1
|
Tanaka J, Oguma T, Ishiguro T, Taniguchi H, Nishiuma T, Tateno H, Matsumoto H, Koshimizu N, Ito Y, Matsunaga K, Matsushima H, Uchida Y, Yokomura K, Yasuba H, Suzuki J, Hattori S, Okada N, Tomomatsu K, Asano K. Clinical Characteristics of Difficult-To-Treat Allergic Bronchopulmonary Aspergillosis and Its Prediction Score. Allergy 2025. [PMID: 40317973 DOI: 10.1111/all.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/28/2024] [Accepted: 02/20/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND OBJECTIVE Administration of oral corticosteroids and/or azole antifungals for 4-6 months remains the standard treatment for allergic bronchopulmonary aspergillosis (ABPA). This study investigated the clinical characteristics of patients with difficult-to-treat ABPA who failed to achieve clinical remission within 6 months. METHODS Among the participants of a nationwide survey conducted in Japan in 2020, treatment-naïve patients with ABPA who satisfied Asano's criteria were enrolled in this study. Clinical remission was defined as stable disease without exacerbation for ≥ 6 months under minimal treatment (oral prednisolone: ≤ 5 mg/day and no antifungal medication). A risk prediction score for difficult-to-treat ABPA was developed and validated in an independent cohort comprising patients with ABPA from a prospective registration study in Japan. RESULTS In total, 316 treatment-naïve patients with ABPA were enrolled in the study. The median time to minimal treatment status was 4.8 months in the group receiving standard treatment. The clinical remission rate at 6 months after standard treatment was 51%. Age ≤ 50 years at onset of ABPA (p = 0.04), serum A. fumigatus-specific IgE titer of ≥ 20 UA/mL (p = 0.006), positive culture for Aspergillus spp. in the sputum/bronchial lavage fluid (p = 0.05), and presence of high attenuation mucus (HAM; p = 0.10) were associated with difficult-to-treat ABPA. The number of positive indicators indicated the risk of failure of standard treatment to yield clinical remission within 6 months in the derivation (n = 87, p < 0.001) and validation (n = 64, p = 0.009) cohorts. CONCLUSION Multiple components, including age at onset, allergic sensitization, airway fungal burden, and HAM, were associated with difficult-to-treat ABPA.
Collapse
Affiliation(s)
- Jun Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Hirokazu Taniguchi
- Division of Respiratory Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Teruaki Nishiuma
- Department of Respiratory Medicine, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine and Allergology, Kindai University School of Medicine, Osaka, Japan
- Deparment of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Koshimizu
- Division of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hidekazu Matsushima
- Department of Respiratory Medicine, Saitama Red Cross Hospital, Saitama, Japan
| | - Yoshitaka Uchida
- Department of Respiratory Medicine, Saitama Medical University Hospital, Saitama, Japan
| | - Koshi Yokomura
- Division of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hirotaka Yasuba
- Department of Airway Medicine, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Junko Suzuki
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Shigeaki Hattori
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoki Okada
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Katsuyoshi Tomomatsu
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
2
|
Ledford DK, Kim TB, Ortega VE, Cardet JC. Asthma and respiratory comorbidities. J Allergy Clin Immunol 2025; 155:316-326. [PMID: 39542142 DOI: 10.1016/j.jaci.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Asthma is a common respiratory condition with various phenotypes, nonspecific symptoms, and variable clinical course. The occurrence of other respiratory conditions with asthma, or respiratory comorbidities (RCs), is not unusual. A literature search of PubMed was performed for asthma and a variety of respiratory comorbidities for the years 2019 to 2024. The 5 conditions with the largest number of references, other than rhinitis and rhinosinusitis (addressed elsewhere), or that are the most problematic in the authors' clinical experience, are summarized. Others are briefly discussed. The diagnosis and treatment of both asthma and RCs are complicated by the overlap of symptoms and signs. Recognizing RCs is especially problematic in adult-onset, non-type 2 asthma because there are no biomarkers to assist in confirming non-type 2 asthma. Treatment decisions in subjects with suspected asthma and RCs are complicated by the potential similarities between the symptoms or signs of the RC and asthma, the absence of a sine quo non for the diagnosis of asthma, the likelihood that many RCs improve with systemic corticosteroid therapy, and the possibility that manifestations of the RCs are misattributed to asthma or vice versa. Recognition of RCs is critical to the effective management of asthma, particularly severe or difficult-to-treat asthma.
Collapse
Affiliation(s)
- Dennis K Ledford
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, and the James A. Haley VA Hospital, Tampa, Fla.
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Victor E Ortega
- Division of Pulmonary Medicine, Department of Medicine and Division of Epidemiology, Department of Qualitative Health Sciences, Mayo Clinic School of Health Sciences, Phoenix, Ariz
| | - Juan Carlos Cardet
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, and the James A. Haley VA Hospital, Tampa, Fla
| |
Collapse
|
3
|
Nomura N, Matsumoto H, Asano K, Hayashi Y, Yokoyama A, Nishimura Y, Hashimoto N, Sakagami T, Fukunaga K, Hizawa N, Yamasaki A, Nagase H, Hattori N, Kondo M, Harada N, Sugiura H, Miki M, Kimura T, Toyoshima M, Matsuno O, Koh H, Kita T, Tomioka H, Tomii K, Ohnishi H, Takata S, Tobino K, Imokawa S, Sunadome H, Nagasaki T, Oguma T, Tanabe N, Hirai T. Refractory phenotype of Aspergillus-sensitized asthma with bronchiectasis and allergic bronchopulmonary aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100364. [PMID: 39659740 PMCID: PMC11629325 DOI: 10.1016/j.jacig.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 12/12/2024]
Abstract
Background Sensitization to Aspergillus, mucus plugs, and bacterial colonization may coexist and relate to a refractory phenotype during follow-up in asthma with bronchiectasis and allergic bronchopulmonary aspergillosis (ABPA). Objective This study aimed to clarify the features of Aspergillus-sensitized refractory asthma with bronchiectasis and determine the refractory phenotype in this population and ABPA. Methods This study included cases of the oldest available Aspergillus fumigatus-specific IgE data and chest computed tomography images from a nationwide survey of refractory asthma with bronchiectasis. The characteristics of the A fumigatus-IgE positive (Af sIgE+) group were investigated and compared with its nonsensitized counterpart (Af sIgE-) and ABPA group. Cluster analysis was conducted to determine the refractory phenotype. Results The Af sIgE+ group (n = 35) demonstrated type 2 inflammation levels intermediate between the ABPA (n = 42) and Af sIgE- (n = 38) groups while exhibiting higher blood monocyte counts than the Af sIgE- group. Cluster analysis conducted in patients with ABPA and Af sIgE+ newly determined 2 clusters: one was characterized by a younger age of asthma onset with fungal detection in sputum, and the other was characterized by mucus plugs and inflammation with eosinophils and monocytes, which was significantly related to mucus plugs, airflow limitation, and trend to show exacerbation. In the latter cluster, mucus plugs persisted, and 30% yielded Pseudomonas aeruginosa in the sputum <5 years later. Conclusion The refractory phenotype with persistent mucus plugs was identified in Aspergillus-sensitized refractory asthma with bronchiectasis and ABPA. Mucus plug prevention is warranted.
Collapse
Affiliation(s)
- Natsuko Nomura
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yusuke Hayashi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University, Nagoya, Japan
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroyuki Nagase
- Department of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Miki
- Department of Respiratory Medicine, NHO Toneyama Medical Center, Osaka, Japan
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - Mikio Toyoshima
- Department of Respiratory Medicine, Hamamatsu Rosai Hospital, Hamamatsu, Japan
| | - Osamu Matsuno
- Department of Respiratory Medicine, Osaka Habikino Medical Center, Osaka, Japan
| | - Hidefumi Koh
- Division of Pulmonary Medicine, Department of Internal Medicine, Tachikawa Hospital, Tokyo, Japan
| | - Toshiyuki Kita
- Department of Respiratory Medicine, NHO Kanazawa Medical Center, Kanazawa, Japan
| | - Hiromi Tomioka
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hisashi Ohnishi
- Department of Respiratory Medicine, Akashi Medical Center, Hyogo, Japan
| | - Shohei Takata
- Department of Respiratory Medicine, NHO Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Kazunori Tobino
- Department of Respiratory Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Shiro Imokawa
- Department of Respiratory Medicine, Iwata City Hospital, Shizuoka, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Ikoma, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Cook PC, Brown SL, Houlder EL, Furlong-Silva J, Conn DP, Colombo SAP, Baker S, Svedberg FR, Howell G, Bertuzzi M, Boon L, Konkel JE, Thornton CR, Allen JE, MacDonald AS. Mgl2 + cDC2s coordinate fungal allergic airway type 2, but not type 17, inflammation in mice. Nat Commun 2025; 16:928. [PMID: 39843887 PMCID: PMC11754877 DOI: 10.1038/s41467-024-55663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Fungal spores are abundant in the environment and a major cause of asthma. Originally characterised as a type 2 inflammatory disease, allergic airway inflammation that underpins asthma can also involve type 17 inflammation, which can exacerbate disease causing failure of treatments tailored to inhibit type 2 factors. However, the mechanisms that determine the host response to fungi, which can trigger both type 2 and type 17 inflammation in allergic airway disease, remain unclear. Here we find that CD11c+ DCs and CD4+ T cells are essential for development of both type 2 and type 17 airway inflammation in mice repeatedly exposed to inhaled spores. Single cell RNA-sequencing with further multi-parameter cytometry shows that allergic inflammation dramatically alters the proportion of numerous DC clusters in the lung, but that only two of these (Mgl2+ cDC2s and CCR7+ DCs) migrate to the dLNs. Targeted removal of several DC subsets shows that Mgl2+ cDC2 depletion reduces type 2, but not type 17, fungal allergic airway inflammation. These data highlight distinct DC subsets as potential therapeutic targets for the treatment of pulmonary fungal disease.
Collapse
Affiliation(s)
- Peter C Cook
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Daniel P Conn
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Syed Baker
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Freya R Svedberg
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Gareth Howell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, University of Manchester, Manchester, United Kingdom
| | | | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher R Thornton
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Xu J, Su Z, Liu C, Nie Y, Cui L. Climate change, air pollution and chronic respiratory diseases: understanding risk factors and the need for adaptive strategies. Environ Health Prev Med 2025; 30:7. [PMID: 39880611 PMCID: PMC11790401 DOI: 10.1265/ehpm.24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens. Furthermore, this association can be modified by factors such as socioeconomic status, adaptability, individual behavior, medical services. Potential pathophysiological mechanisms linking climate change and increased risk of CRD involved pulmonary inflammation, immune disorders, oxidative stress. Notably, the elderly, children, impoverished groups and people in regions with limited adaptability are more sensitive to respiratory health risks caused by climate change. This review provides a reference for understanding risk factors of CRD in the context of climate change, and calls for the necessity of adaptive strategies. Further interdisciplinary research and global collaboration are needed in the future to enhance adaptability and address climate health inequality.
Collapse
Affiliation(s)
- Jiayu Xu
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Zekang Su
- School of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Chenchen Liu
- Jinan Mental Health Center, Jinan, 250309, China
| | - Yuxuan Nie
- School of Public Health, Bengbu Medical University, Bengbu, 233030, China
| | | |
Collapse
|
6
|
Jaggi TK, Agarwal R, Tiew PY, Shah A, Lydon EC, Hage CA, Waterer GW, Langelier CR, Delhaes L, Chotirmall SH. Fungal lung disease. Eur Respir J 2024; 64:2400803. [PMID: 39362667 PMCID: PMC11602666 DOI: 10.1183/13993003.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Fungal lung disease encompasses a wide spectrum of organisms and associated clinical conditions, presenting a significant global health challenge. The type and severity of disease are determined by underlying host immunity and infecting fungal strain. The most common group of diseases are associated with the filamentous fungus Aspergillus species and include allergic bronchopulmonary aspergillosis, sensitisation, aspergilloma and chronic and invasive pulmonary aspergillosis. Fungal lung disease remains epidemiologically heterogenous and is influenced by geography, environment and host comorbidities. Diagnostic modalities continue to evolve and now include novel molecular assays and biomarkers; however, persisting challenges include achieving rapid and accurate diagnosis, particularly in resource-limited settings, and in differentiating fungal infection from other pulmonary conditions. Treatment strategies for fungal lung diseases rely mainly on antifungal agents but the emergence of drug-resistant strains poses a substantial global threat and adds complexity to existing therapeutic challenges. Emerging antifungal agents and increasing insight into the lung mycobiome may offer fresh and personalised approaches to diagnosis and treatment. Innovative methodologies are required to mitigate drug resistance and the adverse effects of treatment. This state-of-the-art review describes the current landscape of fungal lung disease, highlighting key clinical insights, current challenges and emerging approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily C Lydon
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chadi A Hage
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,Pittsburgh, PA, USA
- Lung Transplant, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Grant W Waterer
- University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
7
|
Worasilchai J, Thongchaichayakon P, Chansri K, Leelahavanichkul S, Chiewvit V, Visitchanakun P, Somparn P, Hiengrach P. Fluconazole worsened lung inflammation, partly through lung microbiome dysbiosis in mice with ovalbumin-induced asthma. PeerJ 2024; 12:e18421. [PMID: 39484217 PMCID: PMC11526796 DOI: 10.7717/peerj.18421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Innate immunity in asthma may be influenced by alterations in lung microbiota, potentially affecting disease severity. This study investigates the differences in lung inflammation and microbiome between asthma-ovalbumin (OVA) administered with and without fluconazole treatment in C57BL/6 mice. Additionally, the role of inflammation was examined in an in vitro study using a pulmonary cell line. At 30 days post-OVA administration, allergic asthma mice exhibited increased levels of IgE and IL-4 in serum and lung tissue, higher pathological scores, and elevated eosinophils in bronchoalveolar lavage fluid (BALF) compared to control mice. Asthma inflammation was characterized by elevated serum IL-6, increased lung cytokines (TNF-α, IL-6, IL-10), and higher fungal abundance confirmed by polymerase chain reaction (PCR). Fluconazole-treated asthma mice displayed higher levels of cytokines in serum and lung tissue (TNF-α and IL-6), increased pathological scores, and a higher number of mononuclear cells in BALF, with undetectable fungal levels compared to untreated mice. Lung microbiome analysis revealed similarities between control and asthma mice; however, fluconazole-treated asthma mice exhibited higher Bacteroidota levels, lower Firmicutes, and reduced bacterial abundance. Pro-inflammatory cytokine production was increased in supernatants of the pulmonary cell line (NCI-H292) after co-stimulation with LPS and beta-glucan (BG) compared to LPS alone. Fluconazole treatment in OVA-induced asthma mice exacerbated inflammation, partially due to fungi and Gram-negative bacteria, as demonstrated by LPS+BG-activated pulmonary cells. Therefore, fluconazole should be reserved for treating fungal asthma rather than asthma caused by other etiologies.
Collapse
Affiliation(s)
- Jesadakorn Worasilchai
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyapat Thongchaichayakon
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittipat Chansri
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supichaya Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vathin Chiewvit
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pratsanee Hiengrach
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Sehgal IS, Muthu V, Seidel D, Sprute R, Armstrong-James D, Asano K, Chalmers JD, Gangneux JP, Godet C, Salzer HJF, Cornely OA, Agarwal R. EQUAL ABPA Score 2024: A Tool to Measure Guideline Adherence for Managing Allergic Bronchopulmonary Aspergillosis. Mycoses 2024; 67:e13810. [PMID: 39462638 DOI: 10.1111/myc.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES Allergic bronchopulmonary aspergillosis (ABPA) is a complex lung disease associated with significant morbidity. The ABPA Working Group (AWG) of the International Society for Human and Animal Mycology (ISHAM) revised their management guidelines in 2024, but there is currently no standardised tool to assess adherence to these recommendations. METHODS We extracted key recommendations from the updated 2024 ISHAM-AWG guidelines, focusing on critical areas: screening and diagnosis of ABPA, managing acute and treatment-dependent ABPA, and monitoring treatment response. Each item was assigned a score ranging from zero to three. We assigned negative scores to interventions not recommended by the guidelines. RESULTS We identified 38 items indicative of optimal clinical care for patients with ABPA. The score for screening asthmatics for ABPA was set at three points. For diagnosing ABPA, 16 items were included, with a score ranging from 12 to 16 points, depending on the specific components used (predisposing conditions, serum A. fumigatus-specific IgE and IgG, serum total IgE, blood eosinophil count and chest computed tomography). The management of acute ABPA comprised 11 items, with a maximum score of three points. For treatment-dependent ABPA, there were nine items (scores ranging from -3 to 6). Follow-up care comprised 10 items with a maximum score of 10-13 points, covering imaging, spirometry, testing serum total IgE levels and therapeutic drug monitoring. CONCLUSIONS The EQUAL ABPA score has been developed as a comprehensive tool to quantify guideline adherence. Future studies will evaluate to which extent guideline adherence is associated with improved clinical outcomes for patients with ABPA.
Collapse
Affiliation(s)
- Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Danila Seidel
- Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM)University of Cologne, Cologne, Germany
| | - Rosanne Sprute
- Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM)University of Cologne, Cologne, Germany
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail) Univ Rennes, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, French National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Cendrine Godet
- Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Univ. Paris Sorbonne, Paris, France
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
- Ignaz-Semmelweis-Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Oliver A Cornely
- Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM)University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln) University of Cologne, Cologne, Germany
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Celik E, Kocacik Uygun D, Kaya MA, Gungoren MS, Keven A, Bingol A. Aspergillus-sensitized asthma in children. Pediatr Allergy Immunol 2024; 35:e14212. [PMID: 39099328 DOI: 10.1111/pai.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Asthma is the most common chronic respiratory disease in childhood. Aspergillus fumigatus sensitivity may be involved in the pathogenesis of asthma by leading to different clinical presentations. OBJECTIVE To investigate the demographic, clinical, laboratory, and radiological characteristics of A. fumigatus sensitivity in childhood asthma and identify associated risk factors and diagnostic parameters. METHODS A total of 259 children with asthma were included in the study, 7 (2.7%) with allergic bronchopulmonary aspergillosis (ABPA), 84 (32.4%) with A. fumigatus-sensitized asthma (Af-SA), and 168 (64.9%) with A. fumigatus-unsensitized asthma (Af-UA). RESULTS Aspergillus sensitivity was associated with early asthma onset and longer asthma duration. Total IgE level and asthma severity are highest in ABPA and higher in Af-SA. Absolute eosinophil count was higher, and FEV1 was lower in Af-SA and ABPA. Aspergillus fumigatus was associated with greater odds of being male (odds ratio [OR], 2.45), having atopic dermatitis (OR, 3.159), Alternaria sensitivity (OR, 10.37), and longer asthma duration (OR, 1.266). The best cut-off values for detecting A. fumigatus positivity were 363.5 IU/mL for total IgE and 455 cells/μL for absolute eosinophil count. In Af-SA compared to Af-UA, centrilobular nodules and peribronchial thickening were more common, and the bronchoarterial ratio was higher. CONCLUSIONS Aspergillus sensitivity is a strong allergic stimulus in asthma, leading to laboratory, structural, clinical, and functional consequences. Af-SA is a distinct asthma endotype independent of ABPA that is characterized by increased risk of severe clinical presentations and impaired lung function.
Collapse
Affiliation(s)
- Enes Celik
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Dilara Kocacik Uygun
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mehmet Akif Kaya
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - Ayse Keven
- Department of Radiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aysen Bingol
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
Soundappan K, Muthu V, Dhooria S, Sehgal IS, Prasad KT, Rudramurthy SM, Chakrabarti A, Aggarwal AN, Agarwal R. Population prevalence of aspergillus sensitization and allergic bronchopulmonary aspergillosis in COPD subjects in North India. Mycoses 2024; 67:e13784. [PMID: 39123291 DOI: 10.1111/myc.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sensitization to Aspergillus fumigatus (AS) has been recently described in chronic obstructive pulmonary disease (COPD) patients. However, there is no data on the community prevalence of AS in COPD. OBJECTIVES To assess the prevalence of AS among COPD subjects. The secondary objectives were to (1) assess the prevalence of allergic bronchopulmonary aspergillosis (ABPA) in COPD and (2) compare the lung function in COPD subjects with and without AS. METHODS We conducted a cross-sectional study in rural (29 villages) and urban (20 wards) communities in North India. We identified individuals with respiratory symptoms (IRS) through a house-to-house survey using a modified IUATLD questionnaire. We then diagnosed COPD through specialist assessment and spirometry using the GOLD criteria. We assayed A.fumigatus-specific IgE in COPD subjects. In those with A. fumigatus-specific IgE ≥0.35 kUA/L (AS), ABPA was diagnosed with raised serum total IgE and raised A.fumigatus-specific IgG or blood eosinophil count. RESULTS We found 1315 (8.2%) IRS among 16,071 participants >40 years and diagnosed COPD in 355 (2.2%) subjects. 291 (82.0%) were men and 259 (73.0%) resided in rural areas. The prevalence of AS and ABPA was 17.7% (95% CI, 13.9-21.8) and 6.6% (95% CI, 4.4-8.8). We found a lower percentage predicted FEV1 in COPD subjects with AS than those without (p =.042). CONCLUSIONS We found an 18% community prevalence of AS in COPD subjects in a specific area in North India. Studies from different geographical areas are required to confirm our findings. The impact of AS and ABPA on COPD requires further research.
Collapse
Affiliation(s)
- Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate institute of medical education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| | | | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate institute of medical education and Research, Chandigarh, India
- Doodhadhari Burfani Hospital, Haridwar, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate institute of medical education and Research, Chandigarh, India
| |
Collapse
|
11
|
Rodinkova V, Yuriev S, Mokin V, Kryvopustova M, Shmundiak D, Bortnyk M, Kryzhanovskyi Y, Kurchenko A. Bayesian analysis suggests independent development of sensitization to different fungal allergens. World Allergy Organ J 2024; 17:100908. [PMID: 38800499 PMCID: PMC11126528 DOI: 10.1016/j.waojou.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background Fungi are known for their ability to cause allergies, but data on individual sensitization to them are insufficient. The purpose of the study was to carry out a comprehensive analysis of the fungal allergens' sensitization profile in the Ukrainian population and to determine both population and individual sensitivity to these allergens. Methods We utilized a set of ALEX allergy test data from 20,033 inhabitants of 17 regions of Ukraine from 1 to 89 years conducted in 2020-2022. A complex of programs in the Python language was developed and Bayesian network analysis was applied to determine the sensitivity combinations in individual patients to various fungal components. Results Sensitivity to Alt a 1 dominated and was observed in 79.39% of patients, and 62.17% of them were sensitive solely to Alt a 1. Exclusive sensitivity to Mala s 6 was second in individual patient profiles with a frequency of 4.06%. Combined sensitivity to Alt a 1 - Asp f 3 was third with a share of 3.28%. Pen ch and Cla h extracts stimulated the production of the lowest median sIgE levels. The highest median sIgE levels were for Alt a 1, Mala s 11 and Asp f 6, respectively. Median sIgE levels increased in adults compared to children for all components of Aspergillus fumigatus, as well as for Mala s 5 and Mala s 11. In the rest of the cases, they decreased in adults compared to children. The sensitization rates to fungi in general and specifically to Alternaria were lower in the western parts of Ukraine, especially in the Carpathian region, situated within the Broad-leaved Forest zone. The results of Bayesian modeling revealed that in the case of Alt a 1, the simultaneous absence of sensitivity to Cla h 8, Mala s 11, Mala s 5 and Mala s 6 molecules could condition the presence of sensitization to the major Alternaria allergen with a probability of 92.42%. In all other cases, there was a high probability of absence of sensitivity to particular allergen against the background of absence of sensitivity to other ones, which may indicate the independent development of sensitization to different fungal allergens. Conclusions Sensitivity to Alt a 1 dominated in the studied population with a lower rate in the western regions. The highest median sIgE levels were induced by Alt a 1, Mala s 11 and Asp f 6. Bayesian Analysis suggest a high probability of the independent development of sensitization to different fungal allergens. The idea that sensitization to one allergen may be protective against sensitization to another one(s) requires further clinical study.
Collapse
Affiliation(s)
- Victoria Rodinkova
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Serhii Yuriev
- Department of Clinical Immunology and Allergology, Bohomolets National Medical University, Kyiv, Ukraine
- Medical Centre, DIVERO, Kyiv, Ukraine
| | - Vitalii Mokin
- Department of System Analysis and Information Technologies, Vinnytsia National Technical University, Vinnytsia, Ukraine
| | - Mariia Kryvopustova
- Medical Centre, DIVERO, Kyiv, Ukraine
- Department of Pediatrics No 2, Bohomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Shmundiak
- Department of System Analysis and Information Technologies, Vinnytsia National Technical University, Vinnytsia, Ukraine
| | - Mykyta Bortnyk
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
- Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine
| | - Yevhenii Kryzhanovskyi
- Department of System Analysis and Information Technologies, Vinnytsia National Technical University, Vinnytsia, Ukraine
| | - Andrii Kurchenko
- Department of Clinical Immunology and Allergology, Bohomolets National Medical University, Kyiv, Ukraine
- Medical Centre, DIVERO, Kyiv, Ukraine
| |
Collapse
|
12
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Maule M, Vitte J, Ambrosani F, Caminati M. Epidemiology of the relationship between allergic bronchopulmonary aspergillosis and asthma. Curr Opin Allergy Clin Immunol 2024; 24:102-108. [PMID: 38295145 DOI: 10.1097/aci.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Allergic bronchopulmonary aspergillosis (ABPA) can complicate the natural history of asthmatic patients, especially the more severe ones, worsening disease control and increasing the need for therapies, steroids in particular, and medical care. The aim of the present review is to summarize the latest epidemiological data related to the relationship between asthma and ABPA and to offer a summary of the most recent strategies that could potentially facilitate in the identification of ABPA in asthmatic patients. RECENT FINDINGS In the last years, great efforts have been made by researchers worldwide to provide reliable epidemiological data on fungal sensitization and ABPA, especially in severe asthma patients both in adult and pediatric population. Data differ depending on the geographical area and population studied, but pooled data show a concerning 11% of severe asthma patients having ABPA and one out of four asthmatic patients being sensitized to fungi, Aspergillus fumigatus in particular. SUMMARY Reliable epidemiological data and advances in the diagnostic procedures can facilitate the detection of ABPA among asthmatic patients, improving the management of a still under-recognized and challenging condition.
Collapse
Affiliation(s)
- Matteo Maule
- Asthma Center and Allergy Unit, Center for Hyper-eosinophilic dysimmune conditions, Integrated University Hospital of Verona
- Department of Medicine, University of Verona, Verona, Italy
| | - Joana Vitte
- University Hospital of Reims, Laboratory of Immunology
- INSERM UMR-S 1250 P3CELL, University of Reims, Reims, France
| | | | - Marco Caminati
- Asthma Center and Allergy Unit, Center for Hyper-eosinophilic dysimmune conditions, Integrated University Hospital of Verona
- Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Kang Y, Li Q, Yao Y, Xu C, Qiu Z, Jia W, Li G, Wang P. Epidemiology and Azole Resistance of Clinical Isolates of Aspergillus fumigatus from a Large Tertiary Hospital in Ningxia, China. Infect Drug Resist 2024; 17:427-439. [PMID: 38328338 PMCID: PMC10849152 DOI: 10.2147/idr.s440363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose The objective of this study was to determine the clinical distribution, in vitro antifungal susceptibility and underlying resistance mechanisms of Aspergillus fumigatus (A. fumigatus) isolates from the General Hospital of Ningxia Medical University between November 2021 and May 2023. Methods Antifungal susceptibility testing was performed using the Sensititre YeastOne YO10, and isolates with high minimal inhibitory concentrations (MICs) were further confirmed using the standard broth microdilution assays established by the Clinical and Laboratory Standards Institute (CLSI) M38-third edition. Whole-Genome Resequencing and RT-qPCR in azole-resistant A. fumigatus strains were performed to investigate the underlying resistance mechanisms. Results Overall, a total of 276 A. fumigatus isolates were identified from various clinical departments, showing an increasing trend in the number of isolates over the past 3 years. Two azole-resistant A. fumigatus strains (0.72%) were observed, one of which showed overexpression of cyp51A, cyp51B, cdr1B, MDR1/2, artR, srbA, erg24A, and erg4B, but no cyp51A mutation. However, the other strain harbored two alterations in the cyp51A sequences (L98H/S297T). Therefore, we first described two azole-resistant clinical A. fumigatus strains in Ningxia, China, and reported one azole-resistant strain that has the L98H/S297T mutations in the cyp51A gene without any tandem repeat (TR) sequences in the promoter region. Conclusions This study emphasizes the importance of enhancing attention and surveillance of azole-resistant A. fumigatus, particularly those with non-TR point mutations of cyp51A or non-cyp51A mutations, in order to gain a better understanding of their prevalence and spread in the region.
Collapse
Affiliation(s)
- Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Qiujie Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Yao Yao
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Chao Xu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Zhuoran Qiu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Gang Li
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| |
Collapse
|
15
|
Abel-Fernández E, Fernández-Caldas E. Allergy to fungi: Advances in the understanding of fungal allergens. Mol Immunol 2023; 163:216-223. [PMID: 37864931 DOI: 10.1016/j.molimm.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Allergic diseases are a major health problem due to their increasing incidence and high prevalence worldwide. Asthma has several aetiologies, and allergy plays an important role in its development in approximately 60% of adults and 80% of children and adolescents. Although the link between aeroallergen sensitization and asthma exacerbations has been long recognized, the investigations of the triggering allergens may be superficial in many asthma cases. The main allergenic sources related to asthma, and other allergic diseases, are pollens, mites, fungi, and animal epithelia. Fungi are considered the third most frequent cause of respiratory pathologies. Asthma caused by several fungi species may have a bad prognosis in some cases due to its severity and difficulty in avoidance methods. Despite the recognised relevance of fungi in respiratory allergies, the knowledge about fungal allergens seems to be scarce, with few descriptions of new allergens, compared to other allergenic sources. The study of major, minor, and cross-reactive fungal allergens, and their relevance in the allergic disease, might be crucial, not only to accurately diagnose these allergies, but also to predict exacerbations and responses to therapies, as well as for the development of personalized treatment plans in a fast-changing climate scenario.
Collapse
|
16
|
Ueki S. Fungi and immune response: An update. Allergol Int 2023; 72:491-492. [PMID: 37770129 DOI: 10.1016/j.alit.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| |
Collapse
|