1
|
Mao T, Zhang P, Jiang S, Li D, Li J, Zhang Q, Wang H, Kong X, Duan Z. Oral Ad5 Vector-Based SARS-CoV-2 Vaccine Effectively Induces Mucosal and Systemic Immune Responses in BALB/c Mice. J Med Virol 2025; 97:e70236. [PMID: 39949193 DOI: 10.1002/jmv.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 05/09/2025]
Abstract
Mucosal immunity is essential for preventing viral infections through the mucosal route. The emerging SARS-CoV-2 variants have posed additional hurdles to the efficiency of existing vaccines. The rapid development of novel vaccines that generate broad mucosal and systemic immunity could be the most effective strategy to address this issue. In this study, we developed a recombinant and replication-deficient type-5 adenoviral vaccine with a built-in double-strand RNA adjuvant and the vaccine expresses the SARS-CoV-2 Omicron BA.1 spike (S) antigen (hereinafter referred to as "the oral vaccine"). We found that two doses of the oral vaccine in BALB/c mice generated long-lasting S-specific mucosal and systemic immune responses, as well as broad neutralizing antibodies and SIgA antibodies. In addition, we found that compared to an mRNA vaccine booster, using the oral vaccine as a booster could induce both effective mucosal and systemic immunity, addressing the limitation of mRNA vaccines in eliciting mucosal immunity. Prospective oral vaccines require further investigation into development and potential applications, particularly viral challenge experiments, before clinical trials.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Immunity, Mucosal
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- Mice
- Administration, Oral
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Adenoviridae/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Humans
- Genetic Vectors
Collapse
Affiliation(s)
- Tongyao Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Surui Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Li J, Zeng Y, Li L, Peng J, Yan Q, Ye Z, Zhang Y, Li W, Cao L, Zhou D, Li Q, Si Y, Cao S. Development of a recombinant Lactobacillus plantarum oral vaccine expressing VP2 protein for preventing feline panleukopenia virus. Vet Microbiol 2024; 298:110257. [PMID: 39321672 DOI: 10.1016/j.vetmic.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Feline panleukopenia virus (FPV) represents a significant health threat to the kittens. While traditional vaccines administered via subcutaneous or intramuscular injection are effective, they can induce stress and adverse reactions. Moreover, unvaccinated kittens visiting veterinary clinics risk exposure to FPV, increasing their susceptibility to infection. Therefore, there is an urgent need for a safer, more gentle vaccination method with streamlined administration. In this study, we developed a recombinant L. plantarum NC8/VP2 expressing the VP2 protein of the prevalent Chinese FPV strain, FPV-251. Our results show that L. plantarum NC8/VP2 effectively colonizes the feline intestinal tract and induces high levels of neutralizing antibodies through oral administration. Kittens exhibited significant protection against FPV-251 infection and associated illnesses or fatalities after 30 days of continuous dosing. These results highlight the potential of recombinant L. plantarum NC8/VP2 as a novel oral vaccine for FPV, presenting a promising approach for disease prevention in domestic cats.
Collapse
Affiliation(s)
- Jiakang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yue Zeng
- Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Luying Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Quanhui Yan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zijun Ye
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weihui Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Longlong Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dengyuan Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - QiuYan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Lloren KKS, Lee JH. Live-Attenuated Salmonella-Based Oral Vaccine Candidates Expressing PCV2d Cap and Rep by Novel Expression Plasmids as a Vaccination Strategy for Mucosal and Systemic Immune Responses against PCV2d. Vaccines (Basel) 2023; 11:1777. [PMID: 38140182 PMCID: PMC10748173 DOI: 10.3390/vaccines11121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral vaccines are highly envisaged for veterinary applications due to their convenience and ability to induce protective mucosal immunity as the first line of defense. The present investigation harnessed live-attenuated Salmonella Typhimurium to orally deliver novel expression vector systems containing the Cap and Rep genes from porcine circovirus type 2 (PCV2), a significant swine pathogen. The antigen expression by the vaccine candidates JOL2885 and JOL2886, comprising eukaryotic pJHL204 and pro-eukaryotic expression pJHL270 plasmids, respectively, was confirmed by Western blot and IFA. We evaluated their immunogenicity and protective efficacy through oral vaccination in a mouse model. This approach elicited both mucosal and systemic immunity against PCV2d. Oral administration of the candidates induced PCV2-specific sIgA, serum IgG antibodies, and neutralizing antibodies, resulting in reduced viral loads in the livers and lungs of PCV2d-challenged mice. T-lymphocyte proliferation and flow-cytometry assays confirmed enhanced cellular immune responses after oral inoculation. The synchronized elicitation of both Th1 and Th2 responses was also confirmed by enhanced expression of TNF-α, IFN-γ, IL-4, MHC-I, and MHC-II. Our findings highlight the effectiveness and safety of the constructs with an engineered-attenuated S. Typhimurium, suggesting its potential application as an oral PCV2 vaccine candidate.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
4
|
Sarnelli G, Del Re A, Pesce M, Lu J, Esposito G, Sanseverino W, Corpetti C, Basili Franzin S, Seguella L, Palenca I, Rurgo S, De Palma FDE, Zilli A, Esposito G. Oral Immunization with Escherichia coli Nissle 1917 Expressing SARS-CoV-2 Spike Protein Induces Mucosal and Systemic Antibody Responses in Mice. Biomolecules 2023; 13:biom13030569. [PMID: 36979504 PMCID: PMC10046078 DOI: 10.3390/biom13030569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Jie Lu
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China
| | - Giovanni Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Walter Sanseverino
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|