1
|
Peng Z, Jia Q, Mao J, Luo X, Huang A, Zheng H, Jiang S, Ma Q, Ma C, Yi Q. Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction. Front Psychiatry 2025; 15:1439727. [PMID: 39876994 PMCID: PMC11773674 DOI: 10.3389/fpsyt.2024.1439727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex. These brain regions form networks that communicate through neurotransmitter signaling, leading to neurobiological changes in individuals with behavioral addictions. While dopamine has long been associated with the reward process, recent research highlights the role of other key neurotransmitters like serotonin, glutamate, and endorphins in BADs' development. These neurotransmitters interact within the reward circuitry, creating potential targets for therapeutic intervention. This improved understanding of neurotransmitter systems provides a foundation for developing targeted treatments and helps clinicians select personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhenlei Peng
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junxiong Mao
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao Luo
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Anqi Huang
- Child Mental Health Research Center, Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
| | - Shijie Jiang
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qi Ma
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qizhong Yi
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Vrettou M, Yan L, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. DNA methylation of Vesicular Glutamate Transporters in the mesocorticolimbic brain following early-life stress and adult ethanol exposure-an explorative study. Sci Rep 2021; 11:15322. [PMID: 34321562 PMCID: PMC8319394 DOI: 10.1038/s41598-021-94739-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation and gene expression can be altered by early life stress (ELS) and/or ethanol consumption. The present study aimed to investigate whether DNA methylation of the Vesicular Glutamate Transporters (Vglut)1-3 is related to previously observed Vglut1-3 transcriptional differences in the ventral tegmental area (VTA), nucleus accumbens (Acb), dorsal striatum (dStr) and medial prefrontal cortex (mPFC) of adult rats exposed to ELS, modelled by maternal separation, and voluntary ethanol consumption. Targeted next-generation bisulfite sequencing was performed to identify the methylation levels on 61 5′-cytosine-phosphate-guanosine-3′ sites (CpGs) in potential regulatory regions of Vglut1, 53 for Vglut2, and 51 for Vglut3. In the VTA, ELS in ethanol-drinking rats was associated with Vglut1-2 CpG-specific hypomethylation, whereas bidirectional Vglut2 methylation differences at single CpGs were associated with ELS alone. Exposure to both ELS and ethanol, in the Acb, was associated with lower promoter and higher intronic Vglut3 methylation; and in the dStr, with higher and lower methylation in 26% and 43% of the analyzed Vglut1 CpGs, respectively. In the mPFC, lower Vglut2 methylation was observed upon exposure to ELS or ethanol. The present findings suggest Vglut1-3 CpG-specific methylation signatures of ELS and ethanol drinking, underlying previously reported Vglut1-3 transcriptional differences in the mesocorticolimbic brain.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Uppsala, Sweden.,The School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | | | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Nudmamud-Thanoi S, Iamjan SA, Kerdsan-Phusan W, Thanoi S. Pharmacogenetics of drug dependence: Polymorphisms of genes involved in glutamate neurotransmission. Neurosci Lett 2020; 726:134128. [PMID: 30836121 DOI: 10.1016/j.neulet.2019.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Multiple studies provide evidence to support dysfunction of glutamate neurotransmission in the pathogenesis of drug dependence. Pharmacogenetic investigation of glutamate-related genes has provided further support for the involvement of this neurotransmitter in the risk of, and consequences of, drug abuse and dependence. This paper aims to provide a brief review of these association studies. Findings involving single nucleotide polymorphisms (SNPs) in glutamate receptor genes (GRIN, GRIA) and glutamate transporter genes (SLC1A, SLC17A) are reviewed as potential risk factors. As yet a clear perspective of the functional consequences and interactions of the various reported findings is lacking.
Collapse
Affiliation(s)
- Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Walailuk Kerdsan-Phusan
- Department of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
4
|
Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of Reward and Addiction: Potential Impact of Dopamine-Glutamate Co-release as Future Target in Substance Use Disorder. J Clin Med 2019; 8:E1887. [PMID: 31698743 PMCID: PMC6912639 DOI: 10.3390/jcm8111887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine-glutamate co-release is a unique property of midbrain neurons primarily located in the ventral tegmental area (VTA). Dopamine neurons of the VTA are important for behavioral regulation in response to rewarding substances, including natural rewards and addictive drugs. The impact of glutamate co-release on behaviors regulated by VTA dopamine neurons has been challenging to probe due to lack of selective methodology. However, several studies implementing conditional knockout and optogenetics technologies in transgenic mice have during the past decade pointed towards a role for glutamate co-release in multiple physiological and behavioral processes of importance to substance use and abuse. In this review, we discuss these studies to highlight findings that may be critical when considering mechanisms of importance for prevention and treatment of substance abuse.
Collapse
|
5
|
Vrettou M, Nilsson KW, Tuvblad C, Rehn M, Åslund C, Andershed AK, Wallén-Mackenzie Å, Andershed H, Hodgins S, Nylander I, Comasco E. VGLUT2 rs2290045 genotype moderates environmental sensitivity to alcohol-related problems in three samples of youths. Eur Child Adolesc Psychiatry 2019; 28:1329-1340. [PMID: 30805764 PMCID: PMC6785645 DOI: 10.1007/s00787-019-01293-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/09/2019] [Indexed: 12/14/2022]
Abstract
The importance of Vesicular Glutamate Transporter 2 (VGLUT2)-mediated neurotransmission has been highlighted in studies on addiction-related phenotypes. The single nucleotide polymorphism rs2290045 in VGLUT2 has been associated with alcohol dependence, but it is unknown whether or how this association is affected by environmental factors. The present study determined whether the association of alcohol-related problems with the rs2290045 in the VGLUT2 gene was modified by negative and positive environmental factors. Three samples were included: a clinical sample of 131 adolescents followed from age 17 to 22; a general population sample of 1794 young adults; and a general population sample of 1687 adolescents followed from age 14 to 17. DNA was extracted from saliva and the rs2290045 (T/C) was genotyped. Alcohol-related problems were assessed using the Alcohol Use Disorders Identification Test. Stressful life events (SLE) and parenting were assessed by questionnaires. Gene-environment interactions were investigated using a dual statistical approach. In all samples (effect sizes 0.6-6.2%), and consistent with the differential susceptibility framework, T carriers exposed to SLE reported more alcohol-related problems if they had experienced poor parenting, and lower alcohol-related problems if they had received supportive parenting. T carriers not exposed to SLE reported higher alcohol-related problems if they had received supportive parenting and lower alcohol-related problems if they had received poor parenting. Among CC carriers, alcohol-related problems did not vary as a function of negative and positive environmental factors. In conclusion, in three samples of youths, alcohol-related problems were associated with an interaction of VGLUT2 rs2290045, SLE, and parenting.
Collapse
Affiliation(s)
- Maria Vrettou
- grid.8993.b0000 0004 1936 9457Department of Neuroscience, Science for Life Laboratory, BMC, Uppsala University, Box 593, 751 24 Uppsala, Sweden
| | - Kent W. Nilsson
- grid.8993.b0000 0004 1936 9457Centre for Clinical Research Västerås, Västmanland County Hospital Västerås, Uppsala University, Uppsala, Sweden
| | - Catherine Tuvblad
- grid.15895.300000 0001 0738 8966School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden ,grid.42505.360000 0001 2156 6853Department of Psychology, University of Southern California, Los Angeles, USA
| | - Mattias Rehn
- grid.8993.b0000 0004 1936 9457Centre for Clinical Research Västerås, Västmanland County Hospital Västerås, Uppsala University, Uppsala, Sweden
| | - Cecilia Åslund
- grid.8993.b0000 0004 1936 9457Centre for Clinical Research Västerås, Västmanland County Hospital Västerås, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Andershed
- grid.15895.300000 0001 0738 8966School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Åsa Wallén-Mackenzie
- grid.8993.b0000 0004 1936 9457Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Henrik Andershed
- grid.15895.300000 0001 0738 8966School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Sheilagh Hodgins
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.14848.310000 0001 2292 3357Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montreal, Canada
| | - Ingrid Nylander
- grid.8993.b0000 0004 1936 9457Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, BMC, Uppsala University, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
7
|
Vrettou M, Granholm L, Todkar A, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. Ethanol affects limbic and striatal presynaptic glutamatergic and DNA methylation gene expression in outbred rats exposed to early-life stress. Addict Biol 2017; 22:369-380. [PMID: 26610727 DOI: 10.1111/adb.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is the outcome of both genetic and environmental influences and their interaction via epigenetic mechanisms. The neurotransmitter glutamate is an important regulator of reward circuits and implicated in adaptive changes induced by ethanol intake. The present study aimed at investigating corticolimbic and corticostriatal genetic signatures focusing on the glutamatergic phenotype in relation to early-life stress (ELS) and consequent adult ethanol consumption. A rodent maternal separation model was employed to mimic ELS, and a free-choice paradigm was used to assess ethanol intake in adulthood. Gene expression levels of the Vesicular Glutamate Transporters (Vglut) 1, 2 and 3, as well as two key regulators of DNA methylation, DNA (cytosine-5)-methyltransferase 1 (Dnmt1) and methyl-CpG-binding protein 2 (Mecp2), were analyzed. Brain regions of interest were the ventral tegmental area (VTA), nucleus accumbens (Acb), medial prefrontal cortex (mPFC) and dorsal striatum (dStr), all involved in mediating aspects of ethanol reward. Region-specific Vglut, Dnmt1 and Mecp2 expression patterns were observed. ELS was associated with down-regulated expression of Vglut2 in the VTA and mPFC. Rats exposed to ELS were more sensitive to ethanol-induced changes in Vglut expression in the VTA, Acb, and dStr and in Dnmt1 and Mecp2 expression in the striatal regions. These findings suggest long-term glutamatergic and DNA methylation neuroadaptations as a consequence of ELS, and show an association between voluntary drinking in non-preferring, non-dependent, rodents and different Vglut, Dnmt1 and Mecp2 expression depending on early-life history.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Linnea Granholm
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | | | - Kent W. Nilsson
- Västerås Centre for Clinical Research; Uppsala University; Västerås Sweden
| | - Åsa Wallén-Mackenzie
- Department of Organismal Biology/Comparative Physiology; Uppsala University; Uppsala Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Erika Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
8
|
Borkar CD, Upadhya MA, Shelkar GP, Subhedar NK, Kokare DM. Neuropeptide Y system in accumbens shell mediates ethanol self-administration in posterior ventral tegmental area. Addict Biol 2016; 21:766-75. [PMID: 25929272 DOI: 10.1111/adb.12254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although modulatory effects of neuropeptide Y (NPY) on ethanol consumption are well established, its role in ethanol reward, in the framework of mesolimbic dopaminergic system, has not been studied. We investigated the influence of nucleus accumbens shell (AcbSh) NPYergic system on ethanol self-administration in posterior ventral tegmental area (p-VTA) using intracranial self-administration paradigm. Rats were stereotaxically implanted with cannulae targeted unilaterally at the right p-VTA and trained to self-administer ethanol (200 mg%) in standard two-lever (active/inactive) operant chamber, an animal model with high predictive validity to test the rewarding mechanisms. Over a period of 7 days, these rats showed a significant increase in the number of lever presses for ethanol self-administration suggesting reinforcement. While intra-AcbSh NPY (1 or 2 ng/rat) or [Leu(31) , Pro(34) ]-NPY (0.5 or 1 ng/rat) dose-dependently increased ethanol self-administration, BIBP3226 (0.4 or 0.8 ng/rat) produced opposite effect. The rats conditioned to self-administer ethanol showed significant increase in the population of NPY-immunoreactive cells and fibres in the AcbSh, central nucleus of amygdala (CeA), hypothalamic arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis as compared with that in the naïve rats. Neuronal tracing studies showed that NPY innervations in the AcbSh may derive from the neurons of ARC and CeA. As NPY and dopamine systems in reward areas are known to interact, we suggest that NPY inputs from ARC and CeA may play an important role in modulation of the dopaminergic system in the AcbSh and consequently influence the ethanol induced reward and addiction.
Collapse
Affiliation(s)
- Chandrashekhar D. Borkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Manoj A. Upadhya
- Pharmacology Department; Shrimati Kishoritai Bhoyar College of Pharmacy; New Kamptee, Nagpur Maharashtra India
| | - Gajanan P. Shelkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Nishikant K. Subhedar
- Biology Department; Indian Institute of Science Education and Research (IISER); Pune Maharashtra India
| | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| |
Collapse
|
9
|
Brancato A, Plescia F, Lavanco G, Cavallaro A, Cannizzaro C. Continuous and Intermittent Alcohol Free-Choice from Pre-gestational Time to Lactation: Focus on Drinking Trajectories and Maternal Behavior. Front Behav Neurosci 2016; 10:31. [PMID: 26973480 PMCID: PMC4776246 DOI: 10.3389/fnbeh.2016.00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alcohol consumption during pregnancy and lactation induces detrimental consequences, that are not limited to the direct in utero effects of the drug on fetuses, but extend to maternal care. However, the occurrence and severity of alcohol toxicity are related to the drinking pattern and the time of exposure. The present study investigated in female rats long-term alcohol drinking trajectories, by a continuous and intermittent free-choice paradigm, during pre-gestational time, pregnancy, and lactation; moreover, the consequences of long-term alcohol consumption on the response to natural reward and maternal behavior were evaluated. METHODS Virgin female rats were exposed to home-cage two-bottle continuous- or intermittent "alcohol (20% v/v) vs. water" choice regimen along 12 weeks and throughout pregnancy and lactation. Animals were tested for saccharin preference, and maternal behavior was assessed by recording dams' undisturbed spontaneous home-cage behavior in the presence of their offspring. RESULTS Our results show that the intermittent alcohol drinking-pattern induced an escalation in alcohol intake during pre-gestational time and lactation more than the continuous access, while a reduction in alcohol consumption was observed during pregnancy, contrarily to the drinking trajectories of the continuous access-exposed rats. Long-term voluntary alcohol intake induced a decreased saccharin preference in virgin female rats and a significant reduction in maternal care, with respect to control dams, although the intermittent drinking produced a greater impairment than the continuous-access paradigm. CONCLUSION The present data indicate that both alcohol-drinking patterns are associated to modifications in the drinking trajectories of female rats, in pre-gestational time, during pregnancy and lactation. Moreover, long-lasting alcohol intake can affect sensitivity to natural rewarding stimuli and maternal behavior and sensitivity to natural rewarding stimuli in a pattern-related manner. This study underlies the importance of modeling human alcohol habit and its consequences on the mother-infant dyad, in order to prevent detrimental effects on offspring development and maturation.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of PalermoPalermo, Italy; Department BioNeC, University of PalermoPalermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo Palermo, Italy
| |
Collapse
|
10
|
Bell RL, Hauser SR, McClintick J, Rahman S, Edenberg HJ, Szumlinski KK, McBride WJ. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:41-85. [PMID: 26809998 DOI: 10.1016/bs.pmbts.2015.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Rooney KE, Wallace LJ. Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release. Synapse 2015; 69:515-25. [PMID: 26248886 DOI: 10.1002/syn.21845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 07/11/2015] [Indexed: 02/03/2023]
Abstract
Dopamine in the striatum signals the saliency of current environmental input and is involved in learned formation of appropriate responses. The regular baseline-firing rate of dopaminergic neurons suggests that baseline dopamine is essential for proper brain function. The first goal of the study was to estimate the likelihood of full exocytotic dopamine release associated with each firing event under baseline conditions. A computer model of extracellular space associated with a single varicosity was developed using the program MCell to estimate kinetics of extracellular dopamine. Because the literature provides multiple kinetic values for dopamine uptake depending on the system tested, simulations were run using different kinetic parameters. With all sets of kinetic parameters evaluated, at most, 25% of a single vesicle per varicosity would need to be released per firing event to maintain a 5-10 nM extracellular dopamine concentration, the level reported by multiple microdialysis experiments. The second goal was to estimate the fraction of total amount of stored dopamine released during a highly stimulated condition. This was done using the same model system to simulate published measurements of extracellular dopamine following electrical stimulation of striatal slices in vitro. The results suggest the amount of dopamine release induced by a single electrical stimulation may be as large as the contents of two vesicles per varicosity. We conclude that dopamine release probability at any particular varicosity is low. This suggests that factors capable of increasing release probability could have a powerful effect on sculpting dopamine signals.
Collapse
Affiliation(s)
- Katherine E Rooney
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210
| | - Lane J Wallace
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210.,500 West 12th Avenue Columbus, Ohio, 43210
| |
Collapse
|
12
|
Rao PSS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci 2015; 9:144. [PMID: 25954150 PMCID: PMC4407613 DOI: 10.3389/fnins.2015.00144] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
13
|
Rao PSS, Sari Y. Effects of ceftriaxone on chronic ethanol consumption: a potential role for xCT and GLT1 modulation of glutamate levels in male P rats. J Mol Neurosci 2014; 54:71-7. [PMID: 24535561 DOI: 10.1007/s12031-014-0251-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Alterations in glutamatergic neurotransmission have been suggested to affect many aspects of neuroplasticity associated with alcohol/drug addiction. We have previously shown that ceftriaxone, a β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake after 5 weeks of free choice ethanol drinking paradigm in male alcohol-preferring (P) rats. Evidence suggests that differential effects involving alterations of glutamatergic neurotransmission occur after long-term ethanol consumption. In this study, we tested whether the efficacy of administration of ceftriaxone persists after 14 weeks of free access to 15 and 30 % ethanol in male P rats. After 14 weeks of ethanol consumption, male P rats were administered ceftriaxone (100 mg/kg, intraperitoneal (i.p.)) or saline vehicle for 5 days. We found that ceftriaxone treatment resulted in a significant reduction in ethanol intake starting from day 2 (48 h after the first i.p. injections of ceftriaxone) through day 14, 10 days after final injection. Western blot analysis of brain samples from animals euthanized 24 h after treatment with the last dose of ceftriaxone revealed a significant upregulation of cystine/glutamate exchanger (xCT) and GLT1 levels in prefrontal cortex, nucleus accumbens, and amygdala as compared to saline vehicle-treated group. These findings demonstrated the effectiveness of ceftriaxone in attenuating ethanol intake in a chronic consumption paradigm. These might be due in part through the upregulation of both xCT and GLT1 levels in brain reward regions. Thus, the drug has a potential therapeutic action for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of Toledo, 3000 Arlington Avenue, HEB282G, Toledo, OH, 43614, USA
| | | |
Collapse
|
14
|
Rao P, Sari Y. Effectiveness of Ceftriaxone Treatment in Preventing Relapse-like Drinking Behavior Following Long-term Ethanol Dependence in P Rats. ACTA ACUST UNITED AC 2014; 5. [PMID: 25685609 PMCID: PMC4326063 DOI: 10.4172/2155-6105.1000183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective To evaluate the effectiveness of ceftriaxone treatment in attenuating relapse-like ethanol drinking behavior in male P rats following 14-weeks of continuous ethanol consumption. Methods After 14-weeks of continuous access to free choice of 15% and 30% ethanol, male P rats were deprived of ethanol for two weeks. On the last five days of abstinence period, P rats were treated, once a day, with either saline or ceftriaxone (50 or 200 mg/kg; i.p.). This was followed by re-exposure to ethanol for the next 10 days to simulate the relapse-like ethanol drinking behavior. Results Ceftriaxone treatment (during abstinence) reduced ethanol intake upon re-exposure to ethanol, compared to the saline treated P rats. This statistically significant reduction in ethanol consumption in P rats following treatment with ceftriaxone (200 mg/kg/day) was observed from Day 2 to Day 9. Similarly, water consumption in P rats treated with ceftriaxone was significantly higher than the saline treated group between Day 2 and Day 7. Importantly, ceftriaxone treatment at both doses did not cause any significant changes in body weight compared to saline treated group. Conclusions We report here that ceftriaxone at higher dose has been found to be effective in the attenuation of relapse-like ethanol-drinking behavior in chronic ethanol intake model. This is in accordance with previous data from our lab in cocaine animal model demonstrating that only higher dose of ceftriaxone has been effective in attenuating cocaine relapse.
Collapse
Affiliation(s)
- Pss Rao
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Y Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
15
|
Rao PSS, Sari Y. Glutamate transporter 1: target for the treatment of alcohol dependence. Curr Med Chem 2013; 19:5148-56. [PMID: 22680643 DOI: 10.2174/092986712803530511] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Emerging evidence indicates that many aspects of alcohol and drug dependence involve changes in glutamate transmission. A number of studies have reported that drugs of abuse, including alcohol and cocaine, alter glutamate transport. Extracellular glutamate is regulated by a number of glutamate transporters in various brain regions. Of these transporters, glutamate transporter (GLT1) is a key player in the removal of most of the extracellular glutamate. Similar to neurodegenerative disease models, in which there is dysfunction of the glutamatergic excitatory system, the role of GLT1 has been tested in drug dependence models that show dysfunction of glutamate transmission. We and others have recently found that ceftriaxone, an FDA-approved drug known to elevate GLT1 expression, attenuates cue-induced cocaine relapse. Moreover, we recently found that alcohol-preferring rats treated with ceftriaxone showed a significant dosedependent reduction in alcohol consumption. We also demonstrated that ceftriaxone-induced upregulation of GLT1 expression was associated with increases in glutamate uptake in Huntington's disease mouse model. Importantly, ceftriaxone is currently in clinical trials for the treatment of amyotrophic lateral sclerosis. This review provides information about the potential therapeutic role of GLT1 for the treatment of alcohol abuse and dependence.
Collapse
Affiliation(s)
- P S S Rao
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | |
Collapse
|
16
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
17
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 PMCID: PMC3032604 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A. McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Neuroscience Training Program, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Daniel T. Christian
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Marvin R. Diaz
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Neuroscience Training Program, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Anna K. Läck
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| |
Collapse
|
18
|
Hargreaves GA, Monds L, Gunasekaran N, Dawson B, McGregor IS. Intermittent access to beer promotes binge-like drinking in adolescent but not adult Wistar rats. Alcohol 2009; 43:305-14. [PMID: 19375883 DOI: 10.1016/j.alcohol.2009.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/16/2009] [Accepted: 02/24/2009] [Indexed: 11/18/2022]
Abstract
Teenagers are more likely than adults to engage in binge drinking and could be more vulnerable to long-term brain changes following alcohol abuse. We investigated the possibility of excessive adolescent drinking in a rodent model in which beer (4.44% ethanol vol/vol) is presented to adult and adolescent male Wistar rats. Experiment 1 tracked ad libitum beer and water consumption in group-housed rats from postnatal day (PND) 28-96. Rats consumed an average of 7.8 g/kg/day of ethanol during adolescence (PND 34-55) and this gradually declined to a lower level of intake in adulthood (PND 56-93) of 3.9 g/kg/day. In Experiment 2, beer was made available to both adolescent (PND 29+) and adult (PND 57+) rats for 2h each day in a custom-built "lickometer" apparatus over 75 days. Access to beer was provided either 1 day out of every 3 ("intermittent" groups) or every day ("daily" groups). Relative to body weight, adolescent rats consumed more beer than adult rats in these limited access sessions. Adolescents with intermittent access consumed more than adolescents with daily access, a "binge"-like effect that was not observed in adult groups and that disappeared in adulthood. After 3 months of daily or intermittent alcohol consumption, the preference for beer versus sucrose was assessed. Rats previously kept under an intermittent schedule displayed a higher preference for beer relative to 3% sucrose, but only when testing occurred after 2 days of abstinence. In Experiment 3, adolescent (PND 30-37) and adult (PND 58-65) rats were given 20-min access to beer and their blood alcohol concentrations (BACs) were assessed. Adolescent groups consumed more alcohol than adults and showed higher BACS that were typical of human "binge" drinking (>80 mg/dL). Despite this, the correlation between BAC and beer intake was similar in both age groups. Together these results show that the intermittent presentation of alcohol itself appears to have subtle long-lasting effects on the motivation to consume alcohol. The findings support the use of beer solutions in modeling binge-like patterns of human alcohol consumption in adolescent rats.
Collapse
|
19
|
Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JAJ, Poch O, Kieffer BL. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci 2008; 27:2973-84. [PMID: 18588537 DOI: 10.1111/j.1460-9568.2008.06273.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Addiction develops from the gradual adaptation of the brain to chronic drug exposure, and involves genetic reprogramming of neuronal function. The central extended amygdala (EAc) is a network formed by the central amygdala and the bed nucleus of the stria terminalis. This key site controls drug craving and seeking behaviors, and has not been investigated at the gene regulation level. We used Affymetrix microarrays to analyze transcriptional activity in the murine EAc, with a focus on mu-opioid receptor-associated events because these receptors mediate drug reward and dependence. We identified 132 genes whose expression is regulated by a chronic escalating morphine regimen in the EAc from wild-type but not mu-opioid receptor knockout mice. These modifications are mostly EAc-specific. Gene ontology analysis reveals an overrepresentation of neurogenesis, cell growth and signaling protein categories. A separate quantitative PCR analysis of genes in the last of these groups confirms the dysregulation of both orphan (Gpr88) and known (DrD1A, Adora2A, Cnr1, Grm5, Gpr6) G protein-coupled receptors, scaffolding (PSD95, Homer1) and signaling (Sgk, Cap1) proteins, and neuropeptides (CCK, galanin). These transcriptional modifications do not occur following a single morphine injection, and hence result from long-term adaptation to excessive mu receptor activation. Proteins encoded by these genes are classically associated with spine modules function in other brain areas, and therefore our data suggest a remodeling of EAc circuits at sites where glutamatergic and monoaminergic afferences interact. Together, mu receptor-dependent genes identified in this study potentially contribute to drug-induced neural plasticity, and provide a unique molecular repertoire towards understanding drug craving and relapse.
Collapse
Affiliation(s)
- K Befort
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département Neurobiologie et Génétique, Illkirch, F-67400 France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mulligan MK, Ponomarev I, Boehm SL, Owen JA, Levin PS, Berman AE, Blednov YA, Crabbe JC, Williams RW, Miles MF, Bergeson SE. Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. GENES BRAIN AND BEHAVIOR 2008; 7:677-89. [DOI: 10.1111/j.1601-183x.2008.00405.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Healey JC, Winder DG, Kash TL. Chronic ethanol exposure leads to divergent control of dopaminergic synapses in distinct target regions. Alcohol 2008; 42:179-90. [PMID: 18358675 PMCID: PMC2855295 DOI: 10.1016/j.alcohol.2008.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Neuroadaptations following chronic exposure to alcohol are hypothesized to play important roles in alcohol-induced alterations in behavior, in particular increased alcohol drinking and anxiety-like behavior. Dopaminergic signaling plays a key role in reward-related behavior, with evidence suggesting it undergoes modification following exposure to drugs of abuse. A large literature indicates an involvement of dopaminergic signaling in response to alcohol. Using a chronic inhalation model of ethanol exposure in mice, we have begun to investigate the effects of alcohol intake on dopaminergic signaling by examining protein levels of tyrosine hydroxylase and the dopamine transporter, as well as monoamine metabolites in three different target fields of three different dopaminergic nuclei. We have focused on the dorsal lateral bed nucleus of the stria terminalis because of the reported involvement of dorsal lateral bed nucleus of the stria terminalis dopamine in ethanol intake, and the nucleus accumbens and dorsal striatum because of their dense dopaminergic innervation. After either a chronic intermittent exposure or continuous exposure regimen, mice were killed, and tissue punches collected from the dorsal lateral bed nucleus of the stria terminalis, nucleus accumbens, and striatum for Western analysis. Strikingly, we found divergent regulation of tyrosine hydroxylase and dopamine transporter protein levels across these three regions that was dependent upon the means of exposure. These data thus suggest that distinct populations of catecholamine neurons may be differentially regulated by ethanol, and that ethanol and withdrawal interact to produce differential adaptations in these systems.
Collapse
Affiliation(s)
- Julie C. Healey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232-0615
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232-0615
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville TN 37232-0615
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232-0615
| | - Thomas L. Kash
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232-0615
| |
Collapse
|