1
|
Varodayan FP, Erikson CM, Scroger MV, Roberto M. Noradrenergic Mechanisms and Circuitry of Hyperkatifeia in Alcohol Use Disorder. Biol Psychiatry 2025; 97:580-589. [PMID: 39304172 PMCID: PMC11839382 DOI: 10.1016/j.biopsych.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperkatifeia, the manifestation of emotional distress or pain, is a conceptual framework gaining traction throughout the alcohol and other substance use fields as an important driver of addiction. It is well known that previous or current negative life experiences can serve as powerful motivators for excessive alcohol consumption and precipitate the development of an alcohol use disorder (AUD). A major hallmark of later stages of AUD is the emergence of hyperkatifeia during withdrawal, which can persist well into protracted abstinence to drive relapse. Given these complex interactions, understanding the specific neuroadaptations that lie at the intersection of hyperkatifeia and AUD can inform ongoing therapeutic development. The monoamine norepinephrine is of particular interest. Noradrenergic dysfunction is implicated in AUD, anxiety, chronic stress, depression, and emotional and physical pain. Importantly, there are key sexual dimorphisms within the noradrenergic system that are thought to differentially impact the development and trajectory of AUD in women and men. In the current review, we discuss past and recent work on noradrenergic influences at each stage of the AUD cycle (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) through the lens of hyperkatifeia. Evidence from these studies support the prioritization of norepinephrine-specific drug development to treat AUD and the identification of AUD subpopulations that may benefit the most from these therapies (e.g., women or people with comorbid chronic pain or anxiety/stress disorders).
Collapse
Affiliation(s)
- Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University, SUNY, Binghamton, New York.
| | - Chloe M Erikson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Marcis V Scroger
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University, SUNY, Binghamton, New York
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
2
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Bendre M, Checknita D, Todkar A, Åslund C, Hodgins S, Nilsson KW. Good parent-child relationship protects against alcohol use in maltreated adolescent females carrying the MAOA-uVNTR susceptibility allele. Front Psychiatry 2024; 15:1375363. [PMID: 39104880 PMCID: PMC11298380 DOI: 10.3389/fpsyt.2024.1375363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Risk-allele carriers of a Monoamine oxidase A (MAOA) gene, short-allele (MAOA-S) in males and long-allele (MAOA-L) in females, in the presence of a negative environment, are associated with alcohol misuse. Whether MAOA-S/L alleles also present susceptibility to a positive environment to mitigate the risk of alcohol misuse is unknown. Thus, we assessed the association of the three-way interaction of MAOA, maltreatment, and positive parent-child relationship with alcohol consumption among adolescents. Methods This prospective study included 1416 adolescents (females: 59.88%) aged 16 - 19 years from Sweden, enrolled in the "Survey of Adolescent Life in Västmanland" in 2012. Adolescents self-reported alcohol consumption, maltreatment by a family (FM) or non-family member (NFM), parent-child relationship, and left saliva for MAOA genotyping. Results and discussion We observed sex-dependent results. Females carrying MAOA-L with FM or NFM and a good parent-child relationship reported lower alcohol consumption than those with an average or poor parent-child relationship. In males, the interactions were not significant. Results suggest MAOA-L in females, conventionally regarded as a "risk", is a "plasticity" allele as it is differentially susceptible to negative and positive environments. Results highlight the importance of a good parent-child relationship in mitigating the risk of alcohol misuse in maltreated individuals carrying genetic risk. However, the interactions were not significant after adjusting to several environmental and behavioural covariates, especially parent's alcohol use, negative parent-child relationship, and nicotine use (smoking and/or snus), suggesting predictor and outcome intersection. Future studies and frameworks for preventive strategies should consider these covariates together with alcohol consumption. More studies with larger sample sizes are needed to replicate the findings.
Collapse
Affiliation(s)
- Megha Bendre
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - David Checknita
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Aniruddha Todkar
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sheilagh Hodgins
- Centre de Recherche Institut national de psychiatrie légale Philippe-Pinel and Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Kent W. Nilsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- School of Health, Care and Social Welfare, Division of Public Health Sciences, Mälardalen University, Västerås, Sweden
| |
Collapse
|
4
|
Cieslik-Starkiewicz A, Noworyta K, Solich J, Korlatowicz A, Faron-Górecka A, Rygula R. Identification of genes regulated by trait sensitivity to negative feedback and prolonged alcohol consumption in rats. Pharmacol Rep 2024; 76:207-215. [PMID: 38172401 PMCID: PMC10830829 DOI: 10.1007/s43440-023-00563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The results of our previous studies demonstrated that low sensitivity to negative feedback (NF) is associated with increased vulnerability to the development of compulsive alcohol-seeking in rats. In the present study, we investigated the molecular underpinnings of this relationship. METHODS Using TaqMan Gene Expression Array Cards, we analyzed the expression of the genes related to NF sensitivity and alcohol metabolism in three cortical regions (medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC], orbitofrontal cortex [OFC]) and two subcortical regions (nucleus accumbens [Nacc], amygdala [Amy]). Gene expression differences were confirmed at the protein level with Western blot. RESULTS Sensitivity to NF was characterized by differences in Gad2, Drd2, and Slc6a4 expression in the ACC, Maoa in the mPFC, and Gria1, Htr3a, and Maoa in the OFC. Chronic alcohol consumption was associated with differences in the expression of Comt and Maoa in the ACC, Comt, Adh1, and Htr2b in the mPFC, Adh1, and Slc6a4 in the Nacc, Gad2, and Htr1a in the OFC, and Drd2 in the Amy. Interactions between the sensitivity to NF and alcohol consumption were observed in the expression of Gabra1, Gabbr2, Grin2a, Grin2b, and Grm3 in the ACC, and Grin2a in the OFC. The observed differences were confirmed at the protein level for MAO-A in the mPFC, and ADH1 in the mPFC and Nacc. CONCLUSIONS Our findings contribute to a better understanding of the molecular mechanisms underlying the relationship between trait sensitivity to NF and compulsive alcohol consumption.
Collapse
Affiliation(s)
- Agata Cieslik-Starkiewicz
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Karolina Noworyta
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Joanna Solich
- Biochemical Pharmacology Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agata Korlatowicz
- Biochemical Pharmacology Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Biochemical Pharmacology Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Rafal Rygula
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Tan H, Zhou H, Chen J, Ren H, Guo Y, Jiang X. Association of early life adversity with cardiovascular disease and its potential mechanisms: a narrative review. Front Public Health 2024; 12:1341266. [PMID: 38362223 PMCID: PMC10867864 DOI: 10.3389/fpubh.2024.1341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Strong epidemiological evidence has shown that early life adversity (ELA) has a profound negative impact on health in adulthood, including an increased risk of cardiovascular disease, the leading cause of death worldwide. Here, we review cohort studies on the effects of ELA on cardiovascular outcomes and the possible underlying mechanisms. In addition, we summarize relevant studies in rodent models of ELA. This review reveals that the prevalence of ELA varies between regions, time periods, and sexes. ELA increases cardiovascular health risk behaviors, susceptibility to mental illnesses, and neuroendocrine and immune system dysfunction in humans. Rodent models of ELA have been developed and show similar cardiovascular outcomes to those in humans but cannot fully replicate all ELA subtypes. Therefore, combining cohort and rodent studies to further investigate the mechanisms underlying the association between ELA and cardiovascular diseases may be a feasible future research strategy.
Collapse
Affiliation(s)
- Huiying Tan
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Huiting Zhou
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Jingmei Chen
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huixia Ren
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yi Guo
- Department of Neurology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Kanarik M, Sakala K, Matrov D, Kaart T, Roy A, Ziegler GC, Veidebaum T, Lesch KP, Harro J. MAOA methylation is associated with impulsive and antisocial behaviour: dependence on allelic variation, family environment and diet. J Neural Transm (Vienna) 2024; 131:59-71. [PMID: 37507512 DOI: 10.1007/s00702-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia
| | - Katre Sakala
- National Institute for Health Development, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Denis Matrov
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | | | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
7
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
8
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
9
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
10
|
Vrettou M, Yan L, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. DNA methylation of Vesicular Glutamate Transporters in the mesocorticolimbic brain following early-life stress and adult ethanol exposure-an explorative study. Sci Rep 2021; 11:15322. [PMID: 34321562 PMCID: PMC8319394 DOI: 10.1038/s41598-021-94739-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation and gene expression can be altered by early life stress (ELS) and/or ethanol consumption. The present study aimed to investigate whether DNA methylation of the Vesicular Glutamate Transporters (Vglut)1-3 is related to previously observed Vglut1-3 transcriptional differences in the ventral tegmental area (VTA), nucleus accumbens (Acb), dorsal striatum (dStr) and medial prefrontal cortex (mPFC) of adult rats exposed to ELS, modelled by maternal separation, and voluntary ethanol consumption. Targeted next-generation bisulfite sequencing was performed to identify the methylation levels on 61 5′-cytosine-phosphate-guanosine-3′ sites (CpGs) in potential regulatory regions of Vglut1, 53 for Vglut2, and 51 for Vglut3. In the VTA, ELS in ethanol-drinking rats was associated with Vglut1-2 CpG-specific hypomethylation, whereas bidirectional Vglut2 methylation differences at single CpGs were associated with ELS alone. Exposure to both ELS and ethanol, in the Acb, was associated with lower promoter and higher intronic Vglut3 methylation; and in the dStr, with higher and lower methylation in 26% and 43% of the analyzed Vglut1 CpGs, respectively. In the mPFC, lower Vglut2 methylation was observed upon exposure to ELS or ethanol. The present findings suggest Vglut1-3 CpG-specific methylation signatures of ELS and ethanol drinking, underlying previously reported Vglut1-3 transcriptional differences in the mesocorticolimbic brain.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Uppsala, Sweden.,The School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | | | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Soga T, Teo CH, Parhar I. Genetic and Epigenetic Consequence of Early-Life Social Stress on Depression: Role of Serotonin-Associated Genes. Front Genet 2021; 11:601868. [PMID: 33584798 PMCID: PMC7874148 DOI: 10.3389/fgene.2020.601868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life adversity caused by poor social bonding and deprived maternal care is known to affect mental wellbeing and physical health. It is a form of chronic social stress that persists because of a negative environment, and the consequences are long-lasting on mental health. The presence of social stress during early life can have an epigenetic effect on the body, possibly resulting in many complex mental disorders, including depression in later life. Here, we review the evidence for early-life social stress-induced epigenetic changes that modulate juvenile and adult social behavior (depression and anxiety). This review has a particular emphasis on the interaction between early-life social stress and genetic variation of serotonin associate genes including the serotonin transporter gene (5-HTT; also known as SLC6A4), which are key molecules involved in depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | | |
Collapse
|
12
|
Frederick ALM, Guo C, Meyer A, Yan L, Schneider SS, Liu Z. The influence of obesity on folate status, DNA methylation and cancer-related gene expression in normal breast tissues from premenopausal women. Epigenetics 2020; 16:458-467. [PMID: 32749195 DOI: 10.1080/15592294.2020.1805687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies have established obesity as a critical risk factor for postmenopausal breast cancer (post-BC), whereas a reverse association holds prior to menopause. A significant scientific gap exists in understanding the mechanism(s) underpinning this epidemiological phenomenon, particularly the reverse association between obesity and premenopausal breast cancer (pre-BC). This study aimed to understand how folate metabolism and DNA methylation inform the association between obesity and pre-BC. Fifty normal breast tissue samples were collected from premenopausal women who underwent reduction mammoplasty. We modified the Lactobacillus Casei microbiological folate assay and measured folate levels in our breast tissue samples. The DNA methylation of LINE-1, a biomarker of genome-wide methylation, and the expression of a panel of breast cancer-related genes was measured by pyrosequencing and real-time PCR. We found that a high BMI is associated with an increase of folate levels in mammary tissue, with an increase of 2.65 ng/g of folate per every 5-unit increase of BMI (p < 0.05). LINE-1 DNA methylation was significantly associated with BMI (p < 0.05), and marginally associated with folate concentration (p = 0.087). A high expression of SFRP1 was observed in subjects with high BMI or high folate status (p < 0.05). This study demonstrated that, in premenopausal women, obesity is associated with increased mammary folate status, genome-wide DNA methylation and SFRP1 gene expression. Our findings indicated that the improved folate and epigenetic status represents a novel mechanism responsible for the reverse association between obesity and pre-BC.
Collapse
Affiliation(s)
- Armina-Lyn M Frederick
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.,Program in Experimental & Molecular Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Chi Guo
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.,Department of Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Ann Meyer
- Division of Pyrosequencing, EpigenDx, Hopkinton, MA, USA
| | - Liying Yan
- Division of Pyrosequencing, EpigenDx, Hopkinton, MA, USA
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
13
|
Lundberg S, Nylander I, Roman E. Behavioral Profiling in Early Adolescence and Early Adulthood of Male Wistar Rats After Short and Prolonged Maternal Separation. Front Behav Neurosci 2020; 14:37. [PMID: 32265671 PMCID: PMC7096550 DOI: 10.3389/fnbeh.2020.00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Early-life stress and its possible correlations to genes, environment, and later health outcomes can only be studied retrospectively in humans. Animal models enable the exploration of such connections with prospective, well-controlled study designs. However, with the recent awareness of replicability issues in preclinical research, the reproducibility of results from animal models has been highlighted. The present study aims to reproduce the behavioral effects of maternal separation (MS) previously observed in the multivariate concentric square fieldTM (MCSF) test. A second objective was to replicate the adolescent behavioral profiles previously described in the MCSF test. Male rats, subjected to short or prolonged MS or standard rearing, were subjected to behavioral testing in early adolescence and early adulthood. As seen in previous studies, the behavioral effects of MS in the MCSF were small at both tested time points. When tested in early adolescence, the animals exhibited a similar behavioral profile as previously seen, and the finding of adolescent behavioral types was also reproduced. The distribution of animals into the behavioral types was different than in the initial study, but in a manner consistent with developmental theories, as the current cohort was younger than the previous. Notably, the Shelter seeker behavioral type persisted through development, while the Explorer type did not. The lack of basal behavioral effect after MS is in line with the literature on this MS paradigm; the working hypothesis is that the prolonged MS gives rise to a phenotype predisposed to negative health outcomes but which is not apparent without additional provocation.
Collapse
Affiliation(s)
- Stina Lundberg
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|