860 at 2 years, and 0.866 at 3 years. At last, we found that TMX1 knockdown can inhibit the proliferation and migration of Huh7 and HepG2 cells. In addition, BRSK2 knockdown could promote the apoptosis induced by ERS. Conclusions In our study, a novel ERS-related gene signature was constructed to predict the prognosis of HCC patients. In addition, TMX1 and BRSK2 could promote the progression of HCC. This study may provide a new understanding for HCC.
Collapse
Affiliation(s)
- Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingjie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Penggang Dong
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Caigu Yan
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Lam K, Kim YJ, Ong CM, Liu AZ, Zhou FJ, Sunshine MJ, Chua BA, Vicenzi S, Ford PW, Zhou JH, Hong Y, Bennett EJ, Crews LA, Ball ED, Signer RAJ. The Proteostasis Network is a Therapeutic Target in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614781. [PMID: 39386464 PMCID: PMC11463481 DOI: 10.1101/2024.09.24.614781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oncogenic growth places great strain and dependence on the proteostasis network. This has made proteostasis pathways attractive therapeutic targets in cancer, but efforts to drug these pathways have yielded disappointing clinical outcomes. One exception is proteasome inhibitors, which are approved for frontline treatment of multiple myeloma. However, proteasome inhibitors are largely ineffective for treatment of other cancers, including acute myeloid leukemia (AML), although reasons for these differences are unknown. Here, we determined that proteasome inhibitors are ineffective in AML due to inability to disrupt proteostasis. In response to proteasome inhibition, AML cells activated HSF1 and autophagy, two key stem cell proteostasis pathways, to prevent unfolded protein accumulation. Inactivation of HSF1 sensitized human AML cells to proteasome inhibition, marked by unfolded protein accumulation, activation of the PERK-mediated integrated stress response, severe reductions in protein synthesis, proliferation and cell survival, and significant slowing of disease progression and extension of survival in vivo . Similarly, combined autophagy and proteasome inhibition suppressed proliferation, synergistically killed AML cells, and significantly reduced AML burden and extended survival in vivo . Furthermore, autophagy and proteasome inhibition preferentially suppressed protein synthesis and induced apoptosis in primary patient AML cells, including AML stem/progenitor cells, without severely affecting normal hematopoietic stem/progenitor cells. Combined autophagy and proteasome inhibition also activated the integrated stress response, but surprisingly this occurred in a PKR-dependent manner. These studies unravel how proteostasis pathways are co-opted to promote AML growth, progression and drug resistance, and reveal that disabling the proteostasis network is a promising strategy to therapeutically target AML.
Collapse
|