1
|
刘 芳, 龚 财, 秦 江, 符 州, 刘 莎. [Leukotriene D4 bronchial provocation test for detection of airway hyper-responsiveness in children]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:793-798. [PMID: 32895196 PMCID: PMC7321280 DOI: 10.12122/j.issn.1673-4254.2020.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the value of leukotriene D4 (LTD4) bronchial provocation test (BPT) in detection of airway hyper-responsiveness (AHR) in children. METHODS A total of 151 children aged 6 to 14 years, including 86 in remission of asthma and 65 with acute bronchitis, who were followed up in our respiratory clinic between November, 2017 and August, 2018. The children were randomly divided into LTD4 group (78 cases) and methacholine (MCH) group (73 cases). In LTD4 group, the 78 children underwent LTD4-BPT, including 46 with asthma and 32 children having re-examination for previous episodes of acute bronchitis; in MCH group, the 73 children underwent MCH-BPT, including 40 with asthma and 33 with acute bronchitis. MCH-BPT was also performed in the asthmatic children in the LTD4 group who had negative responses to LTD4 after an elution period. The major adverse reactions of the children to the two BPT were recorded. The diagnostic values of the two BPT were evaluated using receiver-operating characteristic (ROC) curve. RESULTS There was no significant difference in the results of basic lung function tests between LTD4 group and MCH group (P>0.05). The positive rate of BPT in asthmatic children in the LTD4 group was significantly lower than that in the MCH group (26.1% vs 72.5%; P < 0.05). The positive rate of BPT in children with previous acute bronchitis in the LTD4 group was lower than that in the MCH group (3.1% vs 15.2%). The positive rate of MCH-BPT in asthmatic children had negative BPT results in LTD4 group was 58.8%, and their asthma was mostly mild. The sensitivity was lower in LTD4 group than in MCH group (0.2609 vs 0.725), but the specificity was slightly higher in LTD4 group (0.9688 vs 0.8485).The area under ROC curvein LTD4 group was lower than that in MCH group (0.635 vs 0.787). In children with asthma in the LTD4 group, the main adverse reactions in BPT included cough (34.8%), shortness of breath (19.6%), chest tightness (15.2%), and wheezing (10.9%). The incidence of these adverse reactions was significantly lower in LTD4 group than in MCH group (P < 0.05). Serious adverse reactions occurred in neither of the two groups. CONCLUSIONS LTD4-BPT had high safety in clinical application of children and was similar to the specificity of MCH-BPT. However, it had low sensitivity, low diagnostic value, and limited application value in children's AHR detection.
Collapse
Affiliation(s)
- 芳君 刘
- />重庆医科大学附属儿童医院肺功能室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//国家儿童健康与疾病临床医学研究中心//儿科学重庆市重点实验室,重庆 400014Pulmonary Function Test Room, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 财惠 龚
- />重庆医科大学附属儿童医院肺功能室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//国家儿童健康与疾病临床医学研究中心//儿科学重庆市重点实验室,重庆 400014Pulmonary Function Test Room, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 江蛟 秦
- />重庆医科大学附属儿童医院肺功能室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//国家儿童健康与疾病临床医学研究中心//儿科学重庆市重点实验室,重庆 400014Pulmonary Function Test Room, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 州 符
- />重庆医科大学附属儿童医院肺功能室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//国家儿童健康与疾病临床医学研究中心//儿科学重庆市重点实验室,重庆 400014Pulmonary Function Test Room, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 莎 刘
- />重庆医科大学附属儿童医院肺功能室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//国家儿童健康与疾病临床医学研究中心//儿科学重庆市重点实验室,重庆 400014Pulmonary Function Test Room, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
2
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
3
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
4
|
Trinh HKT, Lee SH, Cao TBT, Park HS. Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev Respir Med 2019; 13:1169-1178. [PMID: 31544544 DOI: 10.1080/17476348.2019.1670640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Asthma is a chronic inflammatory disease of the airways with a large heterogeneity of clinical phenotypes. There has been increasing interest regarding the role of cysteinyl leukotriene (LT) and leukotriene receptor antagonists (LTRA) in asthma treatment.Areas covered: This review summarized the data (published in PubMed during 1984-2019) regarding LTRA treatment in asthma and LTs-related airway inflammation mechanisms. Involvement of LTs C4/D4/E4 has been demonstrated in the several aspects of airway inflammation and remodeling. Novel pathways related to LTE4, the most potent mediator, and its respective receptors have recently been studied. Antagonists against cysteinyl leukotriene receptor (CysLTR) type 1, including montelukast, pranlukast and zafirlukast, have been widely prescribed in clinical practices; however, some clinical trials have shown insignificant responses to LTRAs in adult asthmatics, while some phenotypes of adult asthma showed more favorable responses to LTRAs including aspirin-exacerbated respiratory disease, elderly asthma, asthma associated with smoking, obesity and allergic rhinitis.Expert opinion: Further investigations are needed to understand the role of LTs in airway inflammation and remodeling of the asthmatic airways. There is a lack of biomarkers to predict responsiveness to LTRA, especially in adult asthmatics. Besides CysLTR1 antagonists, targets aiming other LT pathways should be considered.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - So-Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Department of Biomedicine, Ajou University, Suwon, South Korea
| |
Collapse
|
5
|
Dos S Jesus T, Dos S Costa R, Alcântara-Neves NM, Barreto ML, Figueiredo CA. Variants in the CYSLTR2 are associated with asthma, atopy markers and helminths infections in the Brazilian population. Prostaglandins Leukot Essent Fatty Acids 2019; 145:15-22. [PMID: 31126515 DOI: 10.1016/j.plefa.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Asthma is a chronic disease of the airways and its most common phenotype is characterized by a T2 type response with IgE production and inflammatory mediators in response to common allergens. Cysteinyl leukotrienes (CysLTs), LTC4, LTD4 and LTE4, are mediators known to possess important proinflammatory action. CysLTs can bind to the Cysteinyl leukotriene receptor type 2 (CysLTR2) and activate an inflammatory. Polymorphisms in CysLTR2 have been associated with asthma and atopy, although the mechanism is not clear. OBJECTIVE To evaluate the association between genetic polymorphisms in CYSLTR2 with asthma phenotypes, atopy markers and helminth infection. METHODS Genotyping was performed using a panel Illumina and carried out in 1245 participants of SCAALA program (Social Change, Asthma, Allergy in Latin American). Logistic regressions for asthma, helminth infections (Trichuris trichiura and Ascaris lumbricoides) and allergy markers (skin tests and IgE production) were performed using PLINK 1.9 software adjusted for sex, age, helminth infection and ancestry markers. RESULTS The G allele of rs1323556 was negatively associated with asthma in the additive model (OR 0.74, 95% CI 0.59-0.93) and in the dominant model (OR 0.71, 95% CI 0.53-0.74). The G allele of rs1575464 was also negatively associated with asthma in two genetic models, additive (OR 0.77, 95% CI 0.62-0.96) and dominant (OR 0.73, 95% CI 0.55-0.97). The G allele of rs61735175 was positively associated with asthma severity in the additive model (OR 1.72, 95% CI 1.07-2.77) and in the dominant model (OR 1.77, 95% CI 1.09-2.85). Five SNVs were associated with atopy markers and four SNVs were associated with helminth infections. CONCLUSION Polymorphisms in the CYSLTR2 gene are associated with asthma, atopy markers and helminth infection in Brazilian individuals, which may lead to protection or risk for such conditions, however, more studies are needed to evaluate the functional of this variants here in described.
Collapse
Affiliation(s)
- Talita Dos S Jesus
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | - Ryan Dos S Costa
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | - Neuza Maria Alcântara-Neves
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | | | - Camila Alexandrina Figueiredo
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil.
| |
Collapse
|
6
|
Rusznak M, Peebles RS. Prostaglandin E2 in NSAID-exacerbated respiratory disease: protection against cysteinyl leukotrienes and group 2 innate lymphoid cells. Curr Opin Allergy Clin Immunol 2019; 19:38-45. [PMID: 30516547 PMCID: PMC6296891 DOI: 10.1097/aci.0000000000000498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the recent advances that have been made in understanding the protective role of prostaglandin E2 (PGE2) in aspirin-exacerbated respiratory disease (AERD), known in Europe as NSAID-exacerbated respiratory disease (N-ERD). RECENT FINDINGS Decreased PGE2 signaling through the EP2 receptor in patients with AERD leads to an increase in leukotriene synthesis and signaling. Leukotriene signaling not only directly activates group 2 innate lymphoid cells and mast cells, but it also increases production of IL-33 and thymic stromal lymphopoietin. These cytokines drive Th2 inflammation in a suspected feed-forward mechanism in patients with AERD. SUMMARY Recent discoveries concerning the role of PGE2 in leukotriene synthesis and signaling in AERD, as well as downstream effects on group 2 innate lymphoid cells and mast cells, allow for a more comprehensive understanding of the pathogenesis of this disease. These discoveries also identify new paths of potential investigation and possible therapeutic targets for AERD.
Collapse
Affiliation(s)
- Mark Rusznak
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
7
|
Trinh HKT, Suh DH, Nguyen TVT, Choi Y, Park HS, Shin YS. Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma. Prostaglandins Leukot Essent Fatty Acids 2019; 141:17-23. [PMID: 30661601 DOI: 10.1016/j.plefa.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Identification of the characterization of cysteinyl leukotrienes receptor (CysLTRs) could facilitate our understanding of these receptors' role in asthma. We aimed to investigate the localization and interactions of CysLTRs using a mouse model of asthma. BALB/c mice were administered ovalbumin (OVA) to induce allergic asthma. Some mice were administered the antagonists of CysLTR1, CysLTR2, and purinergic receptor P2Y12 (P2Y12R) (montelukast, HAMI 3379 and clopidogrel, respectively). The expression levels of CysLTR1, CysLTR2, and P2Y12R on lung tissues and inflammatory cells were evaluated by western blot, flow cytometry, and immunochemistry. CysLTR1 and P2Y12R were significantly up-regulated in lung tissues (P < 0.05 for each) from mouse after being sensitized and challenged with OVA (OVA/OVA). The ratio of CysLTR1: CysLTR2: P2Y12R in lungs of negative control (NC) mice was shifted from 1:0.43:0.35 to 1:0.65:1.34 in OVA/OVA mice. Montelukast significantly diminished the up-regulation of CysLTR1, CysLTR2, and P2Y12R (P < 0.05 for each), while the effects of HAMI 3379 and clopidogrel were predominant on the expression of CysLTR2 and P2Y12R, respectively. Montelukast predominantly diminished the cell count, while clopidogrel potently inhibited the release of interleukin (IL)-4, IL-5, and IL-13. Our study demonstrated the interactions between CysLTRs, thereby highlighting the potential synergistic effects of CysLTR antagonists in asthma treatment.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyeon Suh
- Department of Pharmacology, CKD Research institute, Yong-in, South Korea
| | - Thuy Van Thao Nguyen
- Pediatric Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
8
|
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158:161-173. [DOI: 10.1016/j.bcp.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
9
|
Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest 2018; 128:2691-2701. [PMID: 29757196 DOI: 10.1172/jci97946] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leukotrienes, a class of arachidonic acid-derived bioactive molecules, are known as mediators of allergic and inflammatory reactions and considered to be important drug targets. Although an inhibitor of leukotriene biosynthesis and antagonists of the cysteinyl leukotriene receptor are clinically used for bronchial asthma and allergic rhinitis, these medications were developed before the molecular identification of leukotriene receptors. Numerous studies using cloned leukotriene receptors and genetically engineered mice have unveiled new pathophysiological roles for leukotrienes. This Review covers the recent findings on leukotriene receptors to revisit them as new drug targets.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Graduate School of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipidomics, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Dholia N, Yadav UCS. Lipid mediator Leukotriene D 4-induces airway epithelial cells proliferation through EGFR/ERK1/2 pathway. Prostaglandins Other Lipid Mediat 2018; 136:55-63. [PMID: 29751150 DOI: 10.1016/j.prostaglandins.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLTs), the potent lipid inflammatory mediators, are elevated in many pathological conditions and implicated in various inflammatory diseases including asthma, however their role in airway epithelial cells modulation is not clearly understood. We have investigated the effects of a CysLT, Leukotriene D4 (LTD4) on human airway epithelial cells, and assessed its role and mode of action in these cells. METHODOLOGY Human small airway epithelial cells (SAECs) and A549 cells were incubated with different concentrations of LTD4 for different time intervals. Subsequently trypan blue dye exclusion assay, MTT assay, Western blotting, RT-PCR and immunofluorescence experiments were performed to examine the effects of LTD4 on proliferation and related molecular changes in the airway epithelial cells. RESULTS The treatment of human airway epithelial cells with LTD4 resulted in a significant increase in cell proliferation and modulation in the expression of receptors, CysLT1R and CysLT2R in SAECs as well as A549 cells. In both types of cells, LTD4 increased the expression levels of PCNA and c-myc, and trans-activated EGF receptor and increased the activation of ERK1/2. When treated along with epidermal growth factor (EGF), LTD4 showed a marginal additive effect in ERK1/2 and EGFR phosphorylation compared to LTD4 alone in both types of airway epithelial cells. CONCLUSION In conclusion, these results suggest that sustained presence of lipid inflammatory mediator LTD4 could induce human airway epithelial cell proliferation through ERK1/2 phosphorylation, either directly via CysLT1 receptor or by transactivating EGFR.
Collapse
Affiliation(s)
- Neeraj Dholia
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Umesh C S Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
11
|
Matsuda M, Tabuchi Y, Nishimura K, Nakamura Y, Sekioka T, Kadode M, Kawabata K, Nabe T. Increased expression of CysLT 2 receptors in the lung of asthmatic mice and role in allergic responses. Prostaglandins Leukot Essent Fatty Acids 2018; 131:24-31. [PMID: 29628047 DOI: 10.1016/j.plefa.2018.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/23/2022]
Abstract
Compared with CysLT1 receptors, the functional role of CysLT2 receptors in asthma has not been clarified. The purpose of this study was to determine 1) whether CysLT2 receptors are expressed in the lung of mice and if expression increases in asthmatic mice, and 2) whether CysLT2 receptors are involved in allergic leukocyte infiltration into the lung and in the development of airway remodeling in asthmatic mice. BALB/c mice were sensitized with ovalbumin (OVA) + Al(OH)3, and intratracheally challenged with OVA 4 times. Lung tissue was isolated before and after the 4th OVA challenge for detection of CysLT2 receptors by immunohistochemistry and flow cytometry. The effect of a CysLT2 receptor antagonist BayCysLT2RA on multiple antigen challenge-induced leukocyte infiltration into the lung and the development of airway remodeling was evaluated. Even in non-challenged mice, CysLT2 receptors were expressed in bronchial smooth muscle. After multiple challenges, expression was also observed in leukocytes infiltrating into alveolar spaces. CysLT2R+ leukocytes included alveolar macrophages, conventional dendritic cells, and eosinophils. BayCysLT2RA significantly inhibited multiple antigen challenge-induced increases in eosinophils and mononuclear cells in the lung. The development of airway remodeling was tended to be suppressed by CysLT2 receptor antagonist. In conclusion, CysLT2 receptors were constitutively expressed in the lung, and expression was strengthened in asthmatic mice. Activation of CysLT2 receptors was functionally involved in allergic leukocyte infiltration into the lung. The CysLT2 receptor can be a molecular target for the development of new pharmacotherapies for asthma.
Collapse
Affiliation(s)
- Masaya Matsuda
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yuki Tabuchi
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Kazuma Nishimura
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yuri Nakamura
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Tomohiko Sekioka
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Michiaki Kadode
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Kazuhito Kawabata
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takeshi Nabe
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| |
Collapse
|
12
|
Samuchiwal SK, Boyce JA. Role of lipid mediators and control of lymphocyte responses in type 2 immunopathology. J Allergy Clin Immunol 2018; 141:1182-1190. [PMID: 29477727 DOI: 10.1016/j.jaci.2018.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Type 2 immunopathology is a cardinal feature of allergic diseases and involves cooperation between adaptive immunity and innate effector responses. Virtually all cell types relevant to this pathology generate leukotriene and/or prostaglandin mediators that derive from arachidonic acid, express receptors for such mediators, or both. Recent studies highlight prominent functions for these mediators in communication between the innate and adaptive immune systems, as well as amplification or suppression of type 2 effector responses. This review focuses on recent advances and insights, and highlights existing and potential therapeutic applications of drugs that target these mediators or their receptors, with a special emphasis on their regulation of the innate and adaptive lymphocytes relevant to type 2 immunopathology.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
13
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
14
|
Rezende BM, Athayde RM, Gonçalves WA, Resende CB, Teles de Tolêdo Bernardes P, Perez DA, Esper L, Reis AC, Rachid MA, Castor MGME, Cunha TM, Machado FS, Teixeira MM, Pinho V. Inhibition of 5-lipoxygenase alleviates graft-versus-host disease. J Exp Med 2017; 214:3399-3415. [PMID: 28947611 PMCID: PMC5679175 DOI: 10.1084/jem.20170261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023] Open
Abstract
Rezende et al. report that the transplant of 5-lipoxygenase (5-LO)−deficient leukocytes protects mice from GVHD. Treatment with the 5-LO inhibitor zileuton or a LTB4 antagonist at the initial phase of the transplant achieves similar protective effects. 5-LO is a crucial contributor to tissue damage in GVHD. Leukotriene B4 (LTB4), a proinflammatory mediator produced by the enzyme 5-lipoxygenase (5-LO), is associated with the development of many inflammatory diseases. In this study, we evaluated the participation of the 5-LO/LTB4 axis in graft-versus-host disease (GVHD) pathogenesis by transplanting 5-LO–deficient leukocytes and investigated the effect of pharmacologic 5-LO inhibition by zileuton and LTB4 inhibition by CP-105,696. Mice that received allogeneic transplant showed an increase in nuclear 5-LO expression in splenocytes, indicating enzyme activation after GVHD. Mice receiving 5-LO–deficient cell transplant or zileuton treatment had prolonged survival, reduced GVHD clinical scores, reduced intestinal and liver injury, and decreased levels of serum and hepatic LTB4. These results were associated with inhibition of leukocyte recruitment and decreased production of cytokines and chemokines. Treatment with CP-105,696 achieved similar effects. The chimerism or the beneficial graft-versus-leukemia response remained unaffected. Our data provide evidence that the 5-LO/LTB4 axis orchestrates GVHD development and suggest it could be a target for the development of novel therapeutic strategies for GVHD treatment.
Collapse
Affiliation(s)
- Barbara Maximino Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Rayssa Maciel Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - William Antônio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Carolina Braga Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Priscila Teles de Tolêdo Bernardes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Denise Alves Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lísia Esper
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Alesandra Côrte Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marina Gomes Miranda E Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
15
|
Thompson-Souza GA, Gropillo I, Neves JS. Cysteinyl Leukotrienes in Eosinophil Biology: Functional Roles and Therapeutic Perspectives in Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:106. [PMID: 28770202 PMCID: PMC5515036 DOI: 10.3389/fmed.2017.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs), LTC4, and its extracellular metabolites, LTD4 and LTE4, have varied and multiple roles in mediating eosinophilic disorders including host defense against parasitic helminthes and allergic inflammation, especially in the lung and in asthma. CysLTs are known to act through at least 2 receptors termed cysLT1 receptor (CysLT1R) and cysLT2 receptor (CysLT2R). Eosinophils contain a dominant population of cytoplasmic crystalloid granules that store various preformed proteins. Human eosinophils are sources of cysLTs and are known to express the two known cysLTs receptors (CysLTRs). CysLTs can have varied functions on eosinophils, ranging from intracrine regulators of secretion of granule-derived proteins to paracrine/autocrine roles in eosinophil chemotaxis, differentiation, and survival. Lately, it has been recognized the expression of CysLTRs in the membranes of eosinophil granules. Moreover, cysLTs have been shown to evoke secretion from isolated cell-free eosinophil granules operating through their receptors expressed on granule membranes. In this work, we review the functional roles of cysLTs in eosinophil biology. We review cysLTs biosynthesis, their receptors, and argue the intracrine and paracrine/autocrine responses induced by cysLTs in eosinophils and in isolated free extracellular eosinophil granules. We also examine and speculate on the therapeutic relevance of targeting CysLTRs in the treatment of eosinophilic disorders.
Collapse
Affiliation(s)
| | - Isabella Gropillo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Sekioka T, Kadode M, Osakada N, Fujita M, Matsumura N, Yamaura Y, Nakade S, Nabe T, Kawabata K. A new CysLT 1 and CysLT 2 receptors-mediated anaphylaxis guinea pig model. Prostaglandins Leukot Essent Fatty Acids 2017; 119:18-24. [PMID: 28410666 DOI: 10.1016/j.plefa.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/06/2017] [Indexed: 01/10/2023]
Abstract
Although the effectiveness of CysLT1 receptor antagonists on asthma has been clinically established, the effects of CysLT2 receptor antagonists are still unclear. The purpose of this study was to develop a new CysLT1 and CysLT2 receptors-mediated anaphylaxis guinea pig model using S-hexyl GSH, a γ-glutamyl transpeptidase (GTP) inhibitor, to suppress conversion of LTC4 to LTD4. Actively sensitized guinea pigs were challenged with OVA in the absence or presence of S-hexyl GSH, and survival rate following anaphylactic response was monitored. OVA-induced fatal anaphylaxis in the absence of S-hexyl GSH was almost completely inhibited by montelukast, a CysLT1 receptor antagonist, but not by the CysLT2 receptor antagonist BayCysLT2RA. However, under treatment with S-hexyl-GSH, the inhibitory effect of motelukast was dramatically diminished, whereas that of BayCysLT2RA was markedly increased. The dual CysLT1/2 receptor antagonist ONO-6950 effectively inhibited anaphylactic response in both S-hexyl GSH-treated and non-treated animals. LC/MS/MS analysis revealed that S-hexyl GSH treatment actually inhibited LTC4 metabolism in the blood and lung tissues. Using S-hexyl GSH, we developed a novel CysLT1 and CysLT2 receptors-mediated anaphylaxis guinea pig model that can be useful for not only screening both CysLT2 and CysLT1/2 receptors antagonists, but also for functional analysis of CysLT2 receptors.
Collapse
Affiliation(s)
- Tomohiko Sekioka
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan.
| | - Michiaki Kadode
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Noriko Osakada
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Manabu Fujita
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yoshiyuki Yamaura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shinji Nakade
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takeshi Nabe
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Kazuhito Kawabata
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
17
|
Gauvreau GM, Boulet LP, FitzGerald JM, Cockcroft DW, Davis BE, Leigh R, Tanaka M, Fourre JA, Tanaka M, Nabata T, O'Byrne PM. A dual CysLT 1/2 antagonist attenuates allergen-induced airway responses in subjects with mild allergic asthma. Allergy 2016; 71:1721-1727. [PMID: 27444660 DOI: 10.1111/all.12987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The cysteinyl leukotrienes (cysLTs) play a key role in the pathophysiology of asthma. In addition to functioning as potent bronchoconstrictors, cysLTs contribute to airway inflammation through eosinophil and neutrophil chemotaxis, plasma exudation, and mucus secretion. We tested the activity of the dual cysLT1/2 antagonist, ONO-6950, against allergen-induced airway responses. METHODS Subjects with documented allergen-induced early (EAR) and late asthmatic response (LAR) were randomized in a three-way crossover study to receive ONO-6950 (200 mg) or montelukast (10 mg) or placebo q.d. on days 1-8 of the three treatment periods. Allergen was inhaled on day 7 two hours postdose, and forced expiratory volume in 1 s (FEV1 ) was measured for 7 h following challenge. Sputum eosinophils and airway hyperresponsiveness were measured before and after allergen challenge. The primary outcome was the effect of ONO-6950 vs placebo on the EAR and LAR. RESULTS Twenty-five nonsmoking subjects with mild allergic asthma were enrolled and 20 subjects completed all three treatment periods per protocol. ONO-6950 was well tolerated. Compared to placebo, ONO-6950 significantly attenuated the maximum % fall in FEV1 and area under the %FEV1 /time curve during the EAR and LAR asthmatic responses (P < 0.05) and allergen-induced sputum eosinophils. There were no significant differences between ONO-6950 and montelukast. CONCLUSIONS Attenuation of EAR, LAR, and airway inflammation is consistent with cysLT1 blockade. Whether dual cysLT1/2 antagonism offers additional benefit for treatment of asthma requires further study.
Collapse
Affiliation(s)
- G. M. Gauvreau
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - L.-P. Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; Quebec City QC Canada
| | - J. M. FitzGerald
- Department of Medicine; University of British Columbia; Vancouver BC Canada
| | - D. W. Cockcroft
- Department of Medicine; University of Saskatchewan; Saskatoon SK Canada
| | - B. E. Davis
- Department of Medicine; University of Saskatchewan; Saskatoon SK Canada
| | - R. Leigh
- Department of Medicine; University of Calgary; Calgary AB Canada
| | - M. Tanaka
- ONO Pharmaceutical Co., Ltd.; Osaka Japan
| | | | - M. Tanaka
- ONO Pharmaceutical Co., Ltd.; Osaka Japan
| | - T. Nabata
- ONO Pharmaceutical Co., Ltd.; Osaka Japan
| | - P. M. O'Byrne
- Department of Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
18
|
Sekioka T, Kadode M, Yonetomi Y, Kamiya A, Fujita M, Nabe T, Kawabata K. CysLT 2 receptor activation is involved in LTC 4-induced lung air-trapping in guinea pigs. Eur J Pharmacol 2016; 794:147-153. [PMID: 27887950 DOI: 10.1016/j.ejphar.2016.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
CysLT1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT2 receptor-mediated LTC4-induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC4 is rapidly converted to LTD4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC4-induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT1 receptor antagonist, but not by BayCysLT2RA, a CysLT2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT2RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC4-/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC4-induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC4-induced air-trapping was weak, treatment with BayCysLT2RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT2RA completely suppressed LTC4-induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT2 receptors mediate LTC4-induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT2 receptors contribute to asthmatic response involving air-trapping.
Collapse
Affiliation(s)
- Tomohiko Sekioka
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan.
| | - Michiaki Kadode
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yasuo Yonetomi
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Akihiro Kamiya
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Manabu Fujita
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takeshi Nabe
- Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Kazuhito Kawabata
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
19
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
20
|
Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein-coupled receptor, GPR99. Proc Natl Acad Sci U S A 2016; 113:6242-7. [PMID: 27185938 DOI: 10.1073/pnas.1605957113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cysteinyl leukotrienes (cysLTs), leukotriene C4 (LTC4), LTD4, and LTE4 are proinflammatory lipid mediators with pathobiologic function in asthma. LTE4, the stable cysLT, is a weak agonist for the type 1 and type 2 cysLT receptors (CysLTRs), which constrict airway smooth muscle, but elicits airflow obstruction and pulmonary inflammation in patients with asthma. We recently identified GPR99 as a high-affinity receptor for LTE4 that mediates cutaneous vascular permeability. Here we demonstrate that a single intranasal exposure to extract from the respiratory pathogen Alternaria alternata elicits profound epithelial cell (EpC) mucin release and submucosal swelling in the nasal mucosa of mice that depends on cysLTs, as it is absent in mice deficient in the terminal enzyme for cysLT biosynthesis, LTC4 synthase (LTC4S). These mucosal changes are associated with mast cell (MC) activation and absent in MC-deficient mice, suggesting a role for MCs in control of EpC function. Of the three CysLTRs, only GPR99-deficient mice are fully protected from EpC mucin release and swelling elicited by Alternaria or by intranasal LTE4 GPR99 expression is detected on lung and nasal EpCs, which release mucin to doses of LTE4 one log lower than that required to elicit submucosal swelling. Finally, mice deficient in MCs, LTC4S, or GPR99 have reduced baseline numbers of goblet cells, indicating an additional function in regulating EpC homeostasis. These results demonstrate a novel role for GPR99 among CysLTRs in control of respiratory EpC function and suggest that inhibition of LTE4 and of GPR99 may have therapeutic benefits in asthma.
Collapse
|
21
|
Chen H, Yang H, Wang Z, Xie X, Nan F. Discovery of 3-Substituted 1H-Indole-2-carboxylic Acid Derivatives as a Novel Class of CysLT1 Selective Antagonists. ACS Med Chem Lett 2016; 7:335-9. [PMID: 26985325 DOI: 10.1021/acsmedchemlett.5b00482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 01/19/2023] Open
Abstract
The indole derivative, 3-((E)-3-((3-((E)-2-(7-chloroquinolin-2yl)vinyl)phenyl)amino)-3-oxoprop-1-en-1-yl)-7-methoxy-1H-indole-2-carboxylic acid (17k), was identified as a novel and highly potent and selective CysLT1 antagonist with IC50 values of 0.0059 ± 0.0011 and 15 ± 4 μM for CysLT1 and CysLT2, respectively.
Collapse
Affiliation(s)
- Huayan Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Yang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
22
|
Yonetomi Y, Sekioka T, Kadode M, Kitamine T, Kamiya A, inoue A, Nakao T, Nomura H, Murata M, Nakao S, Nambu F, Fujita M, Nakade S, Kawabata K. Effects of ONO-6950, a novel dual cysteinyl leukotriene 1 and 2 receptors antagonist, in a guinea pig model of asthma. Eur J Pharmacol 2015; 765:242-8. [PMID: 26318198 DOI: 10.1016/j.ejphar.2015.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
We assessed in this study the anti-asthmatic effects of ONO-6950, a novel cysteinyl leukotriene 1 (CysLT1) and 2 (CysLT2) receptors dual antagonist, in normal and S-hexyl glutathione (S-hexyl GSH)-treated guinea pigs, and compared these effects to those of montelukast, a CysLT1 selective receptor antagonist. Treatment with S-hexyl GSH reduced animals LTC4 metabolism, allowing practical evaluation of CysLT2 receptor-mediated airway response. ONO-6950 antagonized intracellular calcium signaling via human and guinea pig CysLT1 and CysLT2 receptors with IC50 values of 1.7 and 25 nM, respectively (human receptors) and 6.3 and 8.2 nM, respectively (guinea pig receptors). In normal guinea pigs, both ONO-6950 (1 or 0.3 mg/kg, p.o.) and the CysLT1 receptor antagonist montelukast (0.3 or 0.1 mg/kg, p.o.) fully attenuated CysLT1-mediated bronchoconstriction and airway vascular hyperpermeability induced by LTD4. On the other hand, in S-hexyl GSH-treated guinea pigs ONO-6950 at 3 mg/kg, p.o. or more almost completely inhibited bronchoconstriction and airway vascular hyperpermeability elicited by LTC4, while montelukast showed only partial or negligible inhibition of these airway responses. In ovalbumin sensitized guinea pigs, treatment with S-hexyl GSH on top of pyrilamine and indomethacin rendered antigen-induced bronchoconstriction sensitive to both CysLT1 and CysLT2 receptor antagonists. ONO-6950 strongly inhibited this asthmatic response to the level attained by combination therapy with montelukast and BayCysLT2RA, a selective CysLT2 receptor antagonist. These results clearly demonstrate that ONO-6950 is an orally active dual CysLT1/LT2 receptor antagonist that may provide a novel therapeutic option for patients with asthma.
Collapse
Affiliation(s)
- Yasuo Yonetomi
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan.
| | - Tomohiko Sekioka
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Michiaki Kadode
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Tetsuya Kitamine
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Akihiro Kamiya
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Atsuto inoue
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Takafumi Nakao
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Hiroaki Nomura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Masayuki Murata
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Shintaro Nakao
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Fumio Nambu
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Manabu Fujita
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Shinji Nakade
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| | - Kazuhito Kawabata
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Mishima-gun, Osaka 618-8585, Japan
| |
Collapse
|
23
|
Itadani S, Yashiro K, Aratani Y, Sekiguchi T, Kinoshita A, Moriguchi H, Ohta N, Takahashi S, Ishida A, Tajima Y, Hisaichi K, Ima M, Ueda J, Egashira H, Sekioka T, Kadode M, Yonetomi Y, Nakao T, Inoue A, Nomura H, Kitamine T, Fujita M, Nabe T, Yamaura Y, Matsumura N, Imagawa A, Nakayama Y, Takeuchi J, Ohmoto K. Discovery of Gemilukast (ONO-6950), a Dual CysLT1 and CysLT2 Antagonist As a Therapeutic Agent for Asthma. J Med Chem 2015. [PMID: 26200813 DOI: 10.1021/acs.jmedchem.5b00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An orally active dual CysLT1 and CysLT2 antagonist possessing a distinctive structure which consists of triple bond and dicarboxylic acid moieties is described. Gemilukast (ONO-6950) was generated via isomerization of the core indole and the incorporation of a triple bond into a lead compound. Gemilukast exhibited antagonist activities with IC50 values of 1.7 and 25 nM against human CysLT1 and human CysLT2, respectively, and potent efficacy at an oral dose of 0.1 mg/kg given 24 h before LTD4 challenge in a CysLT1-dependent guinea pig asthmatic model. In addition, gemilukast dose-dependently reduced LTC4-induced bronchoconstriction in both CysLT1- and CysLT2-dependent guinea pig asthmatic models, and it reduced antigen-induced constriction of isolated human bronchi. Gemilukast is currently being evaluated in phase II trials for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Takeshi Nabe
- ∥Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge, Hirakata, Osaka 573-0101, Japan.,⊥Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi Misasagi, Yamashina, Kyoto 607-8414, Japan
| | | | | | | | | | | | | |
Collapse
|