1
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Yang J, Liu Z, Hu X, Zhang X, Huang Y, Chen Y, Chen C, Shang R, Tang Y, Hu W, Wang J, Shen HM, Hu J, He W. Skin-Resident γδ T Cells Mediate Potent and Selective Antitumor Cytotoxicity through Directed Chemotactic Migration and Mobilization of Cytotoxic Granules. J Invest Dermatol 2025; 145:1433-1446.e2. [PMID: 39571888 DOI: 10.1016/j.jid.2024.10.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Dendritic epidermal T cells (DETCs) are a unique subset of γδ T cells that reside predominantly in mouse epidermis; yet, their antitumor functions remain enigmatic. In this study, we report that DETCs mediate potent and exquisitely selective cytotoxicity against diverse tumor types while sparing healthy cells. In vitro, DETCs induced apoptosis in melanoma, hepatoma, colon carcinoma, and lymphoma lines in a dose- and time-dependent manner that required direct cell-cell contact. In vivo, adoptive DETC transfer significantly suppressed melanoma growth and metastasis while prolonging survival. Mechanistically, DETCs upregulated perforin/granzyme B expression upon tumor recognition, and inhibition of this pathway ablated cytotoxicity. DETCs selectively homed to and formed intimate contacts with tumor cells in vivo through directed chemotaxis and aggregation. Tumor engagement triggered proinflammatory DETC activation while dampening immunosuppressive factors in the microenvironment. Notably, mTOR signaling coupled tumor recognition to DETC trafficking, cytotoxicity, and inflammatory programs because rapamycin treatment impaired effector functions and therapeutic efficacy. Collectively, these findings establish DETCs as multidimensional antitumor effectors and provide insights for harnessing their unique biology for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyang Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jue Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China.
| |
Collapse
|
3
|
Souza RF, Machado FA, Caetano MAF, De Paulo CB, Castelucci P. Effect of Anti-TNF Monoclonal Antibody on Enteric Neurons and Enteric Glial Cells in Experimental Colitis. Dig Dis Sci 2025; 70:1375-1394. [PMID: 39946069 DOI: 10.1007/s10620-025-08872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/14/2025] [Indexed: 04/06/2025]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) affect both enteric neurons and enteric glia, with tumor necrosis factor-alpha (TNF-α) playing a role as an inflammatory mediator. AIMS Analyze the effects of the anti-TNF monoclonal antibody on the myenteric plexus in an experimental model of colitis. METHODS C57BL/6 mice received 3% dextran sodium sulfate (DSS) in drinking water for 7 days in both the DSS and DSS + ADA groups. The Sham group received water. The DSS + ADA group received ADA anti-TNF-α on day 2 of DSS intake. The ADA group was given water throughout the period and received an anti-TNF-α injection on day 2. The study evaluated the number of neurons per ganglion, and the area of the neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), pan-neuronal marker (PGP9.5), and tumor necrosis factor receptor 2 (TNFR2) immunoreactive (-ir). Double labeling of PGP9.5 with an enteric glial marker (GFAP) was also performed. RESULTS DSS successfully induced experimental colitis (EC). TNFR2 was detected in the myenteric neurons in all groups. EC affected the enteric neurons, showing a decrease in the number of TNFR2-ir, ChAT-ir, nNOS-ir, and PGP9.5-ir neurons, whereas enteric glial cells increased in both the DSS and DSS + ADA groups. The DSS + ADA group showed number of nNOS-ir, ChAT-ir, and PGP9.5-ir neurons per ganglion similar to Sham group. EC also affected the neuronal profile, resulting in smaller areas in the DSS and DSS + ADA groups. CONCLUSION Myenteric neurons are immunoreactive to the TNFR2. DSS altered the myenteric plexus, and anti-TNF monoclonal antibody treatment proved effective against EC due to preventing the pathology from developing.
Collapse
Affiliation(s)
- Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, Brasil
| | - Felipe Alexandre Machado
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, Brasil
| | - Marcos Antônio Ferreira Caetano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, Brasil
| | - Caroline Bures De Paulo
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, Brasil.
| |
Collapse
|
4
|
Janova H, Zhao FR, Desai P, Mack M, Thackray LB, Stappenbeck TS, Diamond MS. West Nile virus triggers intestinal dysmotility via T cell-mediated enteric nervous system injury. J Clin Invest 2024; 134:e181421. [PMID: 39207863 PMCID: PMC11527448 DOI: 10.1172/jci181421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus West Nile virus (WNV) and demonstrated intestinal transit defects. Here, we found that within 1 week of WNV infection, enteric neurons and glia became damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damaged the enteric nervous system (ENS) and glia, which led to intestinal dysmotility; these T cells used multiple and redundant effector molecules including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appeared to not require infiltrating monocytes, and damage may have been limited by resident muscularis macrophages. Overall, our experiments support a model in which antigen-specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Collapse
Affiliation(s)
- Hana Janova
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wu S, Chen J, Huang E, Zhang Y. Pan-Cancer Analysis and Validation of Opioid-Related Receptors Reveals the Immunotherapeutic Value of Toll-Like Receptor 4. Int J Gen Med 2023; 16:5527-5548. [PMID: 38034898 PMCID: PMC10683661 DOI: 10.2147/ijgm.s434076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The relationship between the expression of opioid-associated receptors and cancer outcomes is complex and varies among studies. Methods This study focused on six opioid-related receptors (OPRM1, OPRD1, OPRK1, OPRL1, OGFR, and TLR4) and their impact on cancer patient survival. Bioinformatics analysis was conducted on 33 cancer types from The Cancer Genome Atlas database to examine their expression, clinical correlations, mechanisms in the tumor microenvironment, and potential for immunotherapy. Due to significantly lower expression of OPRM1, OPRD1, and OPRK1 compared to OGFR and TLR4, the analysis concentrated on the latter two genes. Results OGFR was highly expressed in 16 tumor types, while TLR4 showed low expression in 13. Validation from external samples, the Gene Expression Omnibus, and the Human Protein Atlas supported these findings. The diagnostic value of these two genes was demonstrated using the Genotype-Tissue Expression database. Univariate Cox regression models and Kaplan-Meier curves confirmed OGFR's impact on prognosis in a cancer type-specific manner, while high TLR4 expression was associated with a favorable prognosis. Analysis of the tumor microenvironment using a deconvolution algorithm linked OGFR to CD8+ T cells and TLR4 to macrophages. Single-cell datasets further validated this correlation. In 25 immune checkpoint blockade treatment cohorts, TLR4 expression showed promise as an immunotherapy efficacy predictor in non-small cell lung cancer, urothelial carcinoma, and melanoma. Conclusion In a pan-cancer analysis of 33 tissues, OGFR was consistently highly expressed, while TLR4 had low expression. Both genes have diagnostic and prognostic significance and are linked to immune cells in the tumor microenvironment. TLR4 has potential as an immunotherapeutic response marker.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Anesthesiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Junnan Chen
- Department of Anesthesiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Enmin Huang
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterological Surgery and Hernia Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongfa Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Montesinos-Rongen M, Sanchez-Ruiz M, Siebert S, Winter C, Siebert R, Brunn A, Deckert M. Expression of Cas9 in a Syngeneic Model of Primary Central Nervous System Lymphoma Induces Intracerebral NK and CD8 T Cell-Mediated Lymphoma Cell Lysis Via Perforin. CRISPR J 2022; 5:726-739. [PMID: 36260299 DOI: 10.1089/crispr.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of clustered regulatory interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene modification has opened an exciting avenue of targeting genes to study the pathogenesis of diseases and to develop novel therapeutic concepts. However, as the effector protein Cas9 is of bacterial origin, unwanted side effects due to a host immune response against Cas9 need to be considered. Here, we used the syngeneic model of BAL17CNS-induced primary lymphoma of the central nervous system (PCNSL, CNS) in BALB/c mice to address this issue. Surprisingly, stable expression of Cas9 in BAL17CNS (BAL17CNS/Cas9) cells rendered them unable to establish PCNSL on intracerebral transplantation. Instead, they induced a prominent intracerebral immune response mediated by CD8 T cells, which lysed BAL17CNS/Cas9 cells via perforin. In addition, B cells contributed to the immune response as evidenced by serum anti-Cas9 antibodies in BALB/c mice as early as day 8 after transplantation of BAL17CNS/Cas9 cells. In athymic BALB/cnu/nu mice, NK cells mounted a vigorous intracerebral immune response with perforin-mediated destruction of BAL17CNS/Cas9 cells. Thus, in the CNS, perforin produced by NK and CD8 T cells was identified as a mediator of cytotoxicity against BAL17CNS/Cas9 cells. These observations should be taken into account when considering therapeutic CRISPR-Cas9-mediated tumor cell manipulation for PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Susann Siebert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Claudia Winter
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany, and Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Levetiracetam Attenuates the Spinal Cord Injury Induced by Acute Trauma via Suppressing the Expression of Perforin. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7218666. [PMID: 35633929 PMCID: PMC9135510 DOI: 10.1155/2022/7218666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The spinal cord injury (SCI) is one of the major reasons causing the motor dysfunctions of the patients. At present, few therapeutic strategies can effectively improve the symptom of SCI. Levetiracetam has been confirmed to alleviate the injury of nerve cells, while its functions in SCI remains unclear. In this study, C57BL/6J mice were used to establish SCI models to observe the effect of levetiracetam on SCI. The mice were fed with 180 mg/kg levetiracetam when suffering from SCI, and Basso mouse score (BMS) and CatWalk-assisted gait analysis were used to observe the motor functions of the mice. Nissl staining and TUNEL staining were used to observe the injury of nerve cells. The abundance of inflammatory factors was measured by ELISA. The permeability of blood-spinal cord barrier (BSCB) in mice was detected with macrophage infiltration analysis. Moreover, the abundance of perforin in the tissues was detected by western blot. The results showed that the SCI mice treated with levetiracetam exhibited lighter motor dysfunction compared with the mice treated with saline. Levetiracetam can effectively reduce the inflammatory reactions and alleviate apoptosis of the nerve cells. Moreover, levetiracetam remarkably decreased the BSCB permeability of SCI mice. Besides, it was also found that levetiracetam can significantly inhibit the expression of perforin. In conclusion, this study suggests that levetiracetam can attenuate the injury of BSCB to block the progression of SCI via suppressing the expression of perforin.
Collapse
|