1
|
Binter M, Heider M, Glage S, Fuchs H, Langer F, Schigiel T, Framme C, Tode J. Understanding the Ocular Hypertension Model in Mice Induced by Dexamethasone-21-Acetate - Implications for Glaucoma Research. Curr Eye Res 2024; 49:1269-1277. [PMID: 39049665 DOI: 10.1080/02713683.2024.2380445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE This study aimed to assess the effectiveness of monocular and bilateral injections of Dexamethasone-21-acetate (Dex-21-Ac) into the murine fornix twice a week as a glucocorticoid-induced ocular hypertension model and investigated potential systemic side effects. METHODS Dex-21-Ac was administered twice weekly in three groups: bilateral injections, monocular injections, and a control group receiving the vehicle solution bilateral. After 21 days, enucleated eyes were examined using immunocytochemistry (ICC), and organ histology was performed. RESULTS All groups receiving Dex-21-Ac injections had a significant increase in intraocular pressure (IOP). Monocular injections also resulted in a significant increase in IOP in the fellow eye. The Dex-21-Ac-treated groups showed a bilateral increase in IOP of approximately 8 mmHg, accompanied by elevated expression of alpha smooth muscle actin and fibronectin in the anterior chamber angle. There were no significant changes in weight progression. Hepatic steatosis was observed in all Dex-21-Ac-treated animals, and some suffered from residual neuromuscular blockade under fentanyl anesthesia. CONCLUSION Bilateral injections of Dex-21-Ac twice a week lead to a significant increase in daytime IOP and fibrotic changes in the trabecular meshwork. Unilateral application has a significant impact on the fellow eye. Local dexamethasone leads to notable systemic effects independent of changes in animal weight. Considering liver damage and associated influence on metabolization, hepatically eliminated injection anesthetics may lead to overdosing and are not recommended. They should be replaced by inhalation anesthesia.
Collapse
Affiliation(s)
- Maximilian Binter
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Heiko Fuchs
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Fridolin Langer
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Thomas Schigiel
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Jan Tode
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Soundappan K, Cai J, Yu H, Dhamodaran K, Baidouri H, Vranka JA, Xu H, Raghunathan V, Liu Y. Influence of dexamethasone-induced matrices on the TM transcriptome. Exp Eye Res 2024; 248:110069. [PMID: 39233306 PMCID: PMC11531998 DOI: 10.1016/j.exer.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An in vitro model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value <0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.
Collapse
Affiliation(s)
- Keerti Soundappan
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Hongfang Yu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Kamesh Dhamodaran
- College of Optometry, University of Houston, Houston, TX, United States
| | - Hasna Baidouri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, Augusta University, Augusta, GA, United States
| | | | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
3
|
Zhu M, Deng X, Zhang N, Zhang P, Lai C, Cai S, Huang J, Chen X, Liu Y, Zeng W, Ke M. Dexamethasone induces trabecular meshwork cell myofibroblast transdifferentiation through ARHGEF26. FASEB J 2024; 38:e23848. [PMID: 39092889 DOI: 10.1096/fj.202400400rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-β pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.
Collapse
Affiliation(s)
- Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. JCI Insight 2024; 9:e178050. [PMID: 39114980 PMCID: PMC11383595 DOI: 10.1172/jci.insight.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) is an age-related macular degeneration-like (AMD-like) retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production in retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus that enabled simple, sensitive, and high-throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix, reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium-derived factor). In vivo, treatment of 8-month-old R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is an important demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of retinal degenerative diseases, including potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Sugali CK, Rayana NP, Dai J, Harvey DH, Dhamodaran K, Mao W. GSK3β Inhibitors Inhibit TGFβ Signaling in the Human Trabecular Meshwork. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 39087933 PMCID: PMC11305430 DOI: 10.1167/iovs.65.10.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose Primary open-angle glaucoma (POAG) is a leading cause of blindness, and its primary risk factor is elevated intraocular pressure (IOP) due to pathologic changes in the trabecular meshwork (TM). We previously showed that there is a cross-inhibition between TGFβ and Wnt signaling pathways in the TM. In this study, we determined if activation of the Wnt signaling pathway using small-molecule Wnt activators can inhibit TGFβ2-induced TM changes and ocular hypertension (OHT). Methods Primary human TM (pHTM) cells and transduced SBE-GTM3 cells were treated with or without Wnt and/or TGFβ signaling activators and used for luciferase assays; for the extraction of whole-cell lysate, conditioned medium, cytosolic proteins, and nuclear proteins for Western immunoblotting (WB); or for immunofluorescent staining. Human donor eyes were perfusion cultured to study the effect of Wnt activators on IOP. Results We found that the small-molecule Wnt activators (GSK3β inhibitors) (BIO, SB216763, and CHIR99021) activated canonical Wnt signaling in pHTM cells without toxicity at tested concentrations. This activation inhibited TGFβ signaling as well as TGFβ2-induced extracellular matrix deposition and formation of cross-linked actin networks in pHTM cells or SBE-GTM3 cells. We also observed nuclear translocation of both Smad4 and β-catenin in pHTM cells, which suggested that the cross-inhibition between the TGFβ and Wnt signaling pathways may occur in the nucleus. Using our ex vivo model, we found that CHIR99021 inhibited TGFβ2-induced OHT in perfusion-cultured human eyes. Conclusions Our results showed that small-molecule Wnt activators have the potential for treating TGFβ signaling-induced OHT in patients with POAG.
Collapse
Affiliation(s)
- Chenna Kesavulu Sugali
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Naga Pradeep Rayana
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Devon H. Harvey
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kamesh Dhamodaran
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Weiming Mao
- Eugene & Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- STARK Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
6
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
7
|
Wu L, An J, Li X, Tao Q, Liu Z, Zhang K, Zhou L, Zhang X. Comprehensive Proteomic Profiling of Aqueous Humor in Idiopathic Uveitis and Vogt-Koyanagi-Harada Syndrome. ACS OMEGA 2024; 9:18643-18653. [PMID: 38680323 PMCID: PMC11044210 DOI: 10.1021/acsomega.3c10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Idiopathic uveitis (IU) and Vogt-Koyanagi-Harada (VKH) syndrome are common types of uveitis. However, the exact pathological mechanisms of IU and VKH remain unclear. Proteomic analysis of aqueous humor (AH), the most easily accessible intraocular fluid and a key site of uveitis development, may reveal potential biomarkers and elucidate uveitis pathogenesis. In this study, 44 AH samples, including 12 IU cases, 16 VKH cases, and 16 controls, were subjected to label-free quantitative proteomic analysis. We identified 557 proteins from a comprehensive spectral library of 634 proteins across all samples. The AH proteomic profiles of the IU and VKH groups were different from those of the control group. Differential analysis revealed a shared pattern of extracellular matrix disruption and downregulation of retinal cellular proteins in the IU and VKH groups. Enrichment analysis revealed a protein composition indicative of inflammation in the AH of the IU and VKH groups but not in that of the control group. In the IU and VKH groups, innate immunity played an important role, as indicated by complement cascade activation and overexpression of innate immune cell markers. Extreme gradient boosting (XGBoost), an efficient and robust machine learning algorithm, was subsequently used to screen potential biomarkers for classifying the IU, VKH, and control groups. Transferrin and complement factor B were deemed the most important and represent a promising biomarker panel. These proteins were validated by high-resolution multiple reaction monitoring (HR-MRM) in an independent validation cohort. A classification decision tree was subsequently built for the diagnosis. Our findings further the understanding of the underlying molecular mechanisms in IU and VKH and facilitate the development of potential therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Lingzi Wu
- Tianjin
Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of
National Clinical Research Center for Ocular Disease, Eye Institute
and School of Optometry, Tianjin Medical
University Eye Hospital, Tianjin 300384, China
- Beijing
Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren
Hospital, Capital Medical University, Beijing 100051, China
| | - Jinying An
- Tianjin
Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of
National Clinical Research Center for Ocular Disease, Eye Institute
and School of Optometry, Tianjin Medical
University Eye Hospital, Tianjin 300384, China
| | - Xueru Li
- Tianjin
Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of
National Clinical Research Center for Ocular Disease, Eye Institute
and School of Optometry, Tianjin Medical
University Eye Hospital, Tianjin 300384, China
| | - Qingqin Tao
- Tianjin
Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of
National Clinical Research Center for Ocular Disease, Eye Institute
and School of Optometry, Tianjin Medical
University Eye Hospital, Tianjin 300384, China
| | - Zheng Liu
- Shanxi
Eye Hospital, Taiyuan 030002, Shanxi, China
| | - Kai Zhang
- The
Province and Ministry Co-sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| | - Lei Zhou
- School
of Optometry, Department of Applied Biology and Chemical Technology,
and Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Xiaomin Zhang
- Tianjin
Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of
National Clinical Research Center for Ocular Disease, Eye Institute
and School of Optometry, Tianjin Medical
University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
8
|
Faralli JA, Filla MS, Yang YF, Sun YY, Johns K, Keller KE, Peters DM. Digital spatial profiling of segmental outflow regions in trabecular meshwork reveals a role for ADAM15. PLoS One 2024; 19:e0298802. [PMID: 38394161 PMCID: PMC10889904 DOI: 10.1371/journal.pone.0298802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kassidy Johns
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571757. [PMID: 38168310 PMCID: PMC10760106 DOI: 10.1101/2023.12.14.571757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
11
|
Li JH, Yu GS, Wang YD, Li TK. In vitro protective effect of recombinant prominin-1 combined with microRNA-29b on N-methyl-D-aspartate-induced excitotoxicity in retinal ganglion cells. Int J Ophthalmol 2023; 16:1746-1755. [PMID: 38028520 PMCID: PMC10626362 DOI: 10.18240/ijo.2023.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/15/2023] [Indexed: 12/01/2023] Open
Abstract
AIM To determine the in vitro protective effect of recombinant prominin-1 (Prominin-1)+microRNA-29b (P1M29) on N-methyl-D-aspartate (NMDA)-induced excitotoxicity in retinal ganglion cells (RGCs). METHODS RGC-5 cells were cultured, and NMDA-induced excitotoxicity at the range of 100-800 µmol/L was assessed using the MTT assay. NMDA (800 µmol/L) was selected as the appropriate concentration for preparing the cell model. To evaluate the protective effect of P1M29 on the cell model, Prominin-1 was added at the concentration of 1-6 ng/mL for 48h, and the cell survival was investigated with/without microRNA-29b. After obtaining the appropriate concentration and time of P1M29 at 48h, real-time polymerase chain reaction (PCR) was utilized to detect the relative mRNA expression of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β2. Western blot detection was applied to measure the phosphorylation levels of protein kinase B (AKT) and extracellular regulated protein kinases (ERK) in RGC-5 cells after treatment with Prominin-1. Apoptosis study of the cell model was conducted by flow cytometry for estimating the anti-apoptotic effect of P1M29. Immunofluorescence analysis was used to analyze the expression levels of VEGF and TGF-β2. RESULTS MTT cytotoxicity assays demonstrated that P1M29 group had significantly higher cell survival rate than Prominin-1 group (P<0.05). Real-time PCR data indicated that the expression levels of VEGF were significantly increased in both Prominin-1 and P1M29 groups compared NMDA and microRNA-29b group (P<0.05), while TGF-β2 were significantly decreased in both microRNA-29b and P1M29 groups compared NMDA and Prominin-1 group (P<0.05). Western blot results showed that both Prominin-1 and P1M29 groups significantly increased the phosphorylation levels of AKT and ERK compared to NMDA and microRNA-29b groups (P<0.05). Flow cytometry analysis revealed that P1M29 could prevent RGC-5 cell apoptosis in the early stage of apoptosis, while immunofluorescence results showed that P1M29 group had higher expression of VEGF and lower expression of TGF-β2 with a stronger green fluorescence than NMDA group. CONCLUSION Prominin-1 combined with microRNA-29b can provide a suitable therapeutic option for ameliorating NMDA-induced excitotoxicity in RGC-5 cells.
Collapse
Affiliation(s)
- Jun-Hua Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | - Guan-Shun Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | - Yu-Da Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou 310020, Zhejiang Province, China
| | | |
Collapse
|
12
|
Bergeron BP, Barnett KR, Bhattarai KR, Mobley RJ, Hansen BS, Brown A, Kodali K, High AA, Jeha S, Pui CH, Peng J, Pruett-Miller SM, Savic D. Mutual antagonism between glucocorticoid and canonical Wnt signaling pathways in B-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4107-4111. [PMID: 37289547 PMCID: PMC10388724 DOI: 10.1182/bloodadvances.2022009498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Baranda S. Hansen
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Junmin Peng
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shondra M. Pruett-Miller
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
13
|
Agarwal R, Iezhitsa I. Advances in targeting the extracellular matrix for glaucoma therapy: current updates. Expert Opin Ther Targets 2023; 27:1217-1229. [PMID: 38069479 DOI: 10.1080/14728222.2023.2293748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Diaz-Torres S, He W, Thorp J, Seddighi S, Mullany S, Hammond CJ, Hysi PG, Pasquale LR, Khawaja AP, Hewitt AW, Craig JE, Mackey DA, Wiggs JL, van Duijn C, Lupton MK, Ong JS, MacGregor S, Gharahkhani P. Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders. EBioMedicine 2023; 92:104615. [PMID: 37201334 PMCID: PMC10206164 DOI: 10.1016/j.ebiom.2023.104615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by progressive degeneration of the optic nerve that leads to irreversible visual impairment. Multiple epidemiological studies suggest an association between POAG and major neurodegenerative disorders (Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Parkinson's disease). However, the nature of the overlap between neurodegenerative disorders, brain morphology and glaucoma remains inconclusive. METHOD In this study, we performed a comprehensive assessment of the genetic and causal relationship between POAG and neurodegenerative disorders, leveraging genome-wide association data from studies of magnetic resonance imaging of the brain, POAG, and four major neurodegenerative disorders. FINDINGS This study found a genetic overlap and causal relationship between POAG and its related phenotypes (i.e., intraocular pressure and optic nerve morphology traits) and brain morphology in 19 regions. We also identified 11 loci with a significant local genetic correlation and a high probability of sharing the same causal variant between neurodegenerative disorders and POAG or its related phenotypes. Of interest, a region on chromosome 17 corresponding to MAPT, a well-known risk locus for Alzheimer's and Parkinson's disease, was shared between POAG, optic nerve degeneration traits, and Alzheimer's and Parkinson's diseases. Despite these local genetic overlaps, we did not identify strong evidence of a causal association between these neurodegenerative disorders and glaucoma. INTERPRETATION Our findings indicate a distinctive and likely independent neurodegenerative process for POAG involving several brain regions although several POAG or optic nerve degeneration risk loci are shared with neurodegenerative disorders, consistent with a pleiotropic effect rather than a causal relationship between these traits. FUNDING PG was supported by an NHMRC Investigator Grant (#1173390), SM by an NHMRC Senior Research Fellowship and an NHMRC Program Grant (APP1150144), DM by an NHMRC Fellowship, LP is funded by the NEIEY015473 and EY032559 grants, SS is supported by an NIH-Oxford Cambridge Fellowship and NIH T32 grant (GM136577), APK is supported by a UK Research and Innovation Future Leaders Fellowship, an Alcon Research Institute Young Investigator Award and a Lister Institute for Preventive Medicine Award.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia.
| | - Weixiong He
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson Thorp
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sahba Seddighi
- Nuffield Department of Population Health, Oxford University, Oxford, UK; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean Mullany
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Christopher J Hammond
- Departments of Ophthalmology & Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Pirro G Hysi
- Departments of Ophthalmology & Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, USA
| | | | - Michelle K Lupton
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia
| | - Puya Gharahkhani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
15
|
Kapuganti RS, Hayat B, Padhy B, Mohanty PP, Alone DP. Dickkopf-1 and ROCK2 upregulation and associated protein aggregation in pseudoexfoliation syndrome and glaucoma. Life Sci 2023; 326:121797. [PMID: 37217133 DOI: 10.1016/j.lfs.2023.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
AIMS The etiology of pseudoexfoliation (PEX), a stress-induced fibrillopathy and a leading cause of secondary glaucoma worldwide, remains limited. This study aims to understand the role of the Wnt antagonist Dickkopf-related protein 1 (DKK1) in PEX pathophysiology and assess its candidature as a biomarker for PEX. MAIN METHODS Expression levels of DKK1 and Wnt signaling genes were assayed in the anterior ocular tissues of study subjects by qRT-PCR, Western blotting, and immunohistochemistry. Protein aggregation was studied through Proteostat staining. Role of DKK1 in protein aggregation and regulation of target Wnt signaling genes was elucidated through overexpression and knockdown studies in Human Lens Epithelial cells (HLEB3). Levels of DKK1 in circulating fluids were assayed through ELISA. KEY FINDINGS DKK1 upregulation was observed in lens capsule and conjunctiva tissues of PEX individuals compared to controls correlating with an upregulation of the Wnt signaling target, ROCK2. Proteostat staining showed increased protein aggregates in lens epithelial cells of PEX patients. HLE B-3 cells overexpressed with DKK1 showed increased protein aggregates along with upregulation of ROCK2, and knockdown of DKK1 in HLE B-3 cells demonstrated downregulation of ROCK2. Further, ROCK2 inhibition by Y-27632 in DKK1 overexpressed cells showed that DKK1 regulated protein aggregation via ROCK2. Also, increased levels of DKK1 were observed in patients' plasma and aqueous humor compared to controls. SIGNIFICANCE This study shows that DKK1 and ROCK2 might play a role in protein aggregation in PEX. Further, elevated levels of DKK1 in aqueous humor serve as a fair classifier of pseudoexfoliation glaucoma.
Collapse
Affiliation(s)
- Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
16
|
Bergeron BP, Barnett KR, Bhattarai KR, Mobley RJ, Hansen BS, Brown A, Kodali K, High AA, Jeha S, Pui CH, Peng J, Pruett-Miller SM, Savic D. Mutual antagonism between glucocorticoid and canonical Wnt signaling pathways in B-cell acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524798. [PMID: 36711662 PMCID: PMC9882342 DOI: 10.1101/2023.01.20.524798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glucocorticoids (GCs; i.e., steroids) are important chemotherapeutic agents in the treatment of B-cell precursor acute lymphoblastic leukemia (B-ALL) and de novo GC resistance predicts relapse and poor clinical outcome in patients. Glucocorticoids induce B-ALL cell apoptosis through activation of glucocorticoid receptor (GR), a ligand-induced nuclear receptor transcription factor (TF). We previously identified disruptions to glucocorticoid receptor (GR)-bound cis -regulatory elements controlling TLE1 expression in GC-resistant primary B-ALL cells from patients. TLE1 is a GC-response gene up-regulated by steroids and functions as a canonical Wnt signaling repressor. To better understand the mechanistic relationship between GC signaling and canonical Wnt signaling, we performed diverse functional analyses that identified extensive crosstalk and mutual antagonism between these two signaling pathways in B-ALL. We determined that crosstalk and antagonism was driven by the binding of GR and the canonical Wnt signaling TFs LEF1 and TCF7L2 to overlapping sets of cis -regulatory elements associated with genes impacting cell death and cell proliferation, and was further accompanied by overlapping and opposing transcriptional programs. Our data additionally suggest that cis -regulatory disruptions at TLE1 are linked to GC resistance through a dampening of the GC response and GC-mediated apoptosis via enhanced canonical Wnt signaling. As a result of the extensive genomic and gene regulatory connectivity between these two signaling pathways, our data supports the importance of canonical Wnt signaling in mediating GC resistance in B-ALL.
Collapse
|
17
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
18
|
Maddala R, Eldawy C, Bachman W, Soderblom EJ, Rao PV. Glypican-4 regulated actin cytoskeletal reorganization in glucocorticoid treated trabecular meshwork cells and involvement of Wnt/PCP signaling. J Cell Physiol 2023; 238:631-646. [PMID: 36727620 DOI: 10.1002/jcp.30953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Abstract
A common adverse response to the clinical use of glucocorticoids (GCs) is elevated intraocular pressure (IOP) which is a major risk factor for glaucoma. Elevated IOP arises due to impaired outflow of aqueous humor (AH) through the trabecular meshwork (TM). Although GC-induced changes in actin cytoskeletal dynamics, contractile characteristics, and cell adhesive interactions of TM cells are believed to influence AH outflow and IOP, the molecular mechanisms mediating changes in these cellular characteristics are poorly understood. Our studies focused on evaluating changes in the cytoskeletal and cytoskeletal-associated protein (cytoskeletome) profile of human TM cells treated with dexamethasone (Dex) using label-free mass spectrometric quantification, identified elevated levels of specific proteins known to regulate actin stress fiber formation, contraction, actin networks crosslinking, cell adhesion, and Wnt signaling, including LIMCH1, ArgBP2, CNN3, ITGBL1, CTGF, palladin, FAT1, DIAPH2, EPHA4, SIPA1L1, and GPC4. Several of these proteins colocalized with the actin cytoskeleton and underwent alterations in distribution profile in TM cells treated with Dex, and an inhibitor of Abl/Src kinases. Wnt/Planar Cell Polarity (PCP) signaling agonists-Wnt5a and 5b were detected prominently in the cytoskeletome fraction of TM cells, and studies using siRNA to suppress expression of glypican-4 (GPC4), a known modulator of the Wnt/PCP pathway revealed that GPC4 deficiency impairs Dex induced actin stress fiber formation, and activation of c-Jun N-terminal Kinase (JNK) and Rho kinase. Additionally, while Dex augmented, GPC4 deficiency suppressed the formation of actin stress fibers in TM cells in the presence of Dex and Wnt5a. Taken together, these results identify the GPC4-dependent Wnt/PCP signaling pathway as one of the crucial upstream regulators of Dex induced actin cytoskeletal reorganization and cell adhesion in TM cells, opening an opportunity to target the GPC4/Wnt/PCP pathway for treatment of ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - William Bachman
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Duke Center for Genomic and Computational Biology, Durham, North Carolina, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
19
|
Abstract
Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.
Collapse
Affiliation(s)
- J Cameron Millar
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yogapriya Sundaresan
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Gulab S Zode
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
20
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
21
|
Peng M, Rayana NP, Dai J, Sugali CK, Baidouri H, Suresh A, Raghunathan VK, Mao W. Cross-linked actin networks (CLANs) affect stiffness and/or actin dynamics in transgenic transformed and primary human trabecular meshwork cells. Exp Eye Res 2022; 220:109097. [PMID: 35569518 PMCID: PMC11029344 DOI: 10.1016/j.exer.2022.109097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells may contribute to increased IOP by altering TM cell function and stiffness. However, there is a lack of direct evidence. Here, we developed transformed TM cells that form spontaneous fluorescently labelled CLANs. The stable cells were constructed by transducing transformed glaucomatous TM (GTM3) cells with the pLenti-LifeAct-EGFP-BlastR lentiviral vector and selection with blasticidin. The stiffness of the GTM3-LifeAct-GFP cells were studied using atomic force microscopy. Elastic moduli of CLANs in primary human TM cells treated with/without dexamethasone/TGFβ2 were also measured to validate findings in GTM3-LifeAct-GFP cells. Live-cell imaging was performed on GTM3-LifeAct-GFP cells treated with 1 μM latrunculin B or pHrodo bioparticles to determine actin stability and phagocytosis, respectively. The GTM3-LifeAct-GFP cells formed spontaneous CLANs without the induction of TGFβ2 or dexamethasone. The CLAN containing cells showed elevated cell stiffness, resistance to latrunculin B-induced actin depolymerization, as well as compromised phagocytosis, compared to the cells without CLANs. Primary human TM cells with dexamethasone or TGFβ2-induced CLANs were also stiffer and less phagocytic. The GTM3-LifeAct-GFP cells are a novel tool for studying the mechanobiology and pathology of CLANs in the TM. Initial characterization of these cells showed that CLANs contribute to at least some glaucomatous phenotypes of TM cells.
Collapse
Affiliation(s)
- Michael Peng
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naga Pradeep Rayana
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiannong Dai
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Ayush Suresh
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; St. John's School, Houston, TX, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Weiming Mao
- Department of Ophthalmology, Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Short and long-term effect of dexamethasone on the transcriptome profile of primary human trabecular meshwork cells in vitro. Sci Rep 2022; 12:8299. [PMID: 35585182 PMCID: PMC9117214 DOI: 10.1038/s41598-022-12443-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the quest of identifying newer molecular targets for the management of glucocorticoid-induced ocular hypertension (GC-OHT) and glaucoma (GCG), several microarray studies have attempted to investigate the genome-wide transcriptome profiling of primary human trabecular meshwork (TM) cells in response to dexamethasone (DEX). However, no studies are reported so far to demonstrate the temporal changes in the expression of genes in the cultured human TM cells in response to DEX treatment. Therefore, in the present study, the time-dependent changes in the genome-wide expression of genes in primary human TM cells after short (16 hours: 16 h) and long exposure (7 days: 7 d) of DEX was investigated using RNA sequencing. There were 199 (118 up-regulated; 81 down-regulated) and 525 (119 up-regulated; 406 down-regulated) DEGs in 16 h and 7 d treatment groups respectively. The unique genes identified in 16 h and 7 d treatment groups were 152 and 478 respectively. This study found a distinct gene signature and pathways between two treatment regimes. Longer exposure of DEX treatment showed a dys-regulation of Wnt and Rap1 signaling and so highlighted potential therapeutic targets for pharmacological management of GC-OHT/glaucoma.
Collapse
|
23
|
Bachman W, Maddala R, Chakraborty A, Eldawy C, Skiba NP, Rao PV. Glucocorticoids Preferentially Influence Expression of Nucleoskeletal Actin Network and Cell Adhesive Proteins in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886754. [PMID: 35557957 PMCID: PMC9087352 DOI: 10.3389/fcell.2022.886754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Clinical use of glucocorticoids is associated with increased intraocular pressure (IOP), a major risk factor for glaucoma. Glucocorticoids have been reported to induce changes in actin cytoskeletal organization, cell adhesion, extracellular matrix, fibrogenic activity, and mechanical properties of trabecular meshwork (TM) tissue, which plays a crucial role in aqueous humor dynamics and IOP homeostasis. However, we have a limited understanding of the molecular underpinnings regulating these myriad processes in TM cells. To understand how proteins, including cytoskeletal and cell adhesion proteins that are recognized to shuttle between the cytosolic and nuclear regions, influence gene expression and other cellular activities, we used proteomic analysis to characterize the nuclear protein fraction of dexamethasone (Dex) treated human TM cells. Treatment of human TM cells with Dex for 1, 5, or 7 days led to consistent increases (by ≥ two-fold) in the levels of various actin cytoskeletal regulatory, cell adhesive, and vesicle trafficking proteins. Increases (≥two-fold) were also observed in levels of Wnt signaling regulator (glypican-4), actin-binding chromatin modulator (BRG1) and nuclear actin filament depolymerizing protein (MICAL2; microtubule-associated monooxygenase, calponin and LIM domain containing), together with a decrease in tissue plasminogen activator. These changes were independently further confirmed by immunoblotting analysis. Interestingly, deficiency of BRG1 expression blunted the Dex-induced increases in the levels of some of these proteins in TM cells. In summary, these findings indicate that the widely recognized changes in actin cytoskeletal and cell adhesive attributes of TM cells by glucocorticoids involve actin regulated BRG1 chromatin remodeling, nuclear MICAL2, and glypican-4 regulated Wnt signaling upstream of the serum response factor/myocardin controlled transcriptional activity.
Collapse
Affiliation(s)
- William Bachman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ayon Chakraborty
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Biomechanics is an important aspect of the complex family of diseases known as the glaucomas. Here, we review recent studies of biomechanics in glaucoma. RECENT FINDINGS Several tissues have direct and/or indirect biomechanical roles in various forms of glaucoma, including the trabecular meshwork, cornea, peripapillary sclera, optic nerve head/sheath, and iris. Multiple mechanosensory mechanisms and signaling pathways continue to be identified in both the trabecular meshwork and optic nerve head. Further, the recent literature describes a variety of approaches for investigating the role of tissue biomechanics as a risk factor for glaucoma, including pathological stiffening of the trabecular meshwork, peripapillary scleral structural changes, and remodeling of the optic nerve head. Finally, there have been advances in incorporating biomechanical information in glaucoma prognoses, including corneal biomechanical parameters and iridial mechanical properties in angle-closure glaucoma. SUMMARY Biomechanics remains an active aspect of glaucoma research, with activity in both basic science and clinical translation. However, the role of biomechanics in glaucoma remains incompletely understood. Therefore, further studies are indicated to identify novel therapeutic approaches that leverage biomechanics. Importantly, clinical translation of appropriate assays of tissue biomechanical properties in glaucoma is also needed.
Collapse
Affiliation(s)
- Babak N. Safa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Cydney A. Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - Jungmin Ha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, USA
| |
Collapse
|