1
|
Rajput BK, Ikram SF, Tripathi BN. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. PROTOPLASMA 2024; 261:1105-1125. [PMID: 38970700 DOI: 10.1007/s00709-024-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Monoclonal antibodies (mAbs) have become indispensable tools in various fields, from research to therapeutics, diagnostics, and industries. However, their production, primarily in mammalian cell culture systems, is cost-intensive and resource-demanding. Microalgae, diverse photosynthetic microorganisms, are gaining attention as a favorable option for manufacturing mAbs and various other recombinant proteins. This review explores the potential of microalgae as a robust expression system for biomanufacturing high-value proteins. It also highlights the diversity of microalgae species suitable for recombinant protein. Nuclear and chloroplast genomes of some microalgae have been engineered to express mAbs and other valuable proteins. Codon optimization, vector construction, and other genetic engineering techniques have significantly improved recombinant protein expression in microalgae. These accomplishments demonstrate the potential of microalgae for biopharmaceutical manufacturing. Microalgal biotechnology holds promise for revolutionizing the production of mAbs and other therapeutic proteins, offering a sustainable and cost-effective solution to address critical healthcare needs.
Collapse
Affiliation(s)
- Balwinder Kaur Rajput
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sana Fatima Ikram
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| |
Collapse
|
2
|
Azizi-Dargahlou S, Pouresmaeil M, Ahmadabadi M. Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin. Mol Biotechnol 2024; 66:2595-2605. [PMID: 38244177 DOI: 10.1007/s12033-023-01043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
The natural source of chymosin, a key enzyme in the dairy industry, is insufficient for rapidly growing cheese industries. Large-scale production of recombinant proteins in heterologous hosts provides an efficient alternative solution. Here, the codon-optimized synthetic prochymosin gene, which has a CAI index of 0.926, was subcloned from a cloning vector (pUC57-bCYM) into the pBI121 vector, resulting in the construct named pBI121-bCYM. CAI ranges from 0 to 1 and higher CAI improves gene expression in heterologous hosts. The overexpression of the prochymosin gene was under the control of constitutive CaMV 35S promoter and NOS terminator and was transferred into the tobacco via A. tumefaciens strain LBA4404. Explant type, regeneration method, inoculation temperature, cell density (OD600) of Agrobacterium for inoculation, and acetosyringone concentration were leaf explants, direct somatic embryogenesis, 19 °C, 0.1, and 100 µM, respectively. The successful integration and expression of the prochymosin gene, along with the bioactivity of recombinant chymosin, were confirmed by PCR, RT-PCR, and milk coagulation assay, respectively. Overall, this study reports the first successful overexpression of the codon-optimized prochymosin form of the bovine chymosin enzyme in the tobacco via indirect transformation. Production of recombinant bovine chymosin in plants can be an easy-to-scale-up, safe, and inexpensive platform.
Collapse
Affiliation(s)
- Shahnam Azizi-Dargahlou
- Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahin Pouresmaeil
- Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabi, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
3
|
Chakarborty S, Irshad IU, Mahima, Sharma AK. TIR predictor and optimizer: Web-tools for accurate prediction of translation initiation rate and precision gene design in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2400081. [PMID: 38719586 DOI: 10.1002/biot.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Translation initiation is the primary determinant of the rate of protein production. The variation in the rate with which this step occurs can cause up to three orders of magnitude differences in cellular protein levels. Several mRNA features, including mRNA stability in proximity to the start codon, coding sequence length, and presence of specific motifs in the mRNA molecule, have been shown to influence the translation initiation rate. These molecular factors acting at different strengths allow precise control of in vivo translation initiation rate and thus the rate of protein synthesis. However, despite the paramount importance of translation initiation rate in protein synthesis, accurate prediction of the absolute values of initiation rate remains a challenge. In fact, as of now, there is no available model for predicting the initiation rate in Saccharomyces cerevisiae. To address this, we train a machine learning model for predicting the in vivo initiation rate in S. cerevisiae transcripts. The model is trained using a diverse set of mRNA transcripts, enabling the comparison of initiation rates across different transcripts. Our model exhibited excellent accuracy in predicting the translation initiation rate and demonstrated its effectiveness with both endogenous and exogenous transcripts. Then, by combining the machine learning model with the Monte-Carlo search algorithm, we have also devised a method to optimize the nucleotide sequence of any gene to achieve a specific target initiation rate. The machine learning model we've developed for predicting translation initiation rates, along with the gene optimization method, are deployed as a web server. Both web servers are accessible for free at the following link: ajeetsharmalab.com/TIRPredictor. Thus, this research advances our fundamental understanding of translation initiation processes, with direct applications in biotechnology.
Collapse
Affiliation(s)
| | | | - Mahima
- Department of Physics, Indian Institute of Technology Jammu, Jammu, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| |
Collapse
|
4
|
Webster LJ, Villa-Gomez D, Brown R, Clarke W, Schenk PM. A synthetic biology approach for the treatment of pollutants with microalgae. Front Bioeng Biotechnol 2024; 12:1379301. [PMID: 38646010 PMCID: PMC11032018 DOI: 10.3389/fbioe.2024.1379301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.
Collapse
Affiliation(s)
- Luke J. Webster
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Denys Villa-Gomez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Reuben Brown
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - William Clarke
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
- Algae Biotechnology, Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Beauchemin R, Merindol N, Fantino E, Lavoie P, Nouemssi SB, Meddeb-Mouelhi F, Desgagné-Penix I. Successful reversal of transgene silencing in Chlamydomonas reinhardtii. Biotechnol J 2024; 19:e2300232. [PMID: 37975165 DOI: 10.1002/biot.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.
Collapse
Affiliation(s)
- Rémy Beauchemin
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Pamela Lavoie
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Serge Basile Nouemssi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
6
|
Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M, Saeed S, Al-Jabri HM. Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Front Bioeng Biotechnol 2023; 10:1104914. [PMID: 36714622 PMCID: PMC9881887 DOI: 10.3389/fbioe.2022.1104914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.
Collapse
Affiliation(s)
- Alaa Hassanien
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Tasneem Dalgamouni
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, Qatar Foundation, College of Health and Life Sciences, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Suhur Saeed
- ExxonMobil Research Qatar (EMRQ), Doha, Qatar
| | - Hareb M. Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Hareb M. Al-Jabri,
| |
Collapse
|
7
|
Gilmour DJ. Diversity of algae and their biotechnological potential. Adv Microb Physiol 2023; 82:301-321. [PMID: 36948657 DOI: 10.1016/bs.ampbs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter will discuss the diversity of algae and show that the diversity is much greater than just obligately oxygenic photosynthetic algae and that it includes many mixotrophic and heterotrophic organisms that are more similar to the major groups of microorganisms. The photosynthetic groups are seen as part of the plant kingdom, whereas the non-photosynthetic groups are not related to plants at all. The organisation of algal groups has become complex and confusing - The chapter will address the problems within this area of eukaryotic taxonomy. The metabolic diversity of algae and the ability to genetically engineer algae are key components in developing the biotechnology of algae. As more researchers become interested in exploiting algae for a number of industrial products, it is important to understand the relationships between different groups of algae and the relationships of algae with the rest of the living world.
Collapse
|
8
|
Pervaiz R, Khan MA, Raza FA, Ahmad S, Zafar AU, Ahmed N, Akram M. Expression of a mosquito larvicidal gene in chloroplast and nuclear compartments of Chlamydomonas reinhardtii. J Biotechnol 2022; 360:182-191. [PMID: 36368638 DOI: 10.1016/j.jbiotec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
As a part of the search for environment-friendly biocontrol of mosquito-borne diseases, mosquito larvicidal potential of Bacillus thuringiensis subsp. jegathesan (Btj) Cry toxins is explored for toxins with increased toxicity. Safe delivery of the Cry toxins to mosquito larvae in aquatic habitats is a major concern. This is because in water bodies Bacillus thuringiensis (Bt) protein formulations degrade by sunlight, can sink down and get adsorbed by the silt. So, because of its short persistence the toxin requires repeated applications at the given site. Therefore, an upcoming approach is incorporating the Bt toxins in Chlamydomonas reinhardtii (C. reinhardtii) because it is a food of mosquito larvae in water and its molecular toolkit is well investigated for foreign gene expression. The present work aimed to compare the feasibility of C. reinhardtii chloroplast and nuclear compartments for stable expression of Cry11Ba toxin as this is the most toxic Btj protein to date, lethal to different mosquito species. With chloroplast expression of cry11Ba gene we were able to generate marker-free C. reinhardtii strain stably expressing Cry11Ba protein and demonstrating mortality against Aedes aegypti larvae. Moreover, for nuclear expression linking the cry11Ba gene to zeocin via foot and mouth disease virus (FMDV) 2A peptide resulted in the selection of transformants with increased cry11Ba mRNA expression levels by semi-quantitative reverse transcriptase PCR. Obtained results lay a foundation for the C. reinhardtii chloroplast expression system to be used for genetic engineering with Bt toxins which possess enhanced toxicity.
Collapse
Affiliation(s)
- Rabbia Pervaiz
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan.
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Faiz Ahmed Raza
- Health Research Institute, National Institute of Health (HRI-NIH), Research Centre, King Edward Medical University, Lahore 54000, Pakistan
| | - Sohail Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Ahmad Usman Zafar
- Qarshi University, 8-Km Thokar Niaz Baig, Canal Bank Road, Opposite Izmir Town, Lahore 54000, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| | - Maham Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig Sector-1, Lahore 53700, Pakistan
| |
Collapse
|
9
|
Metabolic Engineering of the Isopentenol Utilization Pathway Enhanced the Production of Terpenoids in Chlamydomonas reinhardtii. Mar Drugs 2022; 20:md20090577. [PMID: 36135766 PMCID: PMC9505001 DOI: 10.3390/md20090577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic green microalgae show considerable promise for the sustainable light-driven biosynthesis of high-value fine chemicals, especially terpenoids because of their fast and inexpensive phototrophic growth. Here, the novel isopentenol utilization pathway (IUP) was introduced into Chlamydomonas reinhardtii to enhance the hemiterpene (isopentenyl pyrophosphate, IPP) titers. Then, diphosphate isomerase (IDI) and limonene synthase (MsLS) were further inserted for limonene production. Transgenic algae showed 8.6-fold increase in IPP compared with the wild type, and 23-fold increase in limonene production compared with a single MsLS expressing strain. Following the culture optimization, the highest limonene production reached 117 µg/L, when the strain was cultured in a opt2 medium supplemented with 10 mM isoprenol under a light: dark regimen. This demonstrates that transgenic algae expressing the IUP represent an ideal chassis for the high-value terpenoid production. The IUP will facilitate further the metabolic and enzyme engineering to enhance the terpenoid titers by significantly reducing the number of enzyme steps required for an optimal biosynthesis.
Collapse
|
10
|
Carruthers DN, Lee TS. Translating advances in microbial bioproduction to sustainable biotechnology. Front Bioeng Biotechnol 2022; 10:968437. [PMID: 36082166 PMCID: PMC9445250 DOI: 10.3389/fbioe.2022.968437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in synthetic biology have radically changed our ability to rewire microorganisms and significantly improved the scalable production of a vast array of drop-in biopolymers and biofuels. The success of a drop-in bioproduct is contingent on market competition with petrochemical analogues and weighted upon relative economic and environmental metrics. While the quantification of comparative trade-offs is critical for accurate process-level decision making, the translation of industrial ecology to synthetic biology is often ambiguous and assessment accuracy has proven challenging. In this review, we explore strategies for evaluating industrial biotechnology through life cycle and techno-economic assessment, then contextualize how recent developments in synthetic biology have improved process viability by expanding feedstock availability and the productivity of microbes. By juxtaposing biological and industrial constraints, we highlight major obstacles between the disparate disciplines that hinder accurate process evaluation. The convergence of these disciplines is crucial in shifting towards carbon neutrality and a circular bioeconomy.
Collapse
Affiliation(s)
- David N. Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- *Correspondence: Taek Soon Lee,
| |
Collapse
|
11
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
12
|
Nakanishi A, Iritani K, Tsuruta A, Yamamoto N, Watanabe M, Ozawa N, Watanabe M, Zhang K, Tokudome A. Fabrication of cell plastics composed only of unicellular green alga Chlamydomonas reinhardtii as a raw material. Appl Microbiol Biotechnol 2022; 106:4459-4468. [PMID: 35676378 PMCID: PMC9259522 DOI: 10.1007/s00253-022-12000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Abstract Cell plastics in this study were fabricated with only unicellular green alga Chlamydomonas reinhardtii as raw materials. The sizes of cell-major axis as structures were 8.4 ± 1.2 µm, and the aspect ratios of those were 1.2 ± 0.1, showing homogeneous particle size. After optimizing extraction condition of intracellular contents, cell plastics were fabricated with the cells as ingredient components and the intracellular contents as matrix components. Those cell plastics were observed with scanning electron microscopy, displaying the smooth surfaces of the cell plastics at a low magnification level. However, the surface, especially exposed surface, were rough at high magnification level. Tensile strength test revealed that increasing the ratio of intracellular contents in the cell plastics until 21% led enhancing mechanical properties of Young’s modulus and tensile strength; however, 25% of intracellular contents displayed decreases of those properties. As the optimal point, the cell plastic (21%), which contained 21% (w/w) of intracellular contents in cell plastics, showed 764 ± 100 MPa and 8.6 ± 5.2 MPa of Young’s modulus and tensile strength. The cell plastics showed few plastic region and soon fractured, indicating the possibility that cells and intracellular contents could be electrostatically connected. Additionally, cells were shown as a negative charge and displayed the possibility to contribute electrically cell-gathering with intracellular ionic components. Therefore, cells and intracellular contents containing ionic metabolites could be electrostatically connected for giving the mechanical strength to cell plastics. In this study, we successfully demonstrated fabricating cell plastics with only cells for the first time and also showed the high possibility of conjugating each cell with the intracellular contents. Key points • Cell plastics are fabricated with unicellular green algal cell directly. • Unicellular cells required to be conjugated for the fabrication with matrix. • Cells were conjugated with intracellular contents for cell-plastic fabrication.
Collapse
Affiliation(s)
- Akihito Nakanishi
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan. .,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Kohei Iritani
- School of Engineering, Tokyo University of Technology, Hachioji, Japan
| | - Akane Tsuruta
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Naotaka Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Marina Watanabe
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Nanami Ozawa
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Masahiko Watanabe
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Kuan Zhang
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Ayaka Tokudome
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
13
|
Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022; 10:836056. [PMID: 35402414 PMCID: PMC8984019 DOI: 10.3389/fbioe.2022.836056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Collapse
Affiliation(s)
- Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Thirvarur, India
| | | | - Amit K Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| |
Collapse
|
14
|
The Spermidine Synthase Gene SPD1: A Novel Auxotrophic Marker for Chlamydomonas reinhardtii Designed by Enhanced CRISPR/Cas9 Gene Editing. Cells 2022; 11:cells11050837. [PMID: 35269459 PMCID: PMC8909627 DOI: 10.3390/cells11050837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Biotechnological application of the green microalga Chlamydomonas reinhardtii hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for C. reinhardtii. The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers. Since editing frequencies remain comparably low, a Cas9-sgRNA ribonucleoprotein (RNP) delivery protocol was strategically optimized by applying nitrogen starvation to the pre-culture, which improved successful gene edits from 10% to 66% after pre-selection. Probing the essential polyamine biosynthesis pathway, the spermidine synthase gene (SPD1) is shown to be a potent selectable marker with versatile biotechnological applicability. Very low levels of spermidine (0.75 mg/L) were required to maintain normal mixotrophic and phototrophic growth in newly designed spermidine auxotrophic strains. Complementation of these strains with a synthetic SPD1 gene was achieved when the mature protein was expressed in the cytosol or targeted to the chloroplast. This work highlights the potential of new selectable markers for biotechnology as well as basic research and proposes an effective pipeline for the identification of new auxotrophies in C. reinhardtii.
Collapse
|
15
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
16
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
17
|
Geisler K, Scaife MA, Mordaka PM, Holzer A, Tomsett EV, Mehrshahi P, Mendoza Ochoa GI, Smith AG. Exploring the Impact of Terminators on Transgene Expression in Chlamydomonas reinhardtii with a Synthetic Biology Approach. Life (Basel) 2021; 11:life11090964. [PMID: 34575113 PMCID: PMC8471596 DOI: 10.3390/life11090964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to obtain reproducible and high levels of transgene expression. Here we describe a synthetic biology approach to screen several hundred independent transformants using standardised parts to explore different parameters that might affect transgene expression. We focused on terminators and, using a standardised workflow and quantitative outputs, tested 9 different elements representing three different size classes of native terminators to determine their ability to support high level expression of a GFP reporter gene. We found that the optimal size reflected the median size of element found in the C. reinhardtii genome. The behaviour of the terminator parts was similar with different promoters, in different host strains and with different transgenes. This approach is applicable to the systematic testing of other genetic elements, facilitating comparison to determine optimal transgene design.
Collapse
Affiliation(s)
- Katrin Geisler
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Mark A. Scaife
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
- Mara Renewables Corporation, Dartmouth, NS B2Y 4T6, Canada
| | - Paweł M. Mordaka
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Andre Holzer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Eleanor V. Tomsett
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Gonzalo I. Mendoza Ochoa
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (K.G.); (M.A.S.); (P.M.M.); (A.H.); (E.V.T.); (P.M.); (G.I.M.O.)
- Correspondence: ; Tel.: +44-1223-333952
| |
Collapse
|
18
|
Huang G, Kawabe Y, Shirakawa K, Akiyama T, Kamihira M. Novel transgenic Chlamydomonas reinhardtii strain with retargetable genomic transgene integration using Cre-loxP system. J Biosci Bioeng 2021; 132:469-478. [PMID: 34420898 DOI: 10.1016/j.jbiosc.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
The use of Chlamydomonas for biofuel and biopharmaceutical production has been anticipated. However, the genetic engineering technology for Chlamydomonas is not as advanced as that for other organisms. Here, we established transgenic Chlamydomonas strains capable of high and stable transgene expression. The established cells exhibited stable reporter gene expression at a high level throughout long-term culture (∼60 days), even in the absence of drug pressure. The transgene insertion sites in the cell genome that may be suitable for exogenous gene expression were identified. Because the transgene contains a loxP site, the cells can be used as founders for retargeting other transgenes using the Cre-loxP system to generate transgenic Chlamydomonas producing useful substances. As a model biopharmaceutical gene, an interferon expression cassette was integrated into the genomic locus of the cells using Cre recombinase. The transgenic cells stably produced interferon protein in medium for 12 passages under non-selective conditions. These results indicate that the Chlamydomonas cells established in this study can serve as valuable and powerful tools not only for basic research on microalgae but also for the rapid establishment of cell lines expressing exogenous genes.
Collapse
Affiliation(s)
- Guan Huang
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Shirakawa
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuki Akiyama
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
19
|
Antonacci A, Bertalan I, Giardi MT, Scognamiglio V, Turemis M, Fisher D, Johanningmeier U. Enhancing resistance of Chlamydomonas reinhardtii to oxidative stress fusing constructs of heterologous antioxidant peptides into D1 protein. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Lin JY, Xue C, Tan SI, Ng IS. Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. BIORESOURCE TECHNOLOGY 2021; 322:124530. [PMID: 33340949 DOI: 10.1016/j.biortech.2020.124530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Microalga served as the promising bioresources due to the high efficiency of carbon dioxide conversion. However, the application of microalga is still restricted by low biomass, easier contamination, and high cost of production. To overcome the challenge, engineered Chlamydomonas reinhardtii CC-400 with pyridoxal kinase gene (pdxY) has demonstrated in this study. The results indicated CC-400 with pdxY reached enhanced algal biomass in three different systems, including flask, Two-layer Photo-Reactor (TPR) and airlift Photo-Bioreactor (PBR). The genetic strain PY9 cultured with 1% CO2 in the PBR showed a significant enhancement of biomass up to 1.442 g/L, a 2-times of that of the wild type. We also found the transcriptional levels of carbonic anhydrase (CA) dropped down in PY9 while higher levels of RuBisCo and pdxY occurred, thus the carbon dioxide assimilation under mixotrophic culture dramatically increased. We proofed that pdxY successfully mediated carbon dioxide utilization in CC-400.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chengfeng Xue
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics. SUSTAINABILITY 2020. [DOI: 10.3390/su122410449] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Massive plastic accumulation has been taking place across diverse landscapes since the 1950s, when large-scale plastic production started. Nowadays, societies struggle with continuously increasing concerns about the subsequent pollution and environmental stresses that have accompanied this plastic revolution. Degradation of used plastics is highly time-consuming and causes volumetric aggregation, mainly due to their high strength and bulky structure. The size of these agglomerations in marine and freshwater basins increases daily. Exposure to weather conditions and environmental microflora (e.g., bacteria and microalgae) can slowly corrode the plastic structure. As has been well documented in recent years, plastic fragments are widespread in marine basins and partially in main global rivers. These are potential sources of negative effects on global food chains. Cyanobacteria (e.g., Synechocystis sp. PCC 6803, and Synechococcus elongatus PCC 7942), which are photosynthetic microorganisms and were previously identified as blue-green algae, are currently under close attention for their abilities to capture solar energy and the greenhouse gas carbon dioxide for the production of high-value products. In the last few decades, these microorganisms have been exploited for different purposes (e.g., biofuels, antioxidants, fertilizers, and ‘superfood’ production). Microalgae (e.g., Chlamydomonas reinhardtii, and Phaeodactylum tricornutum) are also suitable for environmental and biotechnological applications based on the exploitation of solar light. Can photosynthetic bacteria and unicellular eukaryotic algae play a role for further scientific research in the bioremediation of plastics of different sizes present in water surfaces? In recent years, several studies have been targeting the utilization of microorganisms for plastic bioremediation. Among the different phyla, the employment of wild-type or engineered cyanobacteria may represent an interesting, environmentally friendly, and sustainable option.
Collapse
|