1
|
Cheong D, Song JY. Pneumococcal disease burden in high-risk older adults: Exploring impact of comorbidities, long-term care facilities, antibiotic resistance, and immunization policies through a narrative literature review. Hum Vaccin Immunother 2024; 20:2429235. [PMID: 39631047 PMCID: PMC11622649 DOI: 10.1080/21645515.2024.2429235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
This study aims to provide a comprehensive review of literature on pneumococcal disease burden in high-risk older adults aged ≥65 with focus on impact of comorbidities, long-term care facilities (LTCFs), antibiotic resistance, and vaccination policies across various countries. Research showed that the disease burden and the prevalence of antibiotic-resistant pneumococci was higher in the elderly, particularly those residing in LTCFs, and with comorbidities. These individuals are at high risk of infection with antibiotic-resistant serotypes 10A, 11A, and 15B. The vaccination strategies and national guidelines for pneumococcal vaccines in the elderly vary across countries. Some countries focus on single-dose strategies, while others recommend sequential vaccinations with varying intervals. Although vaccination policies are well-established for the elderly, they are not as well-established for high-risk elderly groups, and this review underscores the need for more tailored vaccination strategies for these groups.
Collapse
Affiliation(s)
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Miao C, Yan Z, Chen C, Kuang L, Ao K, Li Y, Li J, Huang X, Zhu X, Zhao Y, Cui Y, Jiang Y, Xie Y. Serotype, antibiotic susceptibility and whole-genome characterization of Streptococcus pneumoniae in all age groups living in Southwest China during 2018-2022. Front Microbiol 2024; 15:1342839. [PMID: 38362498 PMCID: PMC10867222 DOI: 10.3389/fmicb.2024.1342839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Background Streptococcus pneumoniae is a common pathogen that colonizes the human upper respiratory tract, causing high morbidity and mortality worldwide. This study aimed to investigate the prevalence status of S. pneumoniae isolated from patients of all ages in Southwest China, including serotype, antibiotic susceptibility and other molecular characteristics, to provide a basis for clinical antibiotic usage and vaccine development. Methods This study was conducted from January 2018 to March 2022 at West China Hospital, West China Second University Hospital, First People's Hospital of Longquanyi District (West China Longquan Hospital), Meishan Women and Children's Hospital (Alliance Hospital of West China Second University Hospital) and Chengdu Jinjiang Hospital for Women and Children Health. Demographic and clinical characteristics of 263 pneumococcal disease (PD) all-age patients were collected and analyzed. The serotypes, sequence types (STs), and antibiotic resistance of the strains were determined by next-generation sequencing, sequence analysis and the microdilution broth method. Results The most common pneumococcal serotypes were 19F (17.87%), 19A (11.41%), 3 (8.75%), 23F (6.46%) and 6A (5.70%). Coverage rates for PCV10, PCV13, PCV15, PCV20 and PCV24 were 36.12, 61.98, 61.98, 63.12 and 64.26%, respectively. Prevalent STs were ST271 (12.55%), ST320 (11.79%), ST90 (4.18%), ST876 (4.18%) and ST11972 (3.42%). Penicillin-resistant S. pneumoniae (PRSP) accounted for 82.35 and 1.22% of meningitis and nonmeningitis PD cases, respectively. Resistance genes msrD (32.7%), mefA (32.7%), ermB (95.8%), tetM (97.3%) and catTC (7.6%) were found among 263 isolates. Most isolates showed high resistance to erythromycin (96.96%) and tetracycline (79.85%), with more than half being resistant to SXT (58.94%). A few isolates were resistant to AMX (9.89%), CTX (11.03%), MEN (9.13%), OFX (1.14%), LVX (1.14%) and MXF (0.38%). All isolates were susceptible to vancomycin and linezolid. Conclusion Our study provides reliable information, including the prevalence, molecular characterization and antimicrobial resistance of S. pneumoniae isolates causing pneumococcal diseases in Southwest China. The findings contribute to informed and clinical policy decisions for prevention and treatment.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Chen
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Tibet Autonomous Region Women's and Children's Hospital, Lhasa, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaocui Huang
- Department of Laboratory Medicine, Chengdu Jinjiang District Maternal and Child Healthcare Hospital, Chengdu, Sichuan, China
| | - Xinghua Zhu
- Department of Laboratory Medicine, The First People’s Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Yijia Zhao
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Opavski N, Jovicevic M, Kabic J, Kekic D, Vasiljevic Z, Tosic T, Medic D, Laban S, Ranin L, Gajic I. Serotype distribution, antimicrobial susceptibility and molecular epidemiology of invasive Streptococcus pneumoniae in the nine-year period in Serbia. Front Microbiol 2023; 14:1244366. [PMID: 37670985 PMCID: PMC10475725 DOI: 10.3389/fmicb.2023.1244366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is one of the leading bacterial pathogens that can cause severe invasive diseases. The aim of the study was to characterize invasive isolates of S. pneumoniae obtained during the nine-year period in Serbia before the introduction of the pneumococcal conjugate vaccines (PCVs) into routine vaccination programs by determining: serotype distribution, the prevalence and genetic basis of antimicrobial resistance, and genetic relatedness of the circulating pneumococcal clones. A total of 490 invasive S. pneumoniae isolates were included in this study. The serotype, antimicrobial susceptibility, and ST of the strains were determined by the Quellung reaction, disk- and gradient-diffusion methods, and multilocus sequence typing (MLST), respectively. The most common serotypes in this study were 3, 19F, 14, 6B, 6A, 19A, and 23F. The serotype coverages of PCV10 and PCV13 in children less than 2 years were 71.3 and 86.1%, respectively, while PPV23 coverage in adults was in the range of 85-96%, depending on the age group. Penicillin and ceftriaxone-non-susceptible isolates account for 47.6 and 16.5% of all isolates, respectively. Macrolide non-susceptibility was detected in 40.4% of isolates, while the rate of multidrug- and extensive-drug resistance was 20.0 and 16.9%, respectively. The MLST analysis of 158 pneumococci identified 60 different STs belonging to the 16 Clonal Complexes (CCs) (consisting of 42 STs) and 18 singletons. The most common CC/ST were ST1377, CC320, CC15, CC273, CC156, CC473, CC81, and CC180. Results obtained in this study indicate that the pre-vaccine pneumococcal population in Serbia is characterized by high penicillin and macrolides non-susceptibility, worrisome rates of MDR and XDR, as well as a high degree of genetic diversity. These findings provide a basis for further investigation of the changes in serotypes and genotypes that can be expected after the routine introduction of PCVs.
Collapse
Affiliation(s)
- Natasa Opavski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Milos Jovicevic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Jovana Kabic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljevic
- Department of Clinical Microbiology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", Belgrade, Serbia
| | - Tanja Tosic
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Microbiology, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Suzana Laban
- Department of Microbiology, University Children's Hospital, Belgrade, Serbia
| | - Lazar Ranin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Wiese AD, Mitchel E, Ndi D, Markus TM, Talbot HK, Schaffner W, Grijalva CG. Risk of Acute Myocardial Infarction Among Patients With Laboratory-Confirmed Invasive Pneumococcal Disease: A Self-Controlled Case Series Study. Clin Infect Dis 2023; 76:2171-2177. [PMID: 36751004 PMCID: PMC10273377 DOI: 10.1093/cid/ciad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) events have been reported among patients with certain viral and bacterial infections. Whether invasive pneumococcal disease (IPD) increases the risk of AMI remains unclear. We examined whether laboratory-confirmed IPD was associated with the risk of AMI. METHODS We conducted a self-controlled case series analysis among adult Tennessee residents with evidence of an AMI hospitalization (2003-2019). Patient follow-up started 1 year before the earliest AMI and continued through the date of death, 1 year after AMI, or study end (December 2019). Periods for AMI assessment included the 7 to 1 days before IPD specimen collection (pre-IPD detection), day 0 through day 7 after IPD specimen collection (current IPD), day 8 to 28 after IPD specimen collection (post-IPD), and a control period (all other follow-up). We used conditional Poisson regression to calculate incidence rate ratios (IRRs) and 95% confidence intervals (CIs) for each risk period compared with control periods using within-person comparisons. RESULTS We studied 324 patients hospitalized for AMI with laboratory-confirmed IPD within 1 year before or after the AMI hospitalization. The incidence of AMI was significantly higher during the pre-IPD detection (IRR, 10.29; 95% CI: 6.33-16.73) and the current IPD (IRR, 92.95; 95% CI: 72.17-119.71) periods but nonsignificantly elevated in the post-IPD risk period (IRR, 1.83; 95% CI: .86-3.91) compared with control periods. The AMI incidence was higher in the post-IPD control period (29 to 365 days after IPD; IRR, 2.95; 95% CI: 2.01-4.32). CONCLUSIONS Hospitalizations with AMI were strongly associated with laboratory-confirmed IPD.
Collapse
Affiliation(s)
- Andrew D Wiese
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ed Mitchel
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danielle Ndi
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tiffanie M Markus
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William Schaffner
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veteran Affairs TN Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
5
|
da Silva AB, Cardoso-Marques NT, Dolores ÍDM, Teixeira LM, Neves FPG. Carriage prevalence, serotype distribution, antimicrobial resistance, pspA typing and pilus islets of Streptococcus pneumoniae isolated from adults living in a Brazilian urban slum. Vaccine 2023; 41:1431-1437. [PMID: 36690557 DOI: 10.1016/j.vaccine.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
INTRODUCTION For Brazilian adults, pneumococcal vaccines have been usually taken only by those who are at higher risk for development of pneumococcal diseases. Since populations from lower socioeconomic status are at high risk of acquiring pneumococcal infections, we investigated the carriage prevalence, colonization risk factors, capsular and surface protein types, and antimicrobial resistance among pneumococcal isolates recovered from adults living in a Brazilian urban slum. METHODS Between September-December 2016, we conducted a cross-sectional study among individuals aged ≥ 18 years who attended a public primary clinic in Niterói/RJ, Brazil. Pneumococci were isolated by culture on sheep blood agar plates with and without gentamicin. Antimicrobial susceptibility was determined for all isolates. We used PCR to determine capsular types, PspA families (Fam) and pilus islets (PI). RESULTS Of 385 adults, 32 (8.3 %) were pneumococcal carriers. Three carriers had two different pneumococci, totaling 35 isolates. After multivariate analysis, smoking, previous hospitalization, alcohol consumption and co-habitation with children aged < 6 years increased the odds of pneumococcal carriage, but antibiotic use in the previous 2 weeks was found to be a protective factor. Fourteen different serogroups/serotypes were detected and the prevalent ones were 9 N/L, 10A, 15B/C and 35F/47F (n = 3; 8.6 % each). Non-typeable (NT) isolates made up 31.4 %. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. We found eight (22.9 %) penicillin non-susceptible pneumococci (PNSP) with minimum inhibitory concentrations (MICs) of 0.38-1.5 μg/mL. The two (5.7 %) erythromycin-resistant isolates had MIC > 256 μg/mL, cMLSB phenotype and the erm(B) gene. Twelve (34.3 %) and 17 (48.6 %) isolates had PspA Fam1 and Fam2, respectively. Three (8.6 %) isolates had genes for pilitwo PI-1 and one PI-2. CONCLUSION We detected a low frequency of pneumococcal carriage among the adult population, but a high diversity of serotypes. Frequencies of PNSP and NT isolates resistant to antimicrobial agents are concerning.
Collapse
Affiliation(s)
- Amanda Beiral da Silva
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Nayara Torres Cardoso-Marques
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ítalo de Moraes Dolores
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lúcia Martins Teixeira
- Department of Medical Microbiology, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
6
|
Clinical Characteristics, Antimicrobial Resistance, and Outcomes of Patients with Invasive Pneumococcal Disease in Ningxia Hui Autonomous Region, China, 2013-2021. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1262884. [PMID: 36545503 PMCID: PMC9763006 DOI: 10.1155/2022/1262884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Objectives This study aimed to analyze the clinical features, antibiotic susceptibility profiles, and outcomes of patients with invasive pneumococcal disease (IPD) at a hospital in Ningxia Hui Autonomous Region, to provide the basis for improving the clinical treatment effect. Methods Patients with IPD were retrospectively collected from 2013 to 2021. Clinical manifestations, laboratory tests, antimicrobial susceptibility, antibiotic treatment, and outcomes of the disease were analyzed. Results In this study, we identified 127 IPD cases, of whom 49 (38.6%) had meningitis and 78 (61.4%) had bacteremia. The median ages of pediatric cases and adult cases were 2 years (IQR: 0-5) and 52.5 years (IQR: 35-62), respectively. There were 27 and 45 males in the pediatric and adult groups, and no significant gender difference in the different age groups (p = 0.584) was found. Of 75 cases with underlying diseases, pneumonia (11%), malignancy (11%), hypertension (9.4%), and hepatic cirrhosis (7.9%) were the most common. The incidence of underlying diseases was even higher in the adult group (67.1%) than in the pediatric group (47.1%) (p = 0.028). The frequency of fever, cough, and seizures was significantly higher in the pediatric group than in the adult group, with p-values of 0.004, 0.004, and 0.001, respectively. The percentage of neutrophils in the blood was significantly higher in the adult cases than in the pediatric cases (p < 0.001). Furthermore, there was a significantly higher WBC count (p < 0.001), percentage of neutrophils (p = 0.012), and protein level (p = 0.019) in the CSF samples in the adult patients compared to pediatric patients. The susceptibility rates of S. pneumoniae isolates to vancomycin, linezolid, and levofloxacin were 100%. The susceptibility rates of penicillin were 98.7% and 34.1% in bacteremia and meningitis patients, respectively. Most isolates were resistant to erythromycin, clindamycin, tetracycline, and azithromycin. The most common antibiotic treatment was β-lactams. Seven (5.5%) patients died during hospitalization, and 38 (29.9%) patients' health deteriorated. Conclusion These results may provide a reference basis for the diagnosis and empiric treatment of IPD in the region.
Collapse
|
7
|
Castro ALL, Camacho-Moreno G, Montañez-Ayala A, Varón-Vega F, Alvarez-Rodríguez JC, Valderrama-Beltrán S, Ariza BE, Pancha O, Santana AY, Flórez NS, Reyes P, Ruiz J, Beltran C, Prieto E, Rojas M, Urrego-Reyes J, Parellada CI. Invasive Pneumococcal Disease Characterization in Adults and Subgroups aged < 60 years and ≥ 60 years in Bogota, Colombia. IJID REGIONS 2022; 3:293-299. [PMID: 35774639 PMCID: PMC9231666 DOI: 10.1016/j.ijregi.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
The clinical burden of IPD is high in the elderly and adults with comorbidities IPD placed a high burden on healthcare resources in the adult population The most common types causing IPD in adults were similar to those found in children Policy makers should consider pneumococcal vaccination for populations at risk
Background Methods Results Conclusions
Collapse
|
8
|
Zhou M, Wang Z, Zhang L, Kudinha T, An H, Qian C, Jiang B, Wang Y, Xu Y, Liu Z, Zhang H, Zhang J. Serotype Distribution, Antimicrobial Susceptibility, Multilocus Sequencing Type and Virulence of Invasive Streptococcus pneumoniae in China: A Six-Year Multicenter Study. Front Microbiol 2022; 12:798750. [PMID: 35095809 PMCID: PMC8793633 DOI: 10.3389/fmicb.2021.798750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background:Streptococcus pneumoniae is an important human pathogen that can cause severe invasive pneumococcal diseases (IPDs). The aim of this multicenter study was to investigate the serotype and sequence type (ST) distribution, antimicrobial susceptibility, and virulence of S. pneumoniae strains causing IPD in China. Methods: A total of 300 invasive S. pneumoniae isolates were included in this study. The serotype, ST, and antimicrobial susceptibility of the strains, were determined by the Quellung reaction, multi-locus sequence typing (MLST) and broth microdilution method, respectively. The virulence level of the strains in the most prevalent serotypes was evaluated by a mouse sepsis model, and the expression level of well-known virulence genes was measured by RT-PCR. Results: The most common serotypes in this study were 23F, 19A, 19F, 3, and 14. The serotype coverages of PCV7, PCV10, PCV13, and PPV23 vaccines on the strain collection were 42.3, 45.3, 73.3 and 79.3%, respectively. The most common STs were ST320, ST81, ST271, ST876, and ST3173. All strains were susceptible to ertapenem, levofloxacin, moxifloxacin, linezolid, and vancomycin, but a very high proportion (>95%) was resistant to macrolides and clindamycin. Based on the oral, meningitis and non-meningitis breakpoints, penicillin non-susceptible Streptococcus pneumoniae (PNSP) accounted for 67.7, 67.7 and 4.3% of the isolates, respectively. Serotype 3 strains were characterized by high virulence levels and low antimicrobial-resistance rates, while strains of serotypes 23F, 19F, 19A, and 14, exhibited low virulence and high resistance rates to antibiotics. Capsular polysaccharide and non-capsular virulence factors were collectively responsible for the virulence diversity of S. pneumoniae strains. Conclusion: Our study provides a comprehensive insight into the epidemiology and virulence diversity of S. pneumoniae strains causing IPD in China.
Collapse
Affiliation(s)
- Menglan Zhou
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ziran Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Li Zhang
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia
- NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
| | - Haoran An
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Jiang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Zhengyin Liu,
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Hong Zhang,
| | - Jingren Zhang
- NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Jingren Zhang,
| |
Collapse
|
9
|
Nikolaou E, German EL, Blizard A, Howard A, Hitchins L, Chen T, Chadwick J, Pojar S, Mitsi E, Solórzano C, Sunny S, Dunne F, Gritzfeld JF, Adler H, Hinds J, Gould KA, Rylance J, Collins AM, Gordon SB, Ferreira DM. The nose is the best niche for detection of experimental pneumococcal colonisation in adults of all ages, using nasal wash. Sci Rep 2021; 11:18279. [PMID: 34521967 PMCID: PMC8440778 DOI: 10.1038/s41598-021-97807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have suggested that the pneumococcal niche changes from the nasopharynx to the oral cavity with age. We use an Experimental Human Pneumococcal Challenge model to investigate pneumococcal colonisation in different anatomical niches with age. Healthy adults (n = 112) were intranasally inoculated with Streptococcus pneumoniae serotype 6B (Spn6B) and were categorised as young 18-55 years (n = 57) or older > 55 years (n = 55). Colonisation status (frequency and density) was determined by multiplex qPCR targeting the lytA and cpsA-6A/B genes in both raw and culture-enriched nasal wash and oropharyngeal swab samples collected at 2-, 7- and 14-days post-exposure. For older adults, raw and culture-enriched saliva samples were also assessed. 64% of NW samples and 54% of OPS samples were positive for Spn6B in young adults, compared to 35% of NW samples, 24% of OPS samples and 6% of saliva samples in older adults. Many colonisation events were only detected in culture-enriched samples. Experimental colonisation was detected in 72% of young adults by NW and 63% by OPS. In older adults, this was 51% by NW, 36% by OPS and 9% by saliva. The nose, as assessed by nasal wash, is the best niche for detection of experimental pneumococcal colonisation in both young and older adults.
Collapse
Affiliation(s)
- Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Esther L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Lisa Hitchins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jim Chadwick
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Syba Sunny
- Medical Microbiology, Royal Liverpool University Hospital, Liverpool, UK
| | - Felicity Dunne
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jenna F Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,Institute of Life Course and Medical Sciences, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Jason Hinds
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Katherine A Gould
- Infection and Immunity Research Institute, St George's University London, London, UK
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK.,College of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, 1st Daulby Street, Liverpool, L7 8XZ, UK
| |
Collapse
|
10
|
Demirdal T, Sen P, Emir B. Predictors of mortality in invasive pneumococcal disease: a meta-analysis. Expert Rev Anti Infect Ther 2021; 19:927-944. [PMID: 33382642 DOI: 10.1080/14787210.2021.1858799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess risk factors for mortality in invasive pneumococcal disease (IPD). METHODS We conducted a systemic literature search in January 2019. The main outcome measure included death within 30 days after diagnosis of IPD. The study protocol was registered in PROSPERO (CRD42019120189). RESULTS After reviewing 2514 potentially relevant records, remaining 190 articles were included in the analysis. A total of 228,782 IPD patients were identified and the mortality rate was 17.2% in the included articles. No significant evidence of publication bias was found according to the funnel plot and Egger's test (t = 1.464, p = 0.145). Male sex, older age, alcohol abuse, previous tuberculosis, meningitis, hospital acquired infections, multilobar infiltrate or effusion, Pitt bacteremia score≥4, Pneumonia Severity Index≥4, clinical conditions requiring intensive care, underlying clinical conditions, disease caused by serotypes 3, 6B, 9 N, 10A, 11A, 16 F, 17 F, 19, 19 F, 22 F, 23A, 23 F, 31 and 35 F, previous antibiotic use, inappropriate initial antibiotic therapy, penicillin resistance, and vancomycin use during the course of treatment were predicators of 30-day mortality. CONCLUSIONS This meta-analysis highlights important risk factors for IPD-related mortality, many of which may be targeted through preventive measures.
Collapse
Affiliation(s)
- Tuna Demirdal
- Department of Infectious Diseases and Clinical Microbiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Pinar Sen
- Department of Infectious Diseases and Clinical Microbiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Busra Emir
- Department of Biostatistics, Izmir Katip Celebi University School of Medicine, Izmir, Turkey
| |
Collapse
|
11
|
Chen H, Matsumoto H, Horita N, Hara Y, Kobayashi N, Kaneko T. Prognostic factors for mortality in invasive pneumococcal disease in adult: a system review and meta-analysis. Sci Rep 2021; 11:11865. [PMID: 34088948 PMCID: PMC8178309 DOI: 10.1038/s41598-021-91234-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Risk factors associated with mortality in invasive pneumococcal disease remain unclear. The present work is a meta-analysis of studies that enrolled only patients with invasive pneumococcal disease and reported on mortality. Potentially eligible reports were identified from PubMed, CHAHL, and Web of Science, comprising 26 reports in total. Overall mortality for invasive pneumococcal disease was reported as 20.8% (95% confidence interval (CI) 17.5–24%). Factors associated with mortality were age (odds ratio (OR) 3.04, 95% CI 2.5–3.68), nursing home (OR 1.62, 95% CI 1.13–2.32), nosocomial infection (OR 2.10, 95% CI 1.52–2.89), septic shock (OR 13.35, 95% CI 4.54–39.31), underlying chronic diseases (OR 2.34, 95% CI 1.78–3.09), solid organ tumor (OR 5.34, 95% CI 2.07–13.74), immunosuppressed status (OR 1.67, 95% CI 1.31–2.14), and alcohol abuse (OR 3.14, 95% CI 2.13–4.64). Mortality rates with invasive pneumococcal disease remained high, and these findings may help clinicians provide appropriate initial treatment for this disease.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan.
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| |
Collapse
|
12
|
Hanada S, Takata M, Morozumi M, Iwata S, Fujishima S, Ubukata K. Multiple comorbidities increase the risk of death from invasive pneumococcal disease under the age of 65 years. J Infect Chemother 2021; 27:1311-1318. [PMID: 33962862 DOI: 10.1016/j.jiac.2021.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Risk factors for death from invasive pneumococcal disease (IPD) have not been clearly established in patients aged under 65 years. We aimed to evaluate contributions of host and bacterial factors to the risk of death from IPD in patients aged under 65 years in Japan. METHODS In this prospective, observational, multicenter cohort study, patients with IPD (n = 581) aged 6-64 years were enrolled between 2010 and 2017. We investigated the role of host and bacterial factors in 28-day mortality. RESULTS The mortality rate increased from 3.4% to 6.2% in patients aged 6-44 years to 15.5%-19.5% in those aged 45-64 years. Multivariable analysis identified the following risk factors for mortality: age 45-64 years (hazard ratio [HR], 3.4; 95% confidence interval [CI], 1.6-6.8, p = 0.001), bacteremia with unknown focus (HR, 2.0; 95% CI, 1.1-3.7, p = 0.024), meningitis (HR, 2.1; 95% CI, 1.1-4.0, p = 0.019), underlying multiple non-immunocompromising conditions (HR, 2.6; 95% CI, 1.1-7.4, p = 0.023), and immunocompromising conditions related to malignancy (HR, 2.4; 95% CI, 1.0-5.2, p = 0.039). Pneumococcal serotype was not associated with poor outcomes. CONCLUSIONS Host factors, including age of 45-64 years and underlying multiple non-immunocompromising conditions, are important for the prognosis of IPD. Our results will contribute to the development of targeted pneumococcal vaccination strategies in Japan.
Collapse
Affiliation(s)
- Shigeo Hanada
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Japan; Okinaka Memorial Institute for Medical Research, Japan
| | - Misako Takata
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Microbiology, Tokyo Medical University, Japan
| | - Miyuki Morozumi
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Infectious Diseases, National Cancer Center Hospital, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Japan
| | - Kimiko Ubukata
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Microbiology, Tokyo Medical University, Japan; Center for General Medicine Education, Keio University School of Medicine, Japan.
| | | |
Collapse
|
13
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
14
|
Savrasova L, Krumina A, Cupeca H, Zeltina I, Villerusha A, Grope I, Viksna L, Dimina E, Balasegaram S. Invasive Pneumococcal Disease in Latvia in PCV10 Vaccination Era, 2012-2018. Front Pediatr 2021; 9:532489. [PMID: 34692599 PMCID: PMC8529945 DOI: 10.3389/fped.2021.532489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/21/2021] [Indexed: 12/03/2022] Open
Abstract
In 2010 in Latvia, invasive pneumococcal disease (IPD) became a cause for concern and vaccination of infants with four doses of 7-valent pneumococcal conjugate vaccine (PCV7) commenced. In 2012, 10-valent pneumococcal conjugate vaccine (PCV10) (three doses at 2, 4, and 12-15 month of age) vaccination was introduced. We described incidence and serotype distribution of IPD in Latvia and investigated serotypes associated with death from IPD based on surveillance data. Adult vaccination against pneumococcal infection is not included in the national immunization program. Laboratory confirmed IPD cases are passively notified to the Center for Disease Prevention and Control of Latvia (CDPC) by laboratories and clinicians. We calculated incidence by age, sex, case fatality, and trend in serotypes by conducting a retrospective population-based cross-sectional study based on national IPD surveillance data. From 2012 to 2018 466 cases of IPD were reported. The highest notified incidence was in 2015 at 4.4/100,000, which fell to 3.9 in 2018. The highest mean annual IPD incidence was in infants (4.8) and in the elderly (6.0). PCV10 vaccine serotypes were the most prevalent in IPD cases up to 2015 with a decreasing trend from 50% (20/40) in 2012 to 19% (14/74) in 2018 (chi2 test for trend of odds = 0.000). PCV23nonPCV13 vaccine serotypes had an increasing trend and rose from 18% (7/40) to 34% (25/74) (chi2 test for trend of odds = 0.000). Non-Vaccine serotypes had an increasing trend and rose from 13% (5/40) to 27% (20/74) (chi2 test for trend of odds = 0.038). Reported total case fatality was 19% (87/466). The highest, at 36% (20/56), was reported in 2013. After adjusting for age, Streptococcus pneumoniae serotype 3 was associated with death from IPD (adjusted OR 2.3 95%CI 1.25-4.12 p 0.007). Surveillance data indicate evidence of serotype replacement with an increasing trend of serotype 19A and PPV23nonPCV13 and Non-Vaccine serotypes. Serotype 3 and age were associated with fatal IPD outcome. Further studies of S. pneumoniae carriage would be useful in providing more evidence to characterize serotypes' circulation.
Collapse
Affiliation(s)
- Larisa Savrasova
- Centre for Disease Prevention and Control of Latvia, The European Programme for Intervention Epidemiology Training (EPIET), Riga Stradinš University, Riga, Latvia
| | - Angelika Krumina
- Department of Infectology, Riga Stradinš University, Riga, Latvia
| | - Hedija Cupeca
- Department of Pediatrics, Riga Stradinš University, Riga, Latvia
| | - Indra Zeltina
- Department of Infectology, Riga Stradinš University, Riga, Latvia
| | - Anita Villerusha
- Department of Public Health and Epidemiology, Riga Stradinš University, Riga, Latvia
| | - Ilze Grope
- Department of Pediatrics, Riga Stradinš University, Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Riga Stradinš University, Riga, Latvia
| | - Elina Dimina
- Centre for Disease Prevention and Control of Latvia, Riga, Latvia
| | - Sooria Balasegaram
- The European Programme for Intervention Epidemiology Training (EPIET) Coordinator, Public Health England Field Epidemiology Service South East and London, London, United Kingdom
| |
Collapse
|
15
|
Mosites E, Zulz T, Bruden D, Nolen L, Frick A, Castrodale L, McLaughlin J, Van Beneden C, Hennessy TW, Bruce MG. Risk for Invasive Streptococcal Infections among Adults Experiencing Homelessness, Anchorage, Alaska, USA, 2002-2015. Emerg Infect Dis 2020; 25. [PMID: 31538562 PMCID: PMC6759239 DOI: 10.3201/eid2510.181408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The risk for invasive streptococcal infection has not been clearly quantified among persons experiencing homelessness (PEH). We compared the incidence of detected cases of invasive group A Streptococcus infection, group B Streptococcus infection, and Streptococcus pneumoniae (pneumococcal) infection among PEH with that among the general population in Anchorage, Alaska, USA, during 2002–2015. We used data from the Centers for Disease Control and Prevention’s Arctic Investigations Program surveillance system, the US Census, and the Anchorage Point-in-Time count (a yearly census of PEH). We detected a disproportionately high incidence of invasive streptococcal disease in Anchorage among PEH. Compared with the general population, PEH were 53.3 times as likely to have invasive group A Streptococcus infection, 6.9 times as likely to have invasive group B Streptococcus infection, and 36.3 times as likely to have invasive pneumococcal infection. Infection control in shelters, pneumococcal vaccination, and infection monitoring could help protect the health of this vulnerable group.
Collapse
|
16
|
Chan T, Tay MZ, Kyaw WM, Chow A, Ho HJ. Epidemiology, vaccine effectiveness, and risk factors for mortality for pneumococcal disease among hospitalised adults in Singapore: a case-control study. BMC Infect Dis 2020; 20:423. [PMID: 32552726 PMCID: PMC7302122 DOI: 10.1186/s12879-020-05140-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 06/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infections can lead to severe morbidity and mortality, especially in patients with invasive pneumococcal disease (IPD). This study evaluated factors associated with pneumococcal disease, pneumococcal vaccine effectiveness, and risk factors for all-cause mortality in hospitalised adults with pneumococcal disease in Singapore. METHODS Retrospective case-control study of patients tested for pneumococcal disease with streptococcal urinary antigen testing and at least one sterile site culture, during their admission to a tertiary hospital in Singapore from 2015 to 2017. Patients were defined as cases of IPD or non-IPD, or as controls, based on laboratory results and clinical diagnoses. Multivariable models were constructed to determine factors associated with IPD/non-IPD, and risk factors for mortality from pneumococcal disease. Vaccine effectiveness against IPD/non-IPD was estimated using a variation of the test-negative design. RESULTS We identified 496 pneumococcal disease cases, of whom 92 (18.5%) had IPD. The mean age of cases was 69.1 ± 15.4 years, and 65.5% were male. Compared with controls (N = 9181), IPD patients were younger (mean age 61.5 ± 16.3 years, vs 72.2 ± 16.1 years in controls; p < 0.001) and with less co-morbidities [median Charlson's score 1 (IQR 0-4), vs 3 (1-5) in controls; p < 0.001]. IPD patients also had the highest proportions with intensive care unit (ICU) admission (20.7%), inpatient mortality (26.1%) and longest median length of stay [9 (IQR 8-17) days]. On multivariable analysis, IPD was negatively associated with prior pneumococcal vaccination (adjusted relative risk ratio = 0.20, 95%CI 0.06-0.69; p = 0.011). Risk factors for mortality among pneumococcal disease patients were ICU admission, diagnosis of IPD, age ≥ 85 years and Charlson's score > 3. CONCLUSION Patients with pneumococcal disease (especially IPD) were younger and had less co-morbidities than controls, but had higher risk of severe clinical outcomes and mortality. Pneumococcal vaccination effectiveness against IPD was estimated to be about 80%, and should be encouraged among high-risk patients.
Collapse
Affiliation(s)
- Tyson Chan
- Department of Clinical Epidemiology, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Preventive Medicine Residency Programme, National University Health System, Singapore, Singapore
| | - Min Zhi Tay
- Department of Clinical Epidemiology, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Preventive Medicine Residency Programme, National University Health System, Singapore, Singapore
| | - Win Mar Kyaw
- Department of Clinical Epidemiology, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Angela Chow
- Department of Clinical Epidemiology, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Hanley J Ho
- Department of Clinical Epidemiology, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| |
Collapse
|
17
|
Wijayasri S, Hillier K, Lim GH, Harris TM, Wilson SE, Deeks SL. The shifting epidemiology and serotype distribution of invasive pneumococcal disease in Ontario, Canada, 2007-2017. PLoS One 2019; 14:e0226353. [PMID: 31834926 PMCID: PMC6910703 DOI: 10.1371/journal.pone.0226353] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background Ontario, Canada introduced a publicly-funded 13-valent pneumococcal conjugate vaccine (PCV13) for infants in 2010, replacing the 10-valent (PCV10, 2009–2010) and the 7-valent (PCV7, 2005–2009) conjugate vaccine programs; a 23-valent pneumococcal polysaccharide vaccine (PPV23) has been available for older adults since 1996. We examined the epidemiology and serotype distribution of invasive pneumococcal disease (IPD) in Ontario in the context of provincial immunization programs. Methods We included confirmed IPD cases reported in Ontario between 2007 and 2017. We grouped serotypes according to Ontario’s current immunization program (PCV13, PPV23, and non-vaccine-preventable) and calculated incidence rates (per 100,000 population) using population data. Results Between 2007 and 2017, annual incidence of IPD in Ontario ranged between 7.3 and 9.7/100,000 per year. Measures of illness severity were high throughout the period of surveillance. After PCV13 program implementation in 2010, incidence due to PCV13 serotypes decreased significantly across all age groups, with the greatest reductions in children <5 years and adults ≥65 years. Conversely, incidence due to PPV23 unique serotypes increased significantly between 2007 and 2017, with the greatest increases observed in adults 50–64 years (1.4 to 3.5/100,000) and ≥65 years (2.3 to 7.2/100,000). Similar increases were observed in incidence due to non-vaccine-preventable serotypes among all age groups, except infants <1 year. Within specific serotypes, incidence due to serotypes 3 (0.42 to 0.98/100,000) and 22F (0.31 to 0.72/100,000) increased significantly between 2007 and 2017, while incidence due to serotypes 19A and 7F decreased significantly during the PCV13 period (2010–2017). Conclusions Eight years after PCV13 implementation in Ontario, our data suggest both direct and indirect effects on serotype-specific incidence in young children and older adults. However, overall provincial rates have remained unchanged, and IPD continues to be a severe burden on the population. The rising incidence of IPD due to PPV23 unique and non-vaccine-preventable serotypes, and the growing burden of serotypes 3 and 22F, require further study.
Collapse
Affiliation(s)
- Shinthuja Wijayasri
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
- * E-mail:
| | - Kelty Hillier
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
| | - Gillian H. Lim
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
| | - Tara M. Harris
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
| | - Sarah E. Wilson
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shelley L. Deeks
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
|
19
|
Li XX, Xiao SZ, Gu FF, Zhao SY, Xie Q, Sheng ZK, Ni YX, Qu JM, Han LZ. Serotype Distribution, Antimicrobial Susceptibility, and Multilocus Sequencing Type (MLST) of Streptococcus pneumoniae From Adults of Three Hospitals in Shanghai, China. Front Cell Infect Microbiol 2019; 9:407. [PMID: 31828048 PMCID: PMC6890718 DOI: 10.3389/fcimb.2019.00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background:Streptococcus pneumoniae, a main causative agent associated with invasive and non-invasive infection in elderly population, is a major global health problem. After pneumococcal conjugate vaccines (PCV) and pneumococcal polysaccharide vaccines (PPV) were introduced, the distribution of S. pneumoniae serotypes has changed. There was currently limited data on epidemiology and status of antimicrobial resistance of S. pneumoniae in Shanghai. Objective: To determine the serotype distribution, antimicrobial susceptibility and molecular epidemiology of S. pneumoniae isolated from adults in Shanghai. Method: A total of 75 S. pneumoniae isolates consecutively collected from 2015 through 2017 were serotyped by conventional multiplex-PCR. The antimicrobial susceptibility was determined by broth microdilution method. The multilocus sequence type (MLST) was performed to estimate the molecular epidemiology. Results: The predominant serotypes among the isolates were 19F (20.00%), 3 (16.00%), 23F (9.33%), 14 (8.00%), and19A (5.33%). The prevalence of pneumococcal strains with serotypes targeted by vaccines PCV7, PCV10, PCV13, and PPV23 was 44, 45.33, 66.67, and 80%, respectively. Penicillin non-susceptible S. pneumoniae (PNSSP) accounted for 16% of the isolates examined and resistance to erythromycin, azithromycin, tetracycline, clindamycin, cefaclor and trimethoprim-sulfamethoxazole were found in 92.00, 90.67, 86.67, 81.33, 54.67, and 54.67% of isolates, with most isolates (78.67%) presenting multidrug-resistance. The top three sequence types (STs) were ST271 (17.33%), ST180 (9.33%), and ST81 (8.00%). The international resistance clone complexes Spain23F-1 (n = 4), Netherland3-31 (n = 8), and Taiwan19F-14 (n = 14) were identified. Conclusions: The S. pneumoniae isolates showed high genetic diversity in Shanghai and the prevalence of antimicrobial resistance was also high among S. pneumoniae isolates, most of which were multidrug-resistant. The spread of international resistance clones might contribute to the increase of resistant isolates. The PPV23 could protect against most pneumococcal capsular serotypes causing infection of adults in Shanghai.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Zhen Xiao
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Fei Gu
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Yuan Zhao
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Ke Sheng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Xing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Zhong Han
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Kloek AT, Brouwer MC, van de Beek D. Host genetic variability and pneumococcal disease: a systematic review and meta-analysis. BMC Med Genomics 2019; 12:130. [PMID: 31519222 PMCID: PMC6743160 DOI: 10.1186/s12920-019-0572-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pneumonia, sepsis, meningitis, and empyema due to Streptococcus pneumoniae is a major cause of morbidity and mortality. We provide a systemic overview of genetic variants associated with susceptibility, phenotype and outcome of community acquired pneumococcal pneumonia (CAP) and invasive pneumococcal disease (IPD). Methods We searched PubMed for studies on the influence of host genetics on susceptibility, phenotype, and outcome of CAP and IPD between Jan 1, 1983 and Jul 4, 2018. We listed methodological characteristics and when genetic data was available we calculated effect sizes. We used fixed or random effect models to calculate pooled effect sizes in the meta-analysis. Results We identified 1219 studies of which 60 studies involving 15,358 patients were included. Twenty-five studies (42%) focused on susceptibility, 8 (13%) on outcome, 1 (2%) on disease phenotype, and 26 (43%) on multiple categories. We identified five studies with a hypothesis free approach of which one resulted in one genome wide significant association in a gene coding for lincRNA with pneumococcal disease susceptibility. We performed 17 meta-analyses of which two susceptibility polymorphisms had a significant overall effect size: variant alleles of MBL2 (odds ratio [OR] 1·67, 95% confidence interval [CI] 1·04–2·69) and a variant in CD14 (OR 1·77, 95% CI 1·18–2·66) and none of the outcome polymorphisms. Conclusions Studies have identified several host genetics factors influencing risk of pneumococcal disease, but many result in non-reproducible findings due to methodological limitations. Uniform case definitions and pooling of data is necessary to obtain more robust findings. Electronic supplementary material The online version of this article (10.1186/s12920-019-0572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne T Kloek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
MacIntyre CR, Ridda I, Trent MJ, McIntyre P. Persistence of immunity to conjugate and polysaccharide pneumococcal vaccines in frail, hospitalised older adults in long-term follow up. Vaccine 2019; 37:5016-5024. [DOI: 10.1016/j.vaccine.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
|
22
|
Choi YH, Andrews N, Miller E. Estimated impact of revising the 13-valent pneumococcal conjugate vaccine schedule from 2+1 to 1+1 in England and Wales: A modelling study. PLoS Med 2019; 16:e1002845. [PMID: 31269018 PMCID: PMC6608946 DOI: 10.1371/journal.pmed.1002845] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In October 2017, the United Kingdom Joint Committee on Vaccination and Immunisation (JCVI) recommended removal of one primary dose of the 13-valent pneumococcal conjugate vaccine (PCV13) from the existing 2+1 schedule (2, 4, 12 months). We conducted a mathematical modelling study to investigate the potential impact of a 1+1 (3, 12 month) schedule on invasive pneumococcal disease (IPD) and pneumococcal community-acquired pneumonia (CAP). Our results and those from a 1+1 immunogenicity study formed the key evidence reviewed by JCVI. METHODS AND FINDINGS We developed age-structured, dynamic, deterministic models of pneumococcal transmission in England and Wales to describe the impact on IPD of 7-valent PCV (PCV7; introduced in 2006) and PCV13 (introduced in 2010). Key transmission and vaccine parameters were estimated by fitting to carriage data from 2001/2002 and post-PCV IPD data to 2015, using vaccine coverage, mixing patterns between ages, and population data. We considered various models to investigate potential reasons for the rapid increase in non-PCV13 (non-vaccine serotype [NVT]) IPD cases since 2014. After searching a large parameter space, 500 parameter sets were identified with a likelihood statistically close to the maximum and these used to predict future cases (median, prediction range from 500 parameter sets). Our findings indicated that the emergence of individual NVTs with higher virulence resulting from ongoing replacement was likely responsible; the NVT increase was predicted to plateau from 2020. Long-term simulation results suggest that changing to a 1+1 schedule would have little overall impact, as the small increase in vaccine-type IPD would be offset by a reduction in NVT IPD. Our results were robust to changes in vaccine assumptions in a sensitivity analysis. Under the base case scenario, a change to a 1+1 schedule in 2018 was predicted to produce 31 (6, 76) additional IPD cases over five years and 83 (-10, 242) additional pneumococcal-CAP cases, with together 8 (-2, 24) additional deaths, none in children under 15 years. Long-term continuation with the 2+1 schedule, or changing to a 1+1, was predicted to sustain current reductions in IPD cases in under-64-year-olds, but cases in 65+-year-olds would continue to increase because of the effects of an aging population. Limitations of our model include difficulty in fitting to past trends in NVT IPD in some age groups and inherent uncertainty about future NVT behaviour, sparse data for defining the mixing matrix in 65+-year-olds, and the methodological challenge of defining uncertainty on predictions. CONCLUSIONS Our findings suggest that, with the current mature status of the PCV programme in England and Wales, removing one primary dose in the first year of life would have little impact on IPD or pneumococcal CAP cases or associated deaths at any age. A reduction in the number of priming doses would improve programmatic efficiency and facilitate the introduction of new vaccines by reducing the number of coadministered vaccines given at 2 and 4 months of age in the current UK schedule. Our findings should not be applied to other settings with different pneumococcal epidemiology or with immature programmes and poor herd immunity.
Collapse
Affiliation(s)
- Yoon Hong Choi
- Statistics, Modelling and Economics Department, Data and Analytical Sciences, National Infection Service, Public Health England, London, United Kingdom
| | - Nick Andrews
- Statistics, Modelling and Economics Department, Data and Analytical Sciences, National Infection Service, Public Health England, London, United Kingdom
| | - Elizabeth Miller
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
23
|
Vaccine Prophylaxis of Pneumococcal Infections in Children under Conditions of Severe Flood in the Amur River Basin. Interdiscip Perspect Infect Dis 2019; 2019:5467275. [PMID: 30906320 PMCID: PMC6398015 DOI: 10.1155/2019/5467275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
Background Pneumococcal infection being one of the dominant causes of acute respiratory diseases and exacerbation of chronic ones is a serious problem for human health and society. The flood in the Amur river basin in the summer of 2013 created a special zone and risk conditions for the formation of respiratory pathology in the Far-Eastern region of Russia. We aimed to give clinical and epidemiological assessment of the effectiveness of vaccination programs of respiratory viral and pneumococcal infections and generalization of regional experience in the organization of a set of measures aimed at their prevention in the postflood period in the Far-Eastern region. Methods The monitoring program includes children aged 2 to 5 years in the amount of 4988 with risk factors for pneumococcal infection. The pneumococcal conjugate vaccine Prevenar-13 was used for immunization. Data on the incidence of ARVI and pneumonia in children in pre- and postvaccination periods were to be recorded. The indicators and special criteria were used to assess the effectiveness of vaccination. To study the circulation of serovariants of pneumococcus in inflammatory diseases of the respiratory tract and nasopharyngeal carrier, bacteriological and molecular genetic methods (RT-PCR in the mode of multiprime detection) were used. Results Differences in the frequency and range of serovariants of circulating isolates of pneumococcus in the postvaccinal period and in unvaccinated children, elimination of a number of serotypes, and appearance of circulation of nonvaccinated strains were revealed. The incidence of acute respiratory diseases and pneumonia among the vaccinated population for 2 years in the region decreased by 2.5 times. The coefficient of effectiveness of vaccination according to the indicator of morbidity of children with pneumonia reaches 75-100% with direct dependence on the age of children (r=0.98). Conclusion Comparative statistical analysis revealed a high degree of effectiveness of regional programs with the methods of immunoprophylaxis of pneumococcal infections.
Collapse
|
24
|
Drayß M, Claus H, Hubert K, Thiel K, Berger A, Sing A, van der Linden M, Vogel U, Lâm TT. Asymptomatic carriage of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, Group A Streptococcus and Staphylococcus aureus among adults aged 65 years and older. PLoS One 2019; 14:e0212052. [PMID: 30735539 PMCID: PMC6368330 DOI: 10.1371/journal.pone.0212052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the prevalence of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, group A Streptococcus (GAS), and Staphylococcus aureus in asymptomatic elderly people and to unravel risk factors leading to colonization. METHODS A multi-centre cross-sectional study was conducted including 677 asymptomatic adults aged 65 years or more, living at home or in nursing homes. Study areas were Greater Aachen (North-Rhine-Westphalia) and Wuerzburg (Bavaria), both regions with medium to high population density. Nasal and oropharyngeal swabs as well as questionnaires were collected from October 2012 to May 2013. Statistical analysis included multiple logistic regression models. RESULTS The carriage rate was 1.9% ([95%CI: 1.0-3.3%]; 13/677) for H. influenzae, 0.3% ([95%CI: 0-1.1%]; 2/677) for N. meningitidis and 0% ([95% CI: 0-0.5%]; 0/677) for S. pneumoniae and GAS. Staphylococcus aureus was harboured by 28.5% of the individuals ([95% CI: 25.1-32.1%]; 193/677) and 0.7% ([95% CI: 0.2-1.7%]; 5/677) were positive for methicillin-resistant S. aureus. Among elderly community-dwellers colonization with S. aureus was significantly associated with higher educational level (adjusted OR: 1.905 [95% CI: 1.248-2.908]; p = 0.003). Among nursing home residents colonization was associated with being married (adjusted OR: 3.367 [1.502-7.546]; p = 0.003). CONCLUSION The prevalence of N. meningitidis, H. influenzae, S. pneumoniae and GAS was low among older people in Germany. The S. aureus rate was expectedly high, while MRSA was found in less than 1% of the individuals.
Collapse
Affiliation(s)
- Maria Drayß
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Hubert
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Katrin Thiel
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Berger
- Bavarian Health and Food Safety Authority, National Consulting Laboratory for Diphtheria, Oberschleißheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, National Consulting Laboratory for Diphtheria, Oberschleißheim, Germany
| | - Mark van der Linden
- Institute of Medical Microbiology, National Reference Centre for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Baucom A, Brizendine C, Fugit A, Dennis C. Evaluation of a Pharmacy-to-Dose Pneumococcal Vaccination Protocol at an Academic Medical Center. Ann Pharmacother 2018; 53:364-370. [PMID: 30286612 DOI: 10.1177/1060028018805439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: In February 2016, a pharmacy-to-dose (PTD) pneumococcal vaccination protocol was implemented to aid in the appropriate selection of pneumococcal vaccines. Objective: The primary objective was to compare the rate of appropriate vaccine ordering with the PTD protocol. Secondary objectives were to assess vaccine administration rate and determine factors preventing patients from receiving the vaccine after appropriate selection. Methods: This was a single-center, retrospective cohort study of adult patients admitted to an inpatient service. Eligible patients were 19 years of age or older and had either a PTD pneumococcal vaccination order placed or an alert triggered indicating that the patient was a candidate for a vaccination. Patients were excluded if they had contraindications to receiving either pneumococcal vaccine. The Fisher exact test was used to evaluate the primary objective, and descriptive statistics were used to evaluate the secondary objectives. Results: A total of 327 patients were included in the analysis: 167 in the preprotocol cohort and 160 in the postprotocol cohort. The correct vaccine ordering rates were found to be 26.9% (45/167) and 83.1% (133/160) in the preprotocol and postprotocol cohorts, respectively ( P < 0.001). In the postprotocol cohort, 17.5% (28/160) of patients did not have a vaccine administered. Reasons for vaccine administration failure were identified as patient refusal, patient expired during admission, vaccine not dispensed by pharmacy, and vaccine dispensed by pharmacy but returned. Conclusions: The PTD pneumococcal vaccination protocol significantly improved correct vaccine ordering rates.
Collapse
Affiliation(s)
| | | | - Ann Fugit
- Vidant Medical Center, Greenville, NC, USA
| | | |
Collapse
|
26
|
Makwana A, Ladhani SN, Kapatai G, Campion E, Fry NK, Sheppard C. Rapid Spread of Pneumococcal Nonvaccine Serotype 7C Previously Associated with Vaccine Serotype 19F, England and Wales. Emerg Infect Dis 2018; 24:1919-1922. [PMID: 30226184 PMCID: PMC6154145 DOI: 10.3201/eid2410.180114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We observed a sudden and rapid increase in rare invasive pneumococcal disease serotype 7C, from an annual average of 3 cases during 2000-01 through 2015-16 to 29 cases in 2016-17. The increase was caused almost entirely by clonal expansion of sequence type 177, previously associated with vaccine serotype 19F.
Collapse
|
27
|
Domínguez-Alegría A, Pintado V, Barbolla I. Treatment and prevention of invasive pneumococcal disease. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
|
29
|
Wagner-Muñiz DA, Haughney SL, Kelly SM, Wannemuehler MJ, Narasimhan B. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Front Immunol 2018; 9:325. [PMID: 29599766 PMCID: PMC5863507 DOI: 10.3389/fimmu.2018.00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA), a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine) platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles). Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.
Collapse
Affiliation(s)
- Danielle A. Wagner-Muñiz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Sean M. Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Domínguez-Alegría AR, Pintado V, Barbolla I. Treatment and prevention of invasive pneumococcal disease. Rev Clin Esp 2018; 218:244-252. [PMID: 29448981 DOI: 10.1016/j.rce.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/26/2017] [Accepted: 01/04/2018] [Indexed: 01/17/2023]
Abstract
Invasive pneumococcal disease is a severe infection that mainly affects patients with associated comorbidity. The paediatric conjugate vaccination has resulted in a change in the adult vaccination strategy. The antibiotic resistance of pneumococcus is not currently a severe problem. Nevertheless, the World Health Organisation has included pneumococcus among the bacteria whose treatment requires the introduction of new drugs, such as ceftaroline and ceftobiprole. Although the scientific evidence is still limited, the combination of beta-lactams and macrolides is recommended as empiric therapy for bacteraemic pneumococcal pneumonia.
Collapse
Affiliation(s)
| | - V Pintado
- Servicio de Enfermedades Infecciosas, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | - I Barbolla
- Servicio de Medicina Interna, Hospital Ramón y Cajal, Madrid, España
| |
Collapse
|
31
|
Maraki S, Mavromanolaki VE, Stafylaki D, Hamilos G, Samonis G. The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016. Infect Chemother 2018; 50:328-339. [PMID: 30600656 PMCID: PMC6312900 DOI: 10.3947/ic.2018.50.4.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/03/2018] [Indexed: 11/24/2022] Open
Abstract
Background Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009–2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ≥2 non-β-lactam antimicrobials. Results A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece.
| | | | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - George Hamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - George Samonis
- Infectious Diseases Unit, University Hospital of Heraklion and University of Crete Medical School, Heraklion, Crete, Greece
| |
Collapse
|
32
|
Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-Weigand P, Hammerschmidt S. Port d'Entrée for Respiratory Infections - Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol 2017; 8:2602. [PMID: 29312268 PMCID: PMC5742597 DOI: 10.3389/fmicb.2017.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|