1
|
Hewage ISR, Golovko O, Hultberg M. Spawn-based pellets of Pleurotus ostreatus as an applied approach for the production of laccase in different types of water. J Microbiol Methods 2025; 229:107092. [PMID: 39824226 DOI: 10.1016/j.mimet.2025.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions. Grain spawn was observed to be preferable to sawdust spawn, resulting in laccase activity of 53.9 ± 5.9 U/L and 4.8 ± 0.8 U/L, respectively. Laccase activity was induced by adding kraft lignin (4 g/L), and an eightfold increase to 446.3 ± 43.1 U/L was observed for grain spawn. Lignin accumulated in the spawn over time, resulting in brown pellets composed of spawn, mycelium and lignin. Our results demonstrated that high levels of laccase activity could be obtained in different types of water, including effluent municipal wastewater, using this method. No impact from the addition of inorganic nitrogen (ammonium nitrate, N-levels 14 mg/L, 140 mg/L) or organic nitrogen sources (urea, yeast extract, wheat bran, N-levels 14 mg/L, 140 mg/L) was observed for the treatment with grain spawn and lignin, suggesting that stable laccase activity can be expected under these nutritional conditions.
Collapse
Affiliation(s)
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-234 56 Alnarp, Sweden.
| |
Collapse
|
2
|
Almeida Medeiros J, Eduardo de Farias Silva C, Santos GKS, Almeida Alves do Nascimento M, Pimentel de Andrade F, Luciano Ferreira de Sá Filho M, Maria Villar da Gama B, Victor Oliveira Nascimento da Silva J, Maria Rosas Garcia Almeida R. Tertiary treatment of dairy wastewater applying a microalga-fungus consortium. ENVIRONMENTAL TECHNOLOGY 2025; 46:370-386. [PMID: 38820593 DOI: 10.1080/09593330.2024.2357695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
This paper aimed to apply filamentous fungi (Penicillium oxalicum and Cunninghamella echinulata), the microalga Tetradesmus obliquus and their co-culture in advanced treatment (tertiary treatment) of cheese whey. The bioremediation process was carried out in agitated flasks and bubble column bioreactors with different concentrations of chemical oxygen demand (COD) (223-1663 mg L-1), total nitrogen (TN) (13-61 mg L-1), and total phosphorus (TP) (3-26 mg L-1). The results obtained in shaken flasks showed a superiority of the consortium compared to the systems with separated species. In this sense, the treatment was carried out in a bubble column reactor, and the consortium formed by the microalga and the fungus C. echinulata showed a greater efficiency (at a light intensity of 100 µmol m-2 s-1), promoting by the symbiosis to reach removal efficiencies of up to 93.7, 78.8 and 93.4% for COD, TN and TP, respectively; meeting Brazilian and European standards for discharge into water bodies. In addition, no pH adjustment was required during the co-culture treatment, demonstrating the buffering effect of using these two types of microorganisms. Therefore, the use of the consortium formed by T. obliquus and C. echinulata as a remediator was highly promising to promote the advanced treatment of cheese whey.
Collapse
|
3
|
Wang J, Tian Q, Kang J, Zhou H, Yu X, Qiu G, Shen L. Mechanistic insight of fungal-microalgal pellets in photobioreactor for heavy-metal wastewater bioremediation. BIORESOURCE TECHNOLOGY 2025; 416:131794. [PMID: 39528032 DOI: 10.1016/j.biortech.2024.131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The high cost of harvesting microalgae limits their industrial application. Fungal-microalgal pellets can efficiently harvest microalgae and enhance heavy-metal adsorption. However, the molecular response mechanism of fungal-microalgal pellets under heavy-metal stress remains unclear. Fungal-microalgal pellets in a photobioreactor were used as a research object, and a 98 % harvesting efficiency could be achieved with adding exogenous carbon and nitrogen at pH 5.0-6.0 for 12 h of co-culture. Humic acid- and tryptophan-rich proteins in extracellular polymeric substances (EPS) participate in Cd(II) complexation. The Cd(II) response in fungal-microalgal pellets involves amino acids, glucose, lipids, energy metabolism, and antioxidant systems. The turning point was at 48 h. Proline, histidine, and glutamine synthesis and the adenosine-triphosphate (ATP) binding cassette (ABC) transport pathway play important roles in resistance to Cd(II) biotoxicity. This study provides a reference for the large-scale cultivation of fungal-microalgal symbiotic pellets and the practical application for industrial heavy-metal wastewater.
Collapse
Affiliation(s)
- Junjun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China; School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
4
|
Wang Z, Li L, Hong Y. Trilogy of comprehensive treatment of kitchen waste by bacteria-microalgae-fungi combined system: Pretreatment, water purification and resource utilization, and biomass harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175160. [PMID: 39084368 DOI: 10.1016/j.scitotenv.2024.175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Given its profound disservice, a bacteria-microalgae-fungi combined system was designed to treat kitchen waste. Firstly, a new type of microbial agent homemade compound microorganisms (HCM) (composed of Serratia marcescens, Bacillus subtilis and other 11 strains) with relatively high bio-security were developed for pretreating kitchen waste, and HCM efficiently degraded 85.2 % cellulose, 94.3 % starch, and 59.0 % oil. HCM also accomplished brilliantly the initial nutrients purification and liquefaction conversion of kitchen waste. Under mono-culture mode (fungi and microalgae were inoculated separately in the pre - and post-stages) and co-culture mode (fungi and microalgae were inoculated simultaneously in the early stage), microalgae-fungi consortia were then applied for further water purification and resource utilization of kitchen waste liquefied liquid (KWLL) produced in the pretreatment stage. Two kinds of microalgae-fungi consortia (Chlorella sp. HQ and Chlorella sp. MHQ2 form consortia with pellet-forming fungi Aspergillus niger HW8-1, respectively) removed 79.5-83.0 % chemical oxygen demand (COD), 44.0-56.5 % total nitrogen (TN), 90.3-96.4 % total phosphorus (TP), and 64.9-71.0 % NH4+-N of KWLL. What's more, the microalgae-fungi consortia constructed in this study accumulated abundant high-value substances at the same time of efficiently purifying KWLL. Finally, in the biomass harvesting stage, pellet-forming fungi efficiently harvested 81.9-82.1 % of microalgal biomass in a low-cost manner through exopolysaccharides adhesion, surface proteins interaction and charge neutralization. Compared with conventional microalgae-bacteria symbiosis system, the constructed bacteria-microalgae-fungi new-type combined system achieves the triple purpose of efficient purification, resource utilization, and biomass recovery on raw kitchen waste through the trilogy strategy, providing momentous technical references and more treatment systems selection for future kitchen waste treatment.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
6
|
Zheng X, Cong W, Gultom SO, Wang M, Zhou H, Zhang J. Manipulation of co-pelletization for Chlorela vulgaris harvest by treatment of Aspergillus niger spore. World J Microbiol Biotechnol 2024; 40:83. [PMID: 38286963 DOI: 10.1007/s11274-023-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
The co-pelletization of microalgae with filamentous fungi was a promising approach for microalgae harvest. However, the real conditions of microalgae growth limited the arbitrary optimization of co-pellets formation with filamentous fungi. Therefore, it is urgent to develop an approach to manipulate the co-pelletization through treatment of A. niger spores. In this study, Aspergillus niger and Chlorella vulgaris were used as the model species of filamentous fungi and microalgae to investigate co-pellets formation using A. niger spores after by different pH solutions treatment, swelling, snailase treatment. The importance of spore treatments on C. vulgaris harvest in sequence was claimed based on response surface methodology analysis. The pH solutions treatment, swelling, snailase treatment of A. niger spore contributed 21.0%, 10.5%, 40.7% of harvest ratio of C. vulgaris respectively, which guided the application of spore treatment into co-pelletization. Treatment of spore was showed as an efficient approach to manipulate co-pelletization for microalgae harvest in diverse microalgae condition. This results promoted the application of co-pelletization technology in microalgae harvest of various conditions.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | - Mingxuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
8
|
Liu J, Liu L, Wang S, Sun S, Hu C, Zhao Y. Enhancement of carbon nanotubes on microalgal-fungal consortium formation and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119120. [PMID: 37778062 DOI: 10.1016/j.jenvman.2023.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
As a promising material with an efficient light capture capability, a low amount of carbon nanotubes can affect growth and photosynthesis by regulating microalgal cells, thereby enhancing the pollutant removal efficiency in wastewater. In this study, microalgal-fungal consortia of Chlorella vulgaris and Ganoderma lucidum were developed with different types and concentrations of carbon nanotubes. The treatment effect of microalgal-fungal consortia on simulated digestate was also studied. The results demonstrate that 1.5 mg/L of carboxylated multi-walled carbon nanotubes remarkably promoted the formation, growth and photosynthesis of consortium. The dry weight and chlorophyll a content reached 19.3 ± 0.53 mg/symbiont and 27.3 ± 0.52 μg/L, respectively. Moreover, the removal efficiency of chemical oxygen demand, total nitrogen, total phosphorus and tetracycline hydrochloride were 94.1%, 65.5%, 61.9% and 96.2%, respectively. Overall, these findings suggest a promising future for the use of carbon nanotubes in wastewater treatment by regulating microalgal-fungal consortia.
Collapse
Affiliation(s)
- Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Li Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shilun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
9
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
10
|
Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
11
|
Zhang C, Laipan M, Zhang L, Yu S, Li Y, Guo J. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130105. [PMID: 36206717 DOI: 10.1016/j.jhazmat.2022.130105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Using filamentous fungi to capture unicellular microalgae is an effective way for microalgae recovery in water treatment. Here, fungi Aspergillus flavus ZJ-1 and microalgae Chlorella vulgaris WZ-1 isolated from a copper tailings pond were used to study the capture effect of ZJ-1 on WZ-1. The highest capture efficiency (97.85%) was obtained within 6 h under the optimized conditions of 30 °C, 150 rpm, fungi-algae biomass ratio of 2.24:1, and initial pH of 9.24 in microalgae medium. The formed fungi-algae pellets (FAPs) were further used to remove Cu(II) from aqueous solution. Results showed that the FAPs formed at different capture times all adsorbed Cu(II) well, and the PAFs formed within 2 h (PAFs2 h) exhibited the highest Cu(II) adsorption capacity (80.42 mg·g-1). SEM images showed that Cu(II) caused a change in the internal structure of PAFs2 h from loose to compact, the mycelium shrunk, and the microalgal cells were concave. Cu(II) adsorption by PAFs2 h was well conformed to the pseudo-second-order kinetics and the Langmuir isotherm (123.61 mg·g-1 of theoretically maximum adsorption capacity). This work opens a way for applying FAPs in the remediation of heavy metal-contaminated wastewater, and the metal adsorption effect was determined by the capture amount of microalgae.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
12
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|
13
|
Mechanism of enhanced production of triterpenoids in algal-fungal consortium. Bioprocess Biosyst Eng 2022; 45:1625-1633. [PMID: 35963944 DOI: 10.1007/s00449-022-02768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chlorella pyrenoidosa-Ganoderma lucidum symbiotic systems were constructed. The mechanism of enhanced production of triterpenoids in algal-fungal consortium by comparing the contents of triterpenoids in individual fungal systems and algal-fungal consortium systems was investigated. The production of triterpenoids in C. pyrenoidosa-G. lucidum consortium increased significantly (P < 0.05). The categories and relative abundances of metabolites in the individual systems and algal-fungal systems were measured and analyzed by metabonomic tests. There were 57 significant different metabolites (VIP > 1 and P < 0.05) including 12 downregulated metabolites and 45 upregulated metabolites were obtained. The significant enriched metabolic pathways (VIP > 1 and P < 0.05) of citrate cycle (TCA cycle), tyrosine metabolism, glycolysis, and terpenoid backbone biosynthesis in algal-fungal consortium were obtained. The relative abundances of important precursors of triterpenoids including mevalonic acid, lanosterol, and hydroquinone were 1.4 times, 1.7 times, and 2 times, respectively, in algal-fungal consortium than that in the individual fungal systems. The presence of C. pyrenoidosa in algal-fungal consortium promoted the biosynthesis of triterpenoids in G. lucidum.
Collapse
|