1
|
The Pancreas and Known Factors of Acute Pancreatitis. J Clin Med 2022; 11:jcm11195565. [PMID: 36233433 PMCID: PMC9571992 DOI: 10.3390/jcm11195565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis is regarded by clinicians as one of the most complicated and clinically challenging of all disorders affecting the abdomen. It is classified on the basis of clinical, morphological, and histological criteria. Causes of acute pancreatitis can easily be identified in 75–85% of patients. The main causes of acute, recurrent acute, and chronic pancreatitis are gallstone migration and alcohol abuse. Other causes are uncommon, controversial, or unexplained. For instance, cofactors of all forms of pancreatitis are pancreas divisum and hypertriglyceridemia. Another factor that should be considered is a complication of endoscopic retrograde cholangiopancreatography: post-endoscopic retrograde cholangiopancreatography acute pancreatitis. The aim of this study is to present the known risk factors for acute pancreatitis, beginning with an account of the morphology, physiology, and development of the pancreas.
Collapse
|
2
|
Fauzi A, Suhendro, Simadibrata M, Rani AA, Sajuthi D, Permanawati, Amanda R, Makmun D. Role of glycodeoxycholic acid to induce acute pancreatitis in Macaca nemestrina. J Med Primatol 2022; 51:134-142. [PMID: 35306662 PMCID: PMC9310849 DOI: 10.1111/jmp.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute pancreatitis exhibits a rapid clinical progression which makes it difficult to observe in human; hence, an experimental animal model is needed. This preliminary study performed an induction of acute pancreatitis using glycodeoxycholic acid (GDOC) in an experimental macaque model. METHODS GDOC injections (initial dose of 11.20 mg/kg) were administered in an escalating manner at specific time points. The injection was given along the bilio-pancreatic duct, followed by measurement of vital signs, serum amylase-lipase, TNF-α, procalcitonin, oxidative stress parameters, and microscopic and macroscopic findings. RESULTS The results indicated that acute pancreatitis occurred following induction with low-dose GDOC. Serum amylase and lipase levels increased with subsequent GDOC injections. Blood pressure and heart rate were elevated, indicating abdominal pain. Changes in TNF-α, procalcitonin, and oxidative stress values showed active inflammation. We observed histologic features of pancreatitis and as the dose increased, vasodilation of the splanchnic vasculatures was observed. CONCLUSIONS Small dose GDOC injection in the bilio-pancreatic duct may have a role to induce acute pancreatitis in Macaca nemestrina.
Collapse
Affiliation(s)
- Achmad Fauzi
- Gastroenterology‐pancreatobiliarry and GI Endoscopy DivisionDepartment of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| | - Suhendro
- Tropical medicine Division Department of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| | - Marcellus Simadibrata
- Gastroenterology‐pancreatobiliarry and GI Endoscopy DivisionDepartment of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| | - Abdul Azis Rani
- Gastroenterology‐pancreatobiliarry and GI Endoscopy DivisionDepartment of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| | - Dondin Sajuthi
- Primate Research CentreInstitut Pertanian BogorBogorIndonesia
| | - Permanawati
- Primate Research CentreInstitut Pertanian BogorBogorIndonesia
| | - Rosvitha Amanda
- Gastroenterology‐pancreatobiliarry and GI Endoscopy DivisionDepartment of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| | - Dadang Makmun
- Gastroenterology‐pancreatobiliarry and GI Endoscopy DivisionDepartment of Internal MedicineFaculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo HospitalJakartaIndonesia
| |
Collapse
|
3
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Hyperbaric Oxygen Ameliorated Acute Pancreatitis in Rats via the Mitochondrial Pathway. Dig Dis Sci 2020; 65:3558-3569. [PMID: 32006213 DOI: 10.1007/s10620-020-06070-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is a common disease of the digestive system. The mechanism of hyperbaric oxygen (HBO) therapy for AP is not completely clear. AIMS This study investigated the effects of HBO in AP and whether it acts through the mitochondria-mediated apoptosis pathway. METHODS Eighty male Sprague-Dawley rats were randomly assigned to four groups: control (8 rats), sham (24 rats), AP (24 rats), or AP + HBO (24 rats). AP was induced by ligating the pancreatic duct. The AP + HBO group was given HBO therapy starting at 6 h postinduction. Eight rats in each group were killed on days 1, 2, and 3 postinduction to assess pancreatic injury, mitochondrial membrane potential, ATP level, and expression levels of BAX, Bcl-2, caspase-3, caspase-9, and PARP in pancreatic tissue and blood levels of amylase, lipase, and pro-inflammatory cytokines. RESULTS HBO therapy alleviated the severity of AP and decreased histopathological scores and levels of serum amylase, lipase, and pro-inflammatory cytokines. Compared to AP induction alone, HBO therapy increased expression of the apoptotic protein BAX, caspase-3, caspase-9, and PARP and ATP levels in tissues and decreased antiapoptotic protein Bcl-2 expression levels and the mitochondrial membrane potential on the first day; the results on the second day were partly consistent with those on the first day, while there was no obvious difference on the third day. CONCLUSIONS HBO therapy could induce caspase-dependent apoptosis in AP rats to alleviate pancreatitis, which was possibly triggered by mitochondrial apoptosis pathway regulation of Bcl-2 family members.
Collapse
|
5
|
Raikwar N, Braverman C, Snyder PM, Fenton RA, Meyerholz DK, Abboud FM, Harwani SC. Renal denervation and CD161a immune ablation prevent cholinergic hypertension and renal sodium retention. Am J Physiol Heart Circ Physiol 2019; 317:H517-H530. [PMID: 31172810 DOI: 10.1152/ajpheart.00234.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cholinergic receptor activation leads to premature development of hypertension and infiltration of proinflammatory CD161a+/CD68+ M1 macrophages into the renal medulla. Renal inflammation is implicated in renal sodium retention and the development of hypertension. Renal denervation is known to decrease renal inflammation. The objective of this study was to determine the role of CD161a+/CD68+ macrophages and renal sympathetic nerves in cholinergic-hypertension and renal sodium retention. Bilateral renal nerve denervation (RND) and immune ablation of CD161a+ immune cells were performed in young prehypertensive spontaneously hypertensive rat (SHR) followed by infusion of either saline or nicotine (15 mg·kg-1·day-1) for 2 wk. Immune ablation was conducted by injection of unconjugated azide-free antibody targeting rat CD161a+. Blood pressure was monitored by tail cuff plethysmography. Tissues were harvested at the end of infusion. Nicotine induced premature hypertension, renal expression of the sodium-potassium chloride cotransporter (NKCC2), increases in renal sodium retention, and infiltration of CD161a+/CD68+ macrophages into the renal medulla. All of these effects were abrogated by RND and ablation of CD161a+ immune cells. Cholinergic activation of CD161a+ immune cells with nicotine leads to the premature development of hypertension in SHR. The effects of renal sympathetic nerves on chemotaxis of CD161a+ macrophages to the renal medulla, increased renal expression of NKCC2, and renal sodium retention contribute to cholinergic hypertension. The CD161a+ immune cells are necessary and essential for this prohypertensive nicotine-mediated inflammatory response.NEW & NOTEWORTHY This is the first study that describes a novel integrative physiological interaction between the adrenergic, cholinergic, and renal systems in the development of hypertension, describing data for the role of each in a genetic model of essential hypertension. Noteworthy findings include the prevention of nicotine-mediated hypertension following successful immune ablation of CD161a+ immune cells and the necessary role these cells play in the overexpression of the sodium-potassium-chloride cotransporter (NKCC2) in the renal medulla and renal sodium retention. Renal infiltration of these cells is demonstrated to be dependent on the presence of renal adrenergic innervation. These data offer a fertile ground of therapeutic potential for the treatment of hypertension as well as open the door for further investigation into the mechanism involved in inflammation-mediated renal sodium transporter expression. Taken together, these findings suggest immune therapy, renal denervation, and, possibly, other new molecular targets as having a potential role in the development and maintenance of essential hypertension.
Collapse
Affiliation(s)
- Nandita Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Cameron Braverman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter M Snyder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - David K Meyerholz
- Division of Comparative Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Francois M Abboud
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Departments of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sailesh C Harwani
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Center for Immunology and Immune Mediated Diseases, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
6
|
Guo HY, Cui ZJ. Extracellular Histones Activate Plasma Membrane Toll-Like Receptor 9 to Trigger Calcium Oscillations in Rat Pancreatic Acinar Tumor Cell AR4-2J. Cells 2018; 8:3. [PMID: 30577532 PMCID: PMC6356355 DOI: 10.3390/cells8010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
In acute pancreatitis, histones are released by infiltrating neutrophils, but how histones modulate pancreatic acinar cell function has not been investigated. We have examined histone modulation of rat pancreatic acini and pancreatic acinar tumor cell AR4-2J by calcium imaging. Histones were found to have no effect on calcium in pancreatic acini but blocked calcium oscillations induced by cholecystokinin or acetylcholine. Both mixed (Hx) and individual (H1, H2A, H2B, H3, H4) histones induced calcium oscillations in AR4-2J. RT-PCR and Western blot verified the expression of histone-targeted Toll-like receptor (TLR) 2, 4 and 9. Immunocytochemistry identified TLR2/TLR4 on apical plasma membrane and TLR9 in zymogen granule regions in pancreatic acini. TLR2 was found on neighboring and TLR9 on peripheral plasma membranes, but TLR4 was in the nucleus in AR4-2J clusters. Neither TLR2 agonist zymosan-A nor TLR4 agonist lipopolysaccharide had any effect on calcium, but TLR9 agonist ODN1826 induced calcium oscillations; TLR9 antagonist ODN2088 blocked H4-induced calcium oscillations in AR4-2J, which also disappeared after treatment of AR4-2J with glucocorticoid dexamethasone, with concurrent TLR9 migration from plasma membrane to cell interiors. TLR9 down regulation with siRNA suppressed H4-induced calcium oscillations. These data together suggest that extracellular histones activate plasma membrane TLR9 to trigger calcium oscillations in AR4-2J cells.
Collapse
Affiliation(s)
- Hai Yan Guo
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, Abboud FM. Nicotine Mediates CD161a+ Renal Macrophage Infiltration and Premature Hypertension in the Spontaneously Hypertensive Rat. Circ Res 2016; 119:1101-1115. [PMID: 27660287 PMCID: PMC5085865 DOI: 10.1161/circresaha.116.309402] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.
Collapse
MESH Headings
- Age of Onset
- Angiotensin II/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Denervation
- Gene Expression Regulation/drug effects
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Immunophenotyping
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/genetics
- Kidney/innervation
- Kidney/pathology
- Lectins/biosynthesis
- Lectins/genetics
- Macrophages/classification
- Macrophages/drug effects
- Macrophages/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily B/analysis
- Nephritis/chemically induced
- Nephritis/physiopathology
- Nicotine/pharmacology
- Nicotine/toxicity
- Norepinephrine/metabolism
- Prehypertension/etiology
- Prehypertension/genetics
- Prehypertension/pathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Sailesh C Harwani
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City.
| | - Jason Ratcliff
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Fayyaz S Sutterwala
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Zuhair K Ballas
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - David K Meyerholz
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Mark W Chapleau
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Francois M Abboud
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
8
|
The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock 2015; 42:264-70. [PMID: 24978882 DOI: 10.1097/shk.0000000000000209] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut barrier failure has been implicated in the progression from single-organ injury to multiple-organ failure. The unstirred mucus layer is a major component of the physiological gut barrier; its role in acute pancreatitis (AP) is not clearly defined. Rats underwent biliopancreatic duct ligation-induced AP; two controls were used: biliopancreatic duct ligation with drainage and sham duct ligation. After 4.5 h, serum and ascitic amylase activity was measured. Mucus was analyzed for reactive nitrogen intermediate-mediated damage, reactive oxygen species-induced damage, and total antioxidant capacity. Mucus coverage and villous injury were assessed histologically. Ileum permeability was measured by diffusion of a fluorescent Dextran probe. Histology and morphology of the mucus layer were validated in a mouse AP model (intraductal taurocholate plus cerulein). Biliopancreatic duct ligation increased serum α-amylase, ascitic volume, and ascitic α-amylase. Intestinal permeability was increased, which was associated with loss of the unstirred mucus layer but not villous injury. These changes correlated with increased reactive oxygen species- and- reactive nitrogen intermediate-mediated mucus damage as well as decreased mucus total antioxidant capacity but were not present in the two control groups. Using a different model of AP in mice, the finding of mucus layer disruption was recapitulated at 6 h after AP, but by 24 h, rebound hypersecretion of inspissated mucus was seen. These results support the hypothesis that damage to the unstirred mucus layer with evidence of oxidative stress occurs during AP-induced gut barrier failure.
Collapse
|
9
|
Inman KS, Francis AA, Murray NR. Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol 2014; 20:11160-11181. [PMID: 25170202 PMCID: PMC4145756 DOI: 10.3748/wjg.v20.i32.11160] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.
Collapse
|
10
|
Endo K, Weng H, Kito N, Fukushima Y, Iwai N. MiR-216a and miR-216b as markers for acute phased pancreatic injury. Biomed Res 2014; 34:179-88. [PMID: 23995054 DOI: 10.2220/biomedres.34.179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs (length, 18-ss23 nucleotides) that regulate gene expression. Recently, plasma miRNAs have been investigated as biomarkers for various diseases. In the present study, we explored cell- or tissue-specific miRNAs and assessed the applicability of miRNA profiling for identifying biomarkers of tissue injuries. miRNA analyses in various human and rat tissues identified several candidate miRNAs with possible tissue-specific expression, some of which have already been reported. In the present study, we focused on pancreas-specific miRNAs, miR-216a and miR-216b. Laser microdissection revealed that miR-216a and 216b were predominantly expressed in acinar cells of the pancreas as compared to Langerhans' islet. Plasma concentrations of miR-216a and miR-216b considerably increased in a rat model of L-arginineinduced acute pancreatitis. The current results have confirmed that miRNA expression profiling in various cells is useful for providing biomarkers for cell- or tissue-specific injuries.
Collapse
Affiliation(s)
- Kosuke Endo
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
11
|
Liang HY, Song ZM, Cui ZJ. Lasting inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst--a novel mechanism for secretory blockade in acute pancreatitis? Biochem Biophys Res Commun 2013; 437:361-367. [PMID: 23820383 DOI: 10.1016/j.bbrc.2013.06.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023]
Abstract
Although overwhelming evidence indicates that neutrophil infiltration is an early event in acute pancreatitis, the effect of neutrophil respiratory burst on pancreatic acini has not been investigated. In the present work, effect of fMLP-induced neutrophil respiratory burst on pancreatic acini was examined. It was found that neutrophil respiratory burst blocked calcium oscillations induced by cholecystokinin or by acetylcholine. Such lasting inhibition was dependent on the density of bursting neutrophils and could be overcome by increased agonist concentration. Inhibition of cholecystokinin stimulation was also observed in AR4-2J cells. In sharp contrast, neutrophil respiratory burst had no effect on calcium oscillations induced by phenylephrine (PE), vasopressin, or by ATP in rat hepatocytes. These data together suggest that inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst would lead to secretory blockade, which is a hallmark of acute pancreatitis. The present work has important implications for clinical treatment and management of acute pancreatitis.
Collapse
Affiliation(s)
- Hui Yuan Liang
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
12
|
Kempuraj D, Twait EC, Williard DE, Yuan Z, Meyerholz DK, Samuel I. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice. PLoS One 2013; 8:e56866. [PMID: 23418608 PMCID: PMC3572073 DOI: 10.1371/journal.pone.0056866] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/14/2013] [Indexed: 12/22/2022] Open
Abstract
Background Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown. Methods/Results In duct ligation-induced acute pancreatitis in mice and rats, we found that (a) IL-33 concentration was increased in the pancreas; (b) mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c) plasma histamine and pancreatic substance P concentrations were increased; and (d) pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK) and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α). Also, IL-33 activated ERK in human pancreatic tissue. Significance As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation. Conclusion IL-33 is induced in acute pancreatitis, activates acinar cell proinflammatory pathways and exacerbates acute pancreatic inflammation.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Erik C. Twait
- Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah E. Williard
- Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Zuobiao Yuan
- Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Isaac Samuel
- Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yang F, Wu H, Li Y, Li Z, Wang C, Yang J, Hu B, Huang Z, Ji R, Zhan X, Xie H, Wang L, Zhang M, Tang C. Prevention of severe acute pancreatitis with octreotide in obese patients: a prospective multi-center randomized controlled trial. Pancreas 2012; 41:1206-1212. [PMID: 23086244 DOI: 10.1097/mpa.0b013e3182523bdf] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate the efficacy of octreotide in preventing severe acute pancreatitis (SAP) in obese patients. METHODS A prospective multi-center partly randomized control trial was conducted in patients with mild acute pancreatitis (AP). Nonobese patients received conventional management (nonobese-C, n = 82), whereas obese patients (body mass index ≥ 25 kg/m(2)) were randomized into 2 groups: obese-C (n = 79), who received conventional management, and obese-C+O (n = 82), who received conventional management plus intravenous infusion of octreotide, 50 μg/h for 72 hours. RESULTS The risk ratio and relative risk reduction in the development of SAP in the obese-C+O group were 0.27 (95% confidence interval, 0.10-0.69) and 0.73 (95% confidence interval, 0.31-0.90), respectively. The number of cases developing local complications in the obese-C+O group was significantly smaller than that in the obese-C group: 4.9% vs 19%, P = 0.006. The plasma level of somatostatin in the obese-C+O group was significantly higher than that in the obese-C group: 165.5 ± 42.6 vs 112.1 ± 24.86 pg/mL, P < 0.05. Supplement of octreotide also accompanied with reduction in plasma levels of tumor necrosis factor α and IL-6. CONCLUSIONS Intravenous administration of octreotide (50 μg/h) for 72 hours in the early stage of AP could prevent the development of SAP effectively in obese patients by raising plasma somatostatin to a normal level and reducing circulating cytokines.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nepomnyashchikh LM, Lushnikova EL, Viskunov VG, Protsenko SI, Molodykh OP, Koldysheva EV. Ultrastructure of acinar cell injuries in experimental acute pancreatitis created by common bile duct ligation. Bull Exp Biol Med 2012; 150:747-52. [PMID: 22235434 DOI: 10.1007/s10517-011-1240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morphogenesis of acute pancreatitis induced by ligation of the common bile duct and the ultrastructure of autolytic transformations of acinar cells were studied. Autolytic changes in acinar cells started from the basal zones and then involved the apical zones. Violation of the zymogen granules integrity, interactions of their contents with the adjacent ultrastructures, destruction (melting) of ultrastructures, and formation of huge autophagosomes play an important role in the development of autolysis. Disordered secretion of zymogen granules (foci of their accumulation in the apical zone), hyperplasia and hypertrophy of centroacinar cells and ductal epitheliocytes aimed at restoration of the pancreatic secretion discharge pathways were seen in the retained acini.
Collapse
Affiliation(s)
- L M Nepomnyashchikh
- Department of General Pathology and Pathomorphology, Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Oshiro A, Iseki S, Miyauchi M, Terashima T, Kawaguchi Y, Ikeda Y, Shinomura T. Lipopolysaccharide induces rapid loss of follicular dendritic cell-secreted protein in the junctional epithelium. J Periodontal Res 2012; 47:689-94. [DOI: 10.1111/j.1600-0765.2012.01482.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Hunninghake GW, Doerschug KC, Nymon AB, Schmidt GA, Meyerholz DK, Ashare A. Insulin-like growth factor-1 levels contribute to the development of bacterial translocation in sepsis. Am J Respir Crit Care Med 2010; 182:517-25. [PMID: 20413631 PMCID: PMC2937242 DOI: 10.1164/rccm.200911-1757oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/22/2010] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Many lines of evidence point toward the gastrointestinal (GI) tract in the pathophysiology of organ dysfunction in sepsis. Splanchnic hypoperfusion during sepsis leads to enterocyte apoptosis, diminished barrier function, and release of bacterial products. Sepsis lowers levels of insulin-like growth factor (IGF)-1, a known antiapoptotic factor. We recently demonstrated that treatment with IGF-1 is protective in murine sepsis. OBJECTIVES We hypothesize that decreased IGF-1 levels in sepsis contributes to the development of bacterial translocation. METHODS Sepsis was induced in C57BL/6 mice via intratracheal instillation of Pseudomonas aeruginosa. Human subjects with sepsis were enrolled if they had a documented positive blood culture with a nonenteric organism. Bacterial translocation was measured in serum by quantitative real-time polymerase chain reaction with primers specific for enteric bacteria. Serum IGF-1 was measured by ELISA. Apoptosis of the GI epithelium was assessed via immunohistochemistry. MEASUREMENTS AND MAIN RESULTS We found that mice with severe sepsis had evidence of bacterial translocation by 24 hours. Enteric bacterial load correlated inversely with levels of serum IGF-1. If we treated mice with IGF-1, bacterial translocation was significantly decreased. In addition, we found increased GI epithelial cell apoptosis after sepsis, which was significantly decreased after IGF-1 treatment. Human subjects with nonenteric sepsis developed progressive enteric bacteremia over 3 days. The degree of enteric bacteremia correlated inversely with serum IGF-1 levels. CONCLUSIONS These data support the hypothesis that sepsis-induced reductions in IGF-1 levels contribute to the development of bacterial translocation in both a murine model and human subjects.
Collapse
Affiliation(s)
- Gary W. Hunninghake
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Kevin C. Doerschug
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Amanda B. Nymon
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Gregory A. Schmidt
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| | - Alix Ashare
- Department of Internal Medicine, Division of Pulmonary and Critical Care and Occupational Medicine, and Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; and Veteran's Administration Medical Center, Iowa City, Iowa
| |
Collapse
|
17
|
Axelsson JBF, Akbarshahi H, Said K, Malmström A, Andersson R. Proposed protective mechanism of the pancreas in the rat. J Inflamm (Lond) 2010; 7:24. [PMID: 20482799 PMCID: PMC2887862 DOI: 10.1186/1476-9255-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/18/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. METHODS Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. RESULTS During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. CONCLUSIONS Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop.
Collapse
Affiliation(s)
- Jakob BF Axelsson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Hamid Akbarshahi
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Katarzyna Said
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| |
Collapse
|
18
|
Zini E, Osto M, Moretti S, Franchini M, Kook PH, Lutz H, Guscetti F, Perren A, Hoelzle LE, Ackermann M, Lutz TA, Reusch CE. Hyperglycaemia but not hyperlipidaemia decreases serum amylase and increases neutrophils in the exocrine pancreas of cats. Res Vet Sci 2010; 89:20-6. [PMID: 20132955 DOI: 10.1016/j.rvsc.2010.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/10/2023]
Abstract
The goal of the study was to determine whether hyperglycaemia or hyperlipidaemia causes pancreatitis in cats and to assess the effect of excess serum glucose and lipids on amylase and lipase activity. Ten-day hyperglycaemic and hyperlipidaemic clamps were carried out in five and six healthy cats, respectively. Ten healthy cats received saline and served as controls. The activity of amylase was below the normal range in 4 of 5 hyperglycaemic cats by day 10. The activity of lipase did not vary in any of the cats. Samples of exocrine pancreas were normal on histological examination, but the number of tissue neutrophils was increased in hyperglycaemic cats (P<0.05). In a retrospective study 14 of 40 (35%) cats with naturally occurring diabetes mellitus had amylase activities below the reference range at the time of admission. Amylase activities normalised within 1 week of insulin therapy and subsequent glycaemic control. Lipase activity was increased in 26 of 40 (65%) diabetic cats and remained elevated despite glycaemic control. In conclusion, hyperglycaemia, but not hyperlipidaemia, increases pancreatic neutrophils in cats. However, because the histological morphology of the exocrine pancreas was normal, hyperglycaemia may play only a minor role in the pathogenesis of pancreatitis. Low amylase activities in diabetic cats may reflect an imbalance in glucose metabolism rather than pancreatitis.
Collapse
Affiliation(s)
- Eric Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Acute pancreatitis is an inflammatory disease of the pancreas. The etiology and pathogenesis of acute pancreatitis have been intensively investigated for centuries worldwide. Many causes of acute pancreatitis have been discovered, but the pathogenetic theories are controversial. The most common cause of acute pancreatitis is gallstone impacting the distal common bile-pancreatic duct. The majority of investigators accept that the main factors for acute billiary pancreatitis are pancreatic hyperstimulation and bile-pancreatic duct obstruction which increase pancreatic duct pressure and active trypsin reflux. Acute pancreatitis occurs when intracellular protective mechanisms to prevent trypsinogen activation or reduce trypsin activity are overwhelmed. However, little is known about the other acute pancreatitis. We hypothesize that acute biliary pancreatitis and other causes of acute pancreatitis possess a common pathogenesis. Pancreatic hyperstimulation and pancreatic duct obstruction increase pancreatic duct pressure, active trypsin reflux, and subsequent unregulated activation of trypsin within pancreatic acinar cells. Enzyme activation within the pancreas leads to auto-digestion of the gland and local inflammation. Once the hypothesis is confirmed, traditional therapeutic strategies against acute pancreatitis may be improved. Decompression of pancreatic duct pressure should be advocated in the treatment of acute pancreatitits which may greatly improve its outcome.
Collapse
|
20
|
Zhang XP, Zhang J, Ren Z, Feng GH, Zhu W, Cai Y, Yang QJ, Ju TF, Xie Q, Yuan WQ. Study on protecting effects of Baicalin and Octreotide on hepatic injury in rats with severe acute pancreatitis. World J Gastroenterol 2008; 14:6551-9. [PMID: 19030211 PMCID: PMC2773345 DOI: 10.3748/wjg.14.6551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effects and mechanisms of Baicalin and Octreotide on hepatic injury in rats with severe acute pancreatitis (SAP).
METHODS: The SAP rat models were prepared and randomly assigned to the model control group, Baicalin treated group, and Octreotide treated group while other healthy rats were assigned to the sham-operated group. Rat mortality, levels of ALT, AST, liver and pancreas pathological changes in all groups were observed at 3, 6 and 12 h after operation. Tissue microarray (TMA) sections of hepatic tissue were prepared to observe expression levels of Bax, Bcl-2 protein and Caspase-3, and changes of apoptotic indexes.
RESULTS: Rat survival at 12 h, expression levels of Bax, Caspase-3 protein and apoptotic indexes of liver were all significantly higher in treated groups than in model control group. While the liver and pancreas pathological scores, contents of ALT, AST, and expression levels of Bcl-2 protein were all lower in treated groups than in the model control group.
CONCLUSION: Both Baicalin and Octreotide can protect rats with SAP by decreasing the contents of ALT, AST and expression levels of Bcl-2 protein, and improving the expression levels of Bax protein, Caspase-3 protein, and inducing apoptosis.
Collapse
|
21
|
Meyerholz DK, Williard DE, Grittmann AM, Samuel I. Murine pancreatic duct ligation induces stress kinase activation, acute pancreatitis, and acute lung injury. Am J Surg 2008; 196:675-82. [PMID: 18789417 DOI: 10.1016/j.amjsurg.2008.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acute lung injury is a major determinant of outcomes in acute pancreatitis. We evaluated acute lung injury and stress kinase activation in ligation-induced acute pancreatitis in mice. METHODS Mice with duct ligation or sham operation were killed after 24 or 48 hours. RESULTS In addition to acute pancreatitis, duct ligation was associated with pulmonary morphologic changes indicative of acute lung injury (alveolar septal thickening, congestion, and neutrophil infiltration). Furthermore, immunoblotting showed stress kinase activation in the pancreas and lung after ligation. Although mortality was observed in the ligated group, that is consistent with severe lung injury, it requires further evaluation. CONCLUSIONS Bile and pancreatic duct ligation in the mouse is associated with pancreatic and pulmonary stress kinase activation and acute inflammatory changes consistent with early acute pancreatitis and acute lung injury. Our findings are important as acute lung injury increases mortality in clinical acute pancreatitis and stress kinases are established proinflammatory signal transducers.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | | | | | | |
Collapse
|