1
|
Phyu K, Zhi S, Graham DW, Cao Y, Xu X, Liu J, Wang H, Zhang K. Impact of indigenous vs. cultivated microalgae strains on biomass accumulation, microbial community composition, and nutrient removal in algae-based dairy wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 426:132349. [PMID: 40044056 DOI: 10.1016/j.biortech.2025.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
This study investigated the role of indigenous and cultivated microalgae in nutrient removal and biomass production in dairy wastewater, especially in microbial function change. Five indigenous and three cultured microalgal strains were grown in sterile and non-sterile dairy wastewater, and nutrient removal and biomass profiles were analysed. Results showed higher phosphorus removal (90.1 % vs. 81.8 %, p < 0.001) and biomass production (2.3 vs. 2.0 g/L, p < 0.001) in sterile wastewater, while nitrogen removal was higher in non-sterile wastewater (83.1 % vs. 77.5 %, p < 0.05). Indigenous strains grew more consistently in high-concentration wastewater, though not significantly different from cultured strains. Phycosphere bacteria communities were more closely associated with total nitrogen, total phosphorus, and pigment content, while free-living bacteria primarily dependent on chlorophyll a and extracellular polymeric substances (EPS). The nitrogen transforming function was enhanced in phycosphere. These findings provide insights for optimizing microalgal-based wastewater treatment, advancing sustainable dairy wastewater management.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Suli Zhi
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Ecosystem, National Observation and Research Station, Dali, Yunnan 671004, China.
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle NE1 7RU, United Kingdom; Department Biosciences, Durham University, Durham DH1 3LE, United Kingdom; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuang Cao
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaoyu Xu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahua Liu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Han Wang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Ecosystem, National Observation and Research Station, Dali, Yunnan 671004, China
| |
Collapse
|
2
|
Vicente-Garcia C, Vona D, Milano F, Buscemi G, Grattieri M, Ragni R, Farinola GM. Living Diatom Microalgae for Desiccation-Resistant Electrodes in Biophotovoltaic Devices. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11120-11129. [PMID: 39099648 PMCID: PMC11292591 DOI: 10.1021/acssuschemeng.4c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 08/06/2024]
Abstract
Strategies of renewable energy production from photosynthetic microorganisms are gaining great scientific interest as ecosustainable alternatives to fossil fuel depletion. Green microalgae have been thoroughly investigated as living components to convert solar energy into photocurrent in biophotovoltaic (BPV) cells. Conversely, the suitability of diatoms in BPV cells has been almost completely unexplored so far, despite being the most abundant class of photosynthetic microorganisms in phytoplankton and of their good adaptability and resistance to harsh environmental conditions, including dehydration, high salinity, nutrient starvation, temperature, or pH changes. Here, we demonstrate the suitability of a series of diatom species (Phaeodactylum tricornutum, Thalassiosira weissflogii, Fistulifera pelliculosa, and Cylindrotheca closterium), to act as biophotoconverters, coating the surface of indium tin oxide photoanodes in a model BPV cell. Effects of light intensity, cell density, total chlorophyll content, and concentration of the electrochemical mediator on photocurrent generation efficiency were investigated. Noteworthily, biophotoanodes coated with T. weissflogii diatoms are still photoactive after 15 days of dehydration and four rewetting cycles, contrary to analogue electrodes coated with the model green microalga Dunaliella tertiolecta. These results provide the first evidence that diatoms are suitable photosynthetic microorganisms for building highly desiccation-resistant biophotoanodes for durable BPV devices.
Collapse
Affiliation(s)
- Cesar Vicente-Garcia
- Dipartimento
di Chimica, Università Degli Studi
di Bari “Aldo Moro”, Bari I-70126, Italy
| | - Danilo Vona
- Dipartimento
di Scienze Del Suolo, Della Pianta e Degli Alimenti, Università Degli Studi di Bari “Aldo Moro”, Bari I-70126, Italy
| | - Francesco Milano
- Istituto
di Scienze Delle Produzioni Alimentari, Consiglio Nazionale Delle Ricerche, Lecce I-73100, Italy
| | - Gabriella Buscemi
- Dipartimento
di Chimica, Università Degli Studi
di Bari “Aldo Moro”, Bari I-70126, Italy
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università Degli Studi
di Bari “Aldo Moro”, Bari I-70126, Italy
| | - Roberta Ragni
- Dipartimento
di Chimica, Università Degli Studi
di Bari “Aldo Moro”, Bari I-70126, Italy
| | - Gianluca M. Farinola
- Dipartimento
di Chimica, Università Degli Studi
di Bari “Aldo Moro”, Bari I-70126, Italy
| |
Collapse
|
3
|
Patil V, Sun L, Mohite V, Liang J, Wang D, Gao Y, Chen C. Effect of benthic and planktonic diatoms on the growth and biochemical composition of the commercial macroalga Pyropia haitanensis. MARINE POLLUTION BULLETIN 2024; 203:116411. [PMID: 38733890 DOI: 10.1016/j.marpolbul.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.
Collapse
Affiliation(s)
- Vishal Patil
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Sun
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Vitthal Mohite
- Department of Zoology, Thakur College of Science and Commerce, Kandivali (E), Mumbai 400101, India
| | - Junrong Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Dazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yahui Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Changping Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
4
|
Tong CY, Lim SL, Chua MX, Derek CJC. Uncovering the role of algal organic matter biocoating on Navicula incerta cell deposition and biofilm formation. Bioengineered 2023; 14:2252213. [PMID: 37695682 PMCID: PMC10496527 DOI: 10.1080/21655979.2023.2252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 09/13/2023] Open
Abstract
Spontaneous natural biofilm concentrates microalgal biomass on solid supports. However, the biofilm is frequently susceptible to exfoliation upon nutrient deficiency, particularly found in aged biofilm. Therefore, this study highlights a novel biofilm cultivation technique by pre-depositing the algal organic matters from marine diatom, Navicula incerta onto microporous polyvinylidene fluoride membrane to further strengthen the biofilm developed. Due to the improvement in membrane surface roughness and hydrophobicity, cells adhered most abundantly to soluble extrapolymeric substances-coated (sEPS) (76× 106± 16× 106 cells m-2), followed by bounded EPS-coated (57.67× 106± 0.33× 106 cells m-2), internally organic matter (IOM)-coated (39.00× 106± 5.19× 106 cells m-2), and pristine control the least (6.22× 106± 0.77× 106 cells m-2) at 24th h. Surprisingly, only bEPS-coated membrane demonstrated an increase in cell adhesion toward the end of the experiment at 72 h. The application of the bio-coating has successfully increased the rate of cell attachment by at least 45.3% upon inoculation and achieved as high as 89.9% faster attachment at 72 hours compared to the pristine control group. Soluble polysaccharides and proteins might be carried along by the cells adhering onto membranes hence resulting in a built up of EPS hydrophobicity (>70% in average on bio-coated membranes) over time as compared with pristine (control) that only recorded an average of approximately 50% hydrophobicity. Interestingly, cells grown on bio-coated membranes accumulated more internally bounded polysaccharides, though bio-coating had no discernible impact on the production of both externally and internally bounded protein. The collective findings of this study reveal the physiological alterations of microalgal biofilms cultured on bio-coated membranes.
Collapse
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Siew Li Lim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Mei Xia Chua
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - C. J. C. Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
5
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
6
|
Tong CY, Li HZ, Derek CJC. A microscale system for in situ investigation of immobilized microalgal cell resistance against liquid flow in the early inoculation stage. LAB ON A CHIP 2023; 23:4052-4066. [PMID: 37609763 DOI: 10.1039/d3lc00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In attached microalgae cultivation systems, cell detachment due to fluid hydrodynamic flow is not a subject matter that is commonly looked into. However, this phenomenon is of great relevance to optimizing the operating parameters of algae cultivation and feasible reactor design. Hence, this current work miniaturizes traditional benchtop assays into a microfluidic platform to study the cell detachment of green microalgae, Chlorella vulgaris, from porous substrates during its early cultivation stage under precisely controlled conditions. As revealed by time lapse microscopy, an increase in bulk flow velocity facilitated nutrient transport but also triggered cell detachment events. At a flow rate of 1000 μL min-1 of growth medium for 120 min, the algal cell coverage was up to 5% lower than those at 5 μL min-1 and 50 μL min-1. In static seeding, the evolution of attached cell resistance toward liquid flows was dependent on hydrodynamic zones. The center zone of the microchannel was shown to be a "comfortable zone" of the attached cells to sequester nutrients effectively at lower medium flow rates but there was a profile transition where outlet zones favored cell attachment the most at higher flow rates (1.13 times higher than the center zone for 1000 μL min-1). Besides, computational fluid dynamics (CFD) simulations illustrated that the focusing band varied between cross-sections and depths, while the streamline was the least concentrated along the side walls and bottom plane of the microfluidic devices. It was intriguing to learn that cell detachment was not primarily happening along the symmetry streamline. Insight gained from this study could be further applied in the optimization of operating conditions of attached cultivation systems whilst preserving laminar flow conditions.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
- Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - Huai Z Li
- Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | - C J C Derek
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
7
|
Liao Y, Fatehi P, Liao B. Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae. BIOFOULING 2023; 39:879-895. [PMID: 37965865 DOI: 10.1080/08927014.2023.2280005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
8
|
Tong CY, Chua MX, Tan WH, Derek CJC. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous membranes. CHEMOSPHERE 2023; 315:137712. [PMID: 36592830 DOI: 10.1016/j.chemosphere.2022.137712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Microalgal biofilm is a popular platform for algal production, nutrient removal and carbon capture; however, it suffers from significant biofilm exfoliation under shear force exposure. Hence, a biologically-safe coating made up of algal extracellular polymeric substances (EPS) was utilized to secure the biofilm cell retention and cell loading on commercial microporous membrane (polyvinylidene fluoride), making the surfaces more hydrophobic (contact angle increase up to 12°). Results demonstrated that initial cell adhesion of three marine microalgae (Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta) was enhanced by at least 1.3 times higher than that of pristine control within only seven days with minimized biofilm exfoliation issue due to uniform distribution of sticky transparent exopolymer particles. Bounded extracellular polysaccharide gathered was approximately 23% higher on EPS-coated membranes to improve the biofilm's hydraulic resistance, whereas bounded extracellular protein would only be substantially elevated after the attached cells re-accommodate themselves onto the EPS pre-coating of themselves. In accounting the rises of hydrophobic protein content, biofilm was believed to be more stabilized, presumably via hydrophobic interactions. EPS biocoating would generate a groundswell of interest for bioprocess intensifications though there are lots of inherent technical and molecular challenges to be further investigated in future.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - M X Chua
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Win Hung Tan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
9
|
Yu Y, Guo H, Zhong Z, Lu Z, Zhu X, Li Z, Chang Z. Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114450. [PMID: 38321669 DOI: 10.1016/j.ecoenv.2022.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Biochar-immobilized bacteria have been widely used to remove organic pollutants; however, the enhanced effect of biochar-immobilized bacteria on tetrabromobisphenol A (TBBPA) removal has not been fully investigated and the removal mechanism remains unclear. In this study, a bacterial strain with high TBBPA degradation ability, Burkholderia cepacian Y17, was isolated from an e-waste disassembly area, immobilized with biochar, and used for the removal of TBBPA. Comparisons were performed of the factors affecting the immobilization and TBBPA removal efficiency, including the biochar preparation temperature, immobilization temperature, and pH. The highest 7-day TBBPA removal efficiency by immobilized bacteria was observed with the most suitable biochar preparation temperature (BC500) and an immobilization pH and temperature of 7 and 35 °C, respectively. The TBBPA removal efficiency reached 59.37%, which was increased by 30.23% and 15.88% compared to that of free and inactivated immobilized Y17, respectively. The suitable biochar preparation temperature BC500, immobilization temperature of 35 °C, and neutral pH of 7 increased the bacterial population and extracellular polymer concentration, which facilitated bacterial immobilization on biochar and promoted TBBPA removal. In this case, the high immobilized bacteria concentration (4.62 × 108 cfu∙g-1) and protein and polysaccharide contents (28.43 and 16.16 mg·g-1) contributed to the removal of TBBPA by facilitating TBBPA degradation. The main TBBPA degradation processes by BC500-immobilized Y17 involved debromination, β-scission, demethylation, O-methylation, hydroxylation, and hydroxyl oxidation. This study proposes a method for preparing immobilized bacteria for TBBPA removal and enriches the microbial degradation technology for TBBPA.
Collapse
Affiliation(s)
- Yunjiang Yu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing 404000, China
| | - Haobo Guo
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing 404000, China
| | - Zijuan Zhong
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyong Lu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohui Zhu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zhenchi Li
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zhaofeng Chang
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China.
| |
Collapse
|
10
|
Tong CY, Derek CJC. Marine microalgal biofilm development and its adhesion propensities on commercial membrane via XDLVO approach. J Biotechnol 2022; 360:37-44. [PMID: 36272576 DOI: 10.1016/j.jbiotec.2022.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
An emerging biofilm immobilization method has enabled effortless biomass harvesting and promoted economic feasibility. The current limitation towards the adaptation of this technology is the inadequate understanding of the biofilm interaction towards microporous membrane. Cell adhesion is recognized as the most important step towards the immobilized cultivation of microalgae. Cell attachment kinetic was studied in a short-term batch culture of three marine diatoms, Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta over 96 h on submerged commercial polyvinylidene fluoride (PVDF) membrane under swirling motion of culture medium. Both the evolution of cell adhesion intensity and compositional changes of the extracellular polymeric substances (EPS) released were quantified throughout the cultivation period. To delve into the cell-substratum interactions, existing thermodynamics and colloidal extended Derjaguin, Landau, Vervey, and Overbeek (XDLVO) theory were employed. As a result, A. coffeaeformis and N. incerta recorded a higher cell colonization percentage than C. fusiformis being the lowest about 2.16±0.17% cell colonization due to their respective species-dependent EPS variation. Polysaccharide contents were at least two times higher than protein contents for both C. fusiformis and N. incerta except for A. coffeaeformis depicting a lower polysaccharide-to-protein ratio whereby the protein contents were maximized at 1.03 × 103 ± 64.14 pg m-2 cell-1 at 6th h. From the surface free energy point of view, both thermodynamics and XDLVO model elucidated that cells adhered reversibly in the secondary energy minimum and ranked C. fusiformis the lowest adhesion tendency among three. These findings establish fundamental knowledge about biofilm formation in porous substrate bioreactors.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
11
|
Li C, Wang JH, Yu C, Zhang JT, Chi ZY, Zhang Q. Growth-promoting effects of phytohormones on capillary-driven attached Chlorella sp. biofilm. BIORESOURCE TECHNOLOGY 2022; 364:128117. [PMID: 36244605 DOI: 10.1016/j.biortech.2022.128117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Using low strength wastewater for microalgae cultivation is challenged by slow growth and biomass harvesting issue in suspended systems, and growth-promoting effects of phytohormones at currently recommended dosages could neither obtain high enough biomass concentrations nor economic feasibility. This study aims to solve the issues of slow growth, biomass harvest, and phytohormone costs altogether by supplementing low dosage phytohormones in an improved capillary-driven attached cultivation device. The device displayed nutrients-condensing properties, and dosages of indole acetic acid (IAA), 6-benzylaminopurine (6-BA), and salicylic acid (SA) for highest microalgal growth were respectively 10-6 M, 10-6 M, and 10-7 M, being at least one order of magnitude lower than in suspended cultures. SA was most effective in growth-promoting (up to 7.0 g/m2 biomass density) and nutrients uptake (up to 98.6 % from the bulk environment), while IAA was most effective in antioxidative defenses. These results provided new insights in cost-effective and harvesting-convenient microalgae production.
Collapse
Affiliation(s)
- Chi Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
12
|
Tong CY, Lew JK, Derek CJC. Algal extracellular organic matter pre-treatment enhances microalgal biofilm adhesion onto microporous substrate. CHEMOSPHERE 2022; 307:135740. [PMID: 35850213 DOI: 10.1016/j.chemosphere.2022.135740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adhesive biocoating has microstructure composed of biomolecules to entrap viable cells in a stabilized matrix over exposed surfaces. Although marine benthic diatoms are a common group of algae excreting substantial amount of extracellular polymeric substances (EPS), studies regarding the utilization of these EPS are scarce. Using the soluble EPS derived from Navicula incerta and pre-deposition of it as a thin conditioning layer on microporous polyvinylidene fluoride (PVDF) membranes, the pre-coated surface was used to investigate the cell binding affinity of three marine microalgae, namely Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta. Microalgae actively engaged themselves on the pre-coated membranes which was 10 times greater than the initial cell adhesion degree. Soluble EPS is mainly comprised of polysaccharide while bounded EPS is mainly comprised of protein. On EPS pre-coated membranes, N. incerta released the least amount of bounded polysaccharides (<100 mg m-2) and vice versa for the other two because EPS production is usually maximized to assist cell adhesion onto unfavorable substrates. In stark contrast, when the adaptation period (first 6 h) ended, cells began to secrete more bounded protein for cell growth, and an increasing trend of protein content found in N. incerta has verified its optimal adaptation onto the biocoating itself. On pristine PVDF membranes, the adhesion degree was ranked in ascending order: C. fusiformis, N. incerta and A. coffeaeformis. Interestingly, after the pre-coating process, the order was reported as: A. coffeaeformis, N. incerta and C. fusiformis, but it should be noted that C. fusiformis demonstrated fluctuating cell colonization degree and bounded EPS production over time. In other words, the biofilm's susceptibility was confirmed since the cells latched loosely on the membranes rather than in a biofilm matrix. Biocoating enables uniform cell distribution and firmer biofilm growth, opening the door to vast future applications in environmental bioremediation and sensing.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - J K Lew
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
13
|
Yap JX, Leo CP, Chan DJC, Mohd Yasin NH, Show PL. Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes. CHEMOSPHERE 2022; 307:135625. [PMID: 35820481 DOI: 10.1016/j.chemosphere.2022.135625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microalgae cultivation in open ponds requires a large footprint, while most photobioreactors need improvement in the ratio of surface to volume and energy consumption. In this study, polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) hollow fiber membranes with a large surface area were rearranged into open-ended and dead-ended configurations to improve the air-liquid interface cultivation of Navicula incerta. N. incerta were successfully grown on the porous membrane surface with the nutrients circulating inside the lumen. Fourier-transform infrared spectra showed the accumulation of polysaccharides, proteins and humic acids. Hydrophilic polysaccharides reduced water contact angles on PES and PVDF membranes to 37.2 ± 2.6° and 55.7 ± 3.3°, respectively. However, the porosity of PES (80.1 ± 1.1%) and PVDF (61.3 ± 4.5%) membranes were not significantly affected even after cultivation and harvesting of N. incerta. Scanning electron images further confirmed that N. incerta, cell debris and extracellular organic matter accumulated on the membrane. With large pores and a hydrophobic surface, PVDF hollow fiber membranes offered a greater improvement in N. incerta cell growth rate compared to PES hollow fiber membranes despite using different configurations. In the dead-ended configuration, they even attained the greatest improvement in N. incerta growth rate, up to 54.0%. However, PES hollow fiber membranes only achieved improvement in harvesting efficiency within the range of 18.7-38.0% due to weak cell adhesion. PVDF hollow fiber membranes significantly promoted the growth of microalgae N. incerta through the air-liquid interface system, leading to potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia
| |
Collapse
|
14
|
Tong CY, Derek CJC. Novel Extrapolymeric Substances Biocoating on Polyvinylidene Fluoride Membrane for Enhanced Attached Growth of Navicula incerta. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02091-9. [PMID: 35978183 DOI: 10.1007/s00248-022-02091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Cell adhesion is always the first step in biofilm development. With the emergence of attached cultivation systems, this study aims to promote a cost-effective approach for sustainable cultivation of microalgae, Navicula incerta, by pre-coating the main substrates, commercial polyvinylidene fluoride (PVDF) membranes with its own washed algal cells and self-produced soluble extracellular polymeric substances (EPS) for strengthened biofilm development. The effects of pH value (6 to 9), cell suspension volume (10 to 30 mL), and EPS volume (10 to 50 mL) were statistically optimized by means of response surface methodology toolkit. Model outputs revealed good agreement with cell adhesion data variation less than 1% at optimized pre-coating conditions (7.20 pH, 30 mL cell suspension volume, and 50 mL EPS volume). Throughout long-term biofilm cultivation, results demonstrated that EPS pre-coating substantially improved the attached microalgae density by as high as 271% than pristine PVDF due to rougher surface and the presence of sticky exopolymer particles. Nutrients absorbed via the available EPS coating from the bulk medium made the immobilized cells to release less polysaccharides on an average of 30% less than uncoated PVDF. This work suggests that adhesive polymer binders derived from organic sources can be effectively integrated into the development of high-performance novel materials as biocoating for immobilized microalgae cultivation.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
15
|
Detection of Biofilm Formation on Material Surfaces by Ag+ Coating. COATINGS 2022. [DOI: 10.3390/coatings12071031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The evaluation of biofilm formation is important, given the ubiquity and problematic nature of biofilms in industrial and medical settings, as well as in everyday life. Basically, biofilms are formed on substrates. Therefore, it is essential to consider the properties of the substrates during biofilm evaluation. The common dye staining method to evaluate biofilm formation requires a short evaluation time and enables the evaluation of a large area of the sample. Furthermore, it can be easily determined visually, and quantitative evaluation is possible by quantifying color adsorption. Meanwhile, the dye staining method has the problem of adsorption even on substrate surfaces where no biofilm has formed. Therefore, in this study, we focused on Ag+ reduction reaction to devise a novel biofilm evaluation method. Ag+ is highly reductive and selectively reacts with organic substances, such as saccharides, aldehydes, and proteins contained in biofilms, depositing as metallic Ag. First, to simply evaluate biofilm formation, we used a glass substrate as a smooth, transparent, and versatile oxide material. We observed that the amount of Ag deposited on the substrate was increased proportionally to the amount of biofilm formed under light irradiation. Upon comparing the Ag deposition behavior and adsorption behavior of crystal violet, we discovered that for short immersion times in AgNO3 solution, Ag deposition was insufficient to evaluate the amount of biofilm formation. This result suggests that the Ag reduction reaction is more insensitive than the crystal violet adsorption behavior. The results of the Ag deposition reaction for 24 h showed a similar trend to the crystal violet dye adsorption behavior. However, quantitative biofilm evaluation using the proposed method was difficult because of the Ag+ exchange with the alkali metal ions contained in the glass substrate. We addressed this issue by using the basic solution obtained by adding an ammonia solution to aqueous AgNO3. This can cause Ag+ to selectively react with the biofilm, thus enabling a more accurate quantitative evaluation. The optimum was determined at a ratio of distilled water to aqueous ammonia solution of 97:3 by weight. This biofilm was also evaluated for materials other than ceramics (glass substrate): organic material (polyethylene) and metal material (pure iron). In the case of polyethylene, a suitable response and evaluation of biofilm formation was successfully achieved using this method. Meanwhile, in the case of pure iron, a significantly large lumpy deposit of Ag was observed. The likely reason is that Ag precipitation occurred along with the elution of iron ions because of the difference in ionization tendency. It could be concluded that the detection of biofilm formation using this method was effective to evaluate biofilm formation on materials, in which the reduction reaction of [Ag(NH3)2]+ does not occur. Thus, a simple and relatively quantitative evaluation of biofilms formed on substrates is possible using this method.
Collapse
|
16
|
Cheah YT, Ng BW, Tan TL, Chia ZS, Chan DJC. Biomass and eicosapentaenoic acid production from Amphora sp. under different environmental and nutritional conditions. Biotechnol Appl Biochem 2022; 70:568-580. [PMID: 35767864 DOI: 10.1002/bab.2379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.
Collapse
Affiliation(s)
- Yi Tong Cheah
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Bee Wah Ng
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Tze Ling Tan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Zi Sheng Chia
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
17
|
Tong CY, Derek CJC. Membrane surface roughness promotes rapid initial cell adhesion and long term microalgal biofilm stability. ENVIRONMENTAL RESEARCH 2022; 206:112602. [PMID: 34968430 DOI: 10.1016/j.envres.2021.112602] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In biofilm membrane photobioreactors development, conscientious works revolving around the effect of external environment factors on microalgal biofilm growth were assessed but more comparative research about the role of carrier surfaces properties such as surface roughness is necessary. Thus, commercial polyethersulfone (PES) membranes with two different molecular-weight-cut-offs (1 kDa and 30 kDa) were selected as the main representatives of surface roughness in a 20 days long-term biofilm cultivation experiment under dynamic flow condition for the biofilm evolvement of three benthic diatoms (Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta). Results depicted that rougher 30 kDa PES enable higher cell attachment degree for C. fusiformis (25.85 ± 2.75 × 109 cells m-2), followed by A. coffeaeformis (11.86 ± 2.76 × 109 cells m-2) and N. incerta (10.10 ± 0.65 × 109 cells m-2). Bounded extracellular polymeric substances (bEPS) gathered were relatively higher than soluble EPS (sEPS) while bEPS accumulated at least 10% higher on smooth 1 kDa PES than rough 30 kDa PES for the purpose of enhancing the biofilm disruption resistivity under liquid flow. Moreover, cell adhesion mechanism was proposed via computational fluid dynamics in parallel with EPS analysis. Copious amount of asperities and stagnant zones present on rough 30 kDa surfaces accelerated biofilm development and the consistency of the results have a great valence for interpretation of microalgal biofilm lifestyle on porous surfaces.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
18
|
Tong CY, Derek CJC. A Methodological Review on the Characterization of Microalgal Biofilm and Its Extracellular Polymeric Substances. J Appl Microbiol 2022; 132:3490-3514. [DOI: 10.1111/jam.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| | - C. J. C Derek
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| |
Collapse
|
19
|
Abstract
In view of high energy cost and water consumption in microalgae cultivation, microalgal-biofilm-based cultivation system has been advocated as a solution toward a more sustainable and resource friendlier system for microalgal biomass production. Algal-derived extracellular polymeric substances (EPS) form cohesive network to interconnect the cells and substrates; however, their interactions within the biofilm are poorly understood. This scenario impedes the biofilm process development toward resource recovery. Herein, this review elucidates on various biofilm cultivation modes and contribution of EPS toward biofilm adhesion. Immobilized microalgae can be envisioned by the colloid interactions in terms of a balance of both dispersive and polar interactions among three interfaces (cells, mediums and substrates). Last portion of this review is dedicated to the future perspectives and challenges on the EPS; with regard to the biopolymers extraction, biopolymers’ functional description and cross-referencing between model biofilms and full-scale biofilm systems are evaluated. This review will serve as an informative reference for readers having interest in microalgal biofilm phenomenon by incorporating the three main players in attached cultivation systems: microalgae, EPS and supporting materials. The ability to mass produce these miniature cellular biochemical factories via immobilized biofilm technology will lay the groundwork for a more sustainable and feasible production.
Collapse
Affiliation(s)
- Yi Tong Cheah
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
20
|
Marella TK, Bhattacharjya R, Tiwari A. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb Cell Fact 2021; 20:135. [PMID: 34266439 PMCID: PMC8281487 DOI: 10.1186/s12934-021-01627-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diatoms are unicellular photosynthetic protists which constitute one of the most successful microalgae contributing enormously to global primary productivity and nutrient cycles in marine and freshwater habitats. Though they possess the ability to biosynthesize high value compounds like eicosatetraenoic acid (EPA), fucoxanthin (Fx) and chrysolaminarin (Chrl) the major bottle neck in commercialization is their inability to attain high density growth. However, their unique potential of acquiring diverse carbon sources via varied mechanisms enables them to adapt and grow under phototrophic, mixotrophic as well as heterotrophic modes. Growth on organic carbon substrates promotes higher biomass, lipid, and carbohydrate productivity, which further triggers the yield of various biomolecules. Since, the current mass culture practices primarily employ open pond and tubular photobioreactors for phototrophic growth, they become cost intensive and economically non-viable. Therefore, in this review we attempt to explore and compare the mechanisms involved in organic carbon acquisition in diatoms and its implications on mixotrophic and heterotrophic growth and biomolecule production and validate how these strategies could pave a way for future exploration and establishment of sustainable diatom biorefineries for novel biomolecules.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|