1
|
Xiao R, Tian C, Wang H, Zhang H, Chen H, Chou HH. Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131994. [PMID: 39694106 DOI: 10.1016/j.biortech.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH4-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH4-N and antibiotics. The optimized system removed NH4-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days. The physiological, metabolic, and genetic mechanisms used by microalgae to tolerate LPWW, remove NH4-N, and degrade antibiotics were elucidated. A new cytochrome P450 enzyme important for NH4-N and antibiotic removal was identified. Finally, application of synthetic biology improved the NH4-N removal rate to 470 mg/L/d, which is the highest removal rate using microalgae reported to date. This research contributes to the mechanistic understanding of wastewater detoxification by microalgae, and the goal of achieving a circular bioeconomy for nutrient and water recycling.
Collapse
Affiliation(s)
- Rui Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Chang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haijun Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
2
|
Pereira T, Barroso S, Teixeira P, Domingues MR, Maurício T, Mendes S, Pinto FR, Freire CD, Matos G, Saraiva JA, Gil MM. Use of Chlorella vulgaris Lipidic Extracts in the Development of Healthier Pastry Products with Reduced Fat Contents. Foods 2024; 13:3913. [PMID: 39682985 DOI: 10.3390/foods13233913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pastry products constitute a significant segment of the food market. However, the high amount of fat used in their production poses a challenge when competing for the attention of modern consumers, who are more conscious of the health problems associated with the consumption of high-fat products. With this in mind, the main objective of this study is the reduction of the total fat and saturated fat contents of two bakery products, brioche-type bread and rice cake, by partial substitution of the main fat source with Chlorella vulgaris lipid extracts obtained through non-thermal high-pressure extraction (HPE). A reduction of 3% in the fat content of the brioche and a reduction of 11.4% in the total fat content of the rice cake were observed when the microalgae extracts were used to replace 10% of the margarine used in the brioche and 20% of the sunflower oil used in the rice cake. This substitution resulted in fat-reduced bakery products with similar physicochemical and nutritional properties to the full-fat controls. A triangle test demonstrated that no differences were perceived for the fat-reduced brioche, while in the rice cake, only slightly perceptible differences were detected. Moreover, brioche and rice cake containing the extract presented values of 1.22 ± 0.27 and 1.29 ± 0.39 mg GAE/g of total phenolic compounds, respectively. DPPH and FRAP activities were also quantified in 0.95 ± 0.38 and 1.83 ± 0.27 µmol AAE/g for brioche with extract and 1.10 ± 0.61 and 1.39 ± 0.39 µmol AAE/g for the rice cake with extract, respectively. The products were microbially stable for at least four days at room temperature. This study demonstrates the potential of using HPE microalgal lipid extracts as fat substitutes in bakery products.
Collapse
Affiliation(s)
- Tatiana Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
| | - Sónia Barroso
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Rosário Domingues
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tatiana Maurício
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Mendes
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
| | - Filipa R Pinto
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
| | - Catarina D Freire
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
| | - Gabriela Matos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria M Gil
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal
- CoLAB +ATLANTIC, Museu das Comunicações, Rua do Instituto Industrial 16, 1200-225 Lisboa, Portugal
| |
Collapse
|
3
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Lopes D, Rey F, Gomes A, Duarte L, Pereira J, Pinho M, Melo T, Domingues R. Tracing the Impact of Domestic Storage Conditions on Antioxidant Activity and Lipid Profiles in the Edible Microalgae Chlorella vulgaris and Tetraselmis chui. Mar Drugs 2024; 22:254. [PMID: 38921565 PMCID: PMC11205134 DOI: 10.3390/md22060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The microalgae Chlorella vulgaris and Tetraselmis chui are valued for their nutrient-rich content, including lipids and polyunsaturated fatty acids (PUFA). However, little is known about how storage and processing affect their lipid quality. This study aimed to assess the impact of domestic storage and cooking practices in dried biomass of C. vulgaris and T. chui. Four conditions were tested: control (newly opened package), light (storage at room temperature and daily light regimen for three weeks), frozen (storage in the freezer at -20 °C for three weeks), and heated (three cycles of 90 min at 100 °C). Lipid extracts were analyzed by GC-MS and LC-MS, and antioxidant activity through DPPH and ABTS radical scavenging assays. Tested storage conditions promoted a decrease in fatty acid content and in diacyl/lyso lipid species ratios of phospholipid (PC/LPC, PE/LPE) and betaine lipids (DGTS/MGTS). Lipid extracts from light treatment showed the lowest antioxidant activity in C. vulgaris (ABTS, IC40: 104.9; DPPH, IC20: 187.9 ± 15.0), while heat affected the antioxidant activity of T. chui (ABTS, IC40: 88.5 ± 2.8; DPPH, IC20 209.4 ± 10.9). These findings underscore the impact of managing storage and processing conditions to optimize the nutritional and functional benefits of C. vulgaris and T. chui in food and feed applications.
Collapse
Affiliation(s)
- Diana Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandrina Gomes
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Duarte
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pereira
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre & Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
6
|
Biernacki M, Conde T, Stasiewicz A, Surażyński A, Domingues MR, Domingues P, Skrzydlewska E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2023; 24:14323. [PMID: 37762626 PMCID: PMC10532178 DOI: 10.3390/ijms241814323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| |
Collapse
|
7
|
Maurício T, Couto D, Lopes D, Conde T, Pais R, Batista J, Melo T, Pinho M, Moreira ASP, Trovão M, Barros A, Cardoso H, Silva J, Domingues P, Domingues MR. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023; 12:foods12081625. [PMID: 37107420 PMCID: PMC10137388 DOI: 10.3390/foods12081625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6 PUFAs. C-Hetero and C-Honey showed a higher content of triacylglycerols. All extracts showed antioxidant and anti-inflammatory activity, highlighting C-Auto with greater potential. Overall, the four strains of C. vulgaris can be selectively chosen as a source of added-value lipids to be used as ingredients in food and nutraceutical applications for different market needs and nutritional requirements.
Collapse
Affiliation(s)
- Tatiana Maurício
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Couto D, Conde TA, Melo T, Neves B, Costa M, Silva J, Domingues R, Domingues P. The chemodiversity of polar lipidomes of microalgae from different taxa. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Lipidomic Characterization and Antioxidant Activity of Macro- and Microalgae Blend. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010231. [PMID: 36676180 PMCID: PMC9865938 DOI: 10.3390/life13010231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Macro- and microalgae are currently recognized sources of lipids with great nutritional quality and attractive bioactivities for human health promotion and disease prevention. Due to the lipidomic diversity observed among algae species, giving rise to different nutritional and functional characteristics, the mixture of macro- and microalgae has the potential to present important synergistic effects resulting from the complementarity among algae. The aim of this work was to characterize for the first time the lipidome of a blend of macro- and microalgae and evaluate the antioxidant capacity of its lipid fraction. Fatty acids were profiled by GC-MS, the polar lipidome was identified by high resolution LC-MS, and ABTS+• and DPPH• assays were used to assess the antioxidant potential. The most abundant fatty acids were oleic (18:1 n-9), α-linolenic (18:3 n-3), and linoleic (18:2 n-6) acids. The lipid extract presented a beneficial n-6/n-3 ratio (0.98) and low values of atherogenic (0.41) and thrombogenic indices (0.27). The polar lipidome revealed 462 lipid species distributed by glycolipids, phospholipids, and betaine lipids, including some species bearing PUFA and a few with reported bioactivities. The lipid extract also showed antioxidant activity. Overall, the results are promising for the valorization of this blend for food, nutraceutical, and biotechnological applications.
Collapse
|
10
|
Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals (Basel) 2022; 12:ani12192643. [PMID: 36230383 PMCID: PMC9558554 DOI: 10.3390/ani12192643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing pet population is questioning the sustainability of the pet food system. Although microalgae may constitute a more sustainable food resource, the assessment of their potential for canine diets is almost non-existent. The present study aimed to evaluate the potential of three microalgae species (Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica) grown locally in industrial photobioreactors as alternative food resources for dogs. A detailed characterization of their nutritional composition and metabolomic profile was carried out and related to the nutritional requirements of dogs. Overall, the essential amino acid content exceeded the amounts required for dogs at all life stages, except methionine and cysteine. The three microalgae were deficient in linoleic acid, N. oceanica presented a linolenic acid content below requirements and T. obliquus and C. vulgaris were deficient in arachidonic and eicosapentaenoic acids. The fiber was mainly composed of insoluble dietary fiber. The mineral profile varied greatly with the microalgae species, demonstrating their different potential for dog feeding. Untargeted metabolomics highlighted glycolipids, glycerolipids and phospholipids as the most discriminating compounds between microalgae species. Overall, the results support the potential of T. obliquus, C. vulgaris and N. oceanica as valuable macro- and micro-nutrients sources for dog feeding.
Collapse
|
11
|
Moreira AS, Gonçalves J, Conde TA, Couto D, Melo T, Maia IB, Pereira H, Silva J, Domingues MR, Nunes C. Chrysotila pseudoroscoffensis as a source of high-value polar lipids with antioxidant activity: A lipidomic approach. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Choi OK, Lee JW. CO 2-triggered switchable solvent for lipid extraction from microalgal biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153084. [PMID: 35038530 DOI: 10.1016/j.scitotenv.2022.153084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This study proposed a novel and energy-efficient method using switchable polarity solvents for lipid recovery from microalgae. Different from the existing methods, use of switchable polarity solvents does not require the fractional distillation for separation of lipid and solvent by only converting the polarity of the solvent after lipid extraction. When a non-polar amine solvent reacts with CO2, amino group (NH) can be transformed to a polar form, i.e. carbamate (NHCOO-). Nuclear magnetic resonance (NMR) spectrum indicated that only secondary amines are convertible to a polar compound of carbamate after CO2 treatment. The polarity switching potential of each amine candidate was quantitatively evaluated by normalized polarity energy (ETN). Dipropylamine (DPA) showed the greatest change in ETN from 0.452 to 0.789 kcal/mol (ETN of water = 1.0 kcal/mol) before and after CO2 treatment. DPA is a potential polarity switchable solvent capable of achieving an excellent lipid extraction yield of 7.51% from tested microalgal biomass (Chlorella vulgaris) with 9.16% of total lipid content and 95.5% fatty acid methyl esters (FAMEs) content. Furthermore, the used solvent could be recovered at the high efficiency of 84.0%. With a significant polarity switchability from nonpolar amine to carbamate in the presence of CO2, DPA, a secondary amine, could be suggested as a suitable solvent used for both extraction of lipids with a higher FAMEs content from microalgae and separation of lipid by only adding CO2.
Collapse
Affiliation(s)
- Oh Kyung Choi
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Woo Lee
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
13
|
Couto D, Conde TA, Melo T, Neves B, Costa M, Cunha P, Guerra I, Correia N, Silva JT, Pereira H, Varela J, Silva J, Domingues R, Domingues P. Effects of outdoor and indoor cultivation on the polar lipid composition and antioxidant activity of Nannochloropsis oceanica and Nannochloropsis limnetica: A lipidomics perspective. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, Guo Z, Yang Y, Zheng X, Chen B. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. BIORESOURCE TECHNOLOGY 2022; 349:126886. [PMID: 35217166 DOI: 10.1016/j.biortech.2022.126886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/28/2023]
Abstract
This study firstly addressed real swine wastewater (RSW) treatment by an indigenous Chlorella vulgaris MBFJNU-1 in 5-m3 outdoor open raceway ponds and then direct enzymatic transesterification of the resulting lipids from the wet biomass for sustainable biodiesel production. Compared to the control group, C. vulgaris MBFJNU-1 at 3% CO2 achieved higher microalgal biomass (478.5 mg/L) and total fatty acids content (21.3%), higher CO2 bio-fixation (63.2 mg/L/d) and lipid (9.1 mg/L/d) productivities, and greater nutrients removals (total nitrogen, 82.1%; total phosphorus, 28.4%; chemical oxygen demand, 37.1%). The highest biodiesel conversion (93.3%) was attained by enzymatic transesterification of wet disrupted Chlorella biomass with 5% lipase TL and 5% phospholipase PLA. Moreover, the enzymatic transesterification gave around 83% biodiesel conversion in a 15-L stirred tank bioreactor. Furthermore, the integrated process was a cost-effective approach to treat RSW and mitigate CO2 for microalgal biodiesel production, based on the mass and energy balances analysis.
Collapse
Affiliation(s)
- Dian Xie
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Gustav WiedsVej 10, 8000 Aarhus C, Denmark
| | - Yi Yang
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Xing Zheng
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
15
|
Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022; 12:metabo12020096. [PMID: 35208171 PMCID: PMC8877676 DOI: 10.3390/metabo12020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.
Collapse
|
16
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|
17
|
Regueiras A, Huguet Á, Conde T, Couto D, Domingues P, Domingues MR, Costa AM, da Silva JL, Vasconcelos V, Urbatzka R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella vulgaris and Chlorococcum amblystomatis under Different Growth Conditions. Mar Drugs 2021; 20:md20010009. [PMID: 35049863 PMCID: PMC8781425 DOI: 10.3390/md20010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known as a producer of proteins and lipids, but also of valuable compounds for human health benefits (e.g., polyunsaturated fatty acids (PUFAs); minerals, vitamins, or other compounds). The overall objective of this research was to prospect novel products, such as nutraceuticals from microalgae, for application in human health, particularly for metabolic diseases. Chlorella vulgaris and Chlorococcum amblystomatis were grown autotrophically, and C. vulgaris was additionally grown heterotrophically. Microalgae biomass was extracted using organic solvents (dichloromethane, ethanol, ethanol with ultrasound-assisted extraction). Those extracts were evaluated for their bioactivities, toxicity, and metabolite profile. Some of the extracts reduced the neutral lipid content using the zebrafish larvae fat metabolism assay, reduced lipid accumulation in fatty-acid-overloaded HepG2 liver cells, or decreased the LPS-induced inflammation reaction in RAW264.7 macrophages. Toxicity was not observed in the MTT assay in vitro or by the appearance of lethality or malformations in zebrafish larvae in vivo. Differences in metabolite profiles of microalgae extracts obtained by UPLC-LC-MS/MS and GNPS analyses revealed unique compounds in the active extracts, whose majority did not have a match in mass spectrometry databases and could be potentially novel compounds. In conclusion, microalgae extracts demonstrated anti-obesity, anti-steatosis, and anti-inflammatory activities and could be valuable resources for developing future nutraceuticals. In particular, the ultrasound-assisted ethanolic extract of the heterotrophic C. vulgaris significantly enhanced the anti-obesity activity and demonstrated that the alteration of culture conditions is a valuable approach to increase the production of high-value compounds.
Collapse
Affiliation(s)
- Ana Regueiras
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Álvaro Huguet
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana Margarida Costa
- Allmicroalgae, R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal; (A.M.C.); (J.L.d.S.)
| | | | - Vitor Vasconcelos
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ralph Urbatzka
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Correspondence:
| |
Collapse
|
18
|
Couto D, Melo T, Conde TA, Moreira ASP, Ferreira P, Costa M, Silva J, Domingues R, Domingues P. Food grade extraction of Chlorella vulgaris polar lipids: A comparative lipidomic study. Food Chem 2021; 375:131685. [PMID: 34865930 DOI: 10.1016/j.foodchem.2021.131685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Glycolipids and phospholipids are the main reservoirs of omega polyunsaturated fatty acids in microalgae. Their extraction for the food industry requires food grade solvents, however, the use of these solvents is generally associated with low extraction yields. In this study, we evaluated the lipid extraction efficiency of food-grade ethanol, ultrasound-assisted ethanol (UAE) and dichloromethane/methanol (DCM) from Chlorella vulgaris cultivated under autotrophic and heterotrophic conditions. Yields of lipids, fatty acids (FA), and complex lipid profiles were determined by gravimetry, GC-MS, and LC-MS/MS, respectively. UAE and DCM showed the highest lipid yields with similar purity. The FA profiles were identical for all extracts. The polar lipidome of the DCM and UAE extracts was comparable, while the EtOH extracts were significantly different. These results demonstrated the effectiveness of UAE extraction to obtain high yields of polar lipids and omega-3 and -6-rich extracts from C. vulgaris that can be used for food applications.
Collapse
Affiliation(s)
- Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago A Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- Allmicroalgae Natural Products S.A, R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; CESAM Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021; 19:md19110593. [PMID: 34822464 PMCID: PMC8624173 DOI: 10.3390/md19110593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.
Collapse
|
20
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
21
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
22
|
Cupo A, Landi S, Morra S, Nuzzo G, Gallo C, Manzo E, Fontana A, d’Ippolito G. Autotrophic vs. Heterotrophic Cultivation of the Marine Diatom Cyclotella cryptica for EPA Production. Mar Drugs 2021; 19:355. [PMID: 34201453 PMCID: PMC8303666 DOI: 10.3390/md19070355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, the marketable value of ω-3 fatty acid, particularly eicosapentaenoic acid (EPA), increased considering their health effects for human consumption. Microalgae are considered a valuable and "green" source of EPA alternative to fish oils, but considerable efforts are necessary for their exploitation at an industrial level. Due to the high operation costs of photoautotrophic microalgae cultivation, heterotrophic growth represents a promising economic solution. Marine diatoms are the major ecological producers of ω-3 fatty acids. Few species of diatoms are capable to grow in the dark using organic carbon sources. The marine diatom Cyclotella cryptica was cultivated for 14 days under photoautotrophic and heterotrophic conditions to define the effects on growth parameters, lipid production, total fatty acids and EPA content. Photoautotrophic conditions led to a total EPA production of 1.6% of dry weight, 12.2 mg L-1 culture and productivity of 0.9 mg L-1 day-1. The heterotrophy cultures reported a total EPA production of 2.7% of dry cell weight, 18 mg L-1 culture, a productivity of 1.3 mg L-1 day-1, which are promising values in the prospective of improving culture parameters for the biotechnological exploitation of dark cultivation. C. cryptica could be a potential candidate for the heterotrophic production of EPA, also considering its robustness, capacity to resist to bacterial contaminations and plasticity of lipid metabolism.
Collapse
Affiliation(s)
- Adelaide Cupo
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Salvatore Morra
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Carmela Gallo
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Angelo Fontana
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Giuliana d’Ippolito
- Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei 34, 80078 Naples, Italy; (A.C.); (S.M.); (G.N.); (C.G.); (E.M.); (A.F.)
| |
Collapse
|