1
|
Woh PY, Chen Y, Kumpitsch C, Mohammadzadeh R, Schmidt L, Moissl-Eichinger C. Reevaluation of the gastrointestinal methanogenic archaeome in multiple sclerosis and its association with treatment. Microbiol Spectr 2025; 13:e0218324. [PMID: 39998261 PMCID: PMC11974365 DOI: 10.1128/spectrum.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
The role of the gut archaeal microbiome (archaeome) in health and disease remains poorly understood. Methanogenic archaea have been linked to multiple sclerosis (MS), but prior studies were limited by small cohorts and inconsistent methodologies. To address this, we re-evaluated the association between methanogenic archaea and MS using metagenomic data from the International Multiple Sclerosis Microbiome Study. We analyzed gut microbiome profiles from 115 MS patients and 115 healthy household controls across Buenos Aires (27.8%), Edinburgh (33.9%), New York (10.4%), and San Francisco (27.8%). Metagenomic sequences were taxonomically classified using kraken2/bracken and a curated profiling database to detect archaea, specifically Methanobrevibacter species. Most MS patients were female (80/115), aged 25-72 years (median: 44.5), and 70% were undergoing treatment, including dimethyl fumarate (n = 21), fingolimod (n = 20), glatiramer acetate (n = 14), interferon (n = 18), natalizumab (n = 6), or ocrelizumab/rituximab (n = 1). We found no significant differences in overall archaeome profiles between MS patients and controls. However, treated MS patients exhibited higher abundances of Methanobrevibacter smithii and M. sp900766745 compared to untreated patients. Notably, M. sp900766745 abundance correlated with lower disease severity scores in treated patients. Our results suggest that gut methanogens are not directly associated with MS onset or progression but may reflect microbiome health during treatment. These findings highlight potential roles for M. smithii and M. sp900766745 in modulating treatment outcomes, warranting further investigation into their relevance to gut microbiome function and MS management.IMPORTANCEMultiple sclerosis (MS) is a chronic neuroinflammatory disease affecting the central nervous system, with approximately 2.8 million people diagnosed worldwide, mainly young adults aged 20-30 years. While recent studies have focused on bacterial changes in the MS microbiome, the role of gut archaea has been less explored. Previous research suggested a potential link between methanogenic archaea and MS disease status, but these findings remained inconclusive. Our study addresses this gap by investigating the gut archaeal composition in MS patients and examining how it changes in response to treatment. By focusing on methanogens, we aim to uncover novel insights into their role in MS, potentially revealing new biomarkers or therapeutic targets. This research is crucial for enhancing our understanding of the gut microbiome's impact on MS and improving patient management.
Collapse
Affiliation(s)
- Pei Yee Woh
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, China
| | - Yehao Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Laura Schmidt
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
2
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl‐Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2025; 292:1316-1329. [PMID: 38555566 PMCID: PMC11927051 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
| | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaAustria
| | - Christine Moissl‐Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental MedicineMedical University of GrazAustria
- BioTechMed GrazAustria
| | - Holger Heine
- Research Center Borstel – Leibniz Lung CenterDivision of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL)BorstelGermany
| |
Collapse
|
3
|
Amato M, Polizzi A, Viglianisi G, Leonforte F, Mascitti M, Isola G. Impact of Periodontitis and Oral Dysbiosis Metabolites in the Modulation of Accelerating Ageing and Human Senescence. Metabolites 2025; 15:35. [PMID: 39852378 PMCID: PMC11767177 DOI: 10.3390/metabo15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Periodontitis, a chronic multifactorial inflammatory condition of the periodontium, is originated by a dysbiotic oral microbiota and is negatively correlated with several systemic diseases. The low-chronic burden of gingival inflammation not only exacerbates periodontitis but also predisposes individuals to a spectrum of age-related conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic dysfunction, especially related to ageing. In this regard, over the local periodontal treatment, lifestyle modifications and adjunctive therapies may offer synergistic benefits in ameliorating both oral and systemic health in ageing populations. Elucidating the intricate connections between periodontitis and senescence is important for understanding oral health's systemic implications for ageing and age-related diseases. Effective management strategies targeting the oral microbiota and senescent pathways may offer novel avenues for promoting healthy ageing and preventing age-related morbidities. This review will analyze the current literature about the intricate interplay between periodontitis, oral dysbiosis, and the processes of senescence, shedding light on their collective impact on the modulation and accelerated ageing and age-related diseases. Lastly, therapeutic strategies targeting periodontitis and oral dysbiosis to mitigate senescence and its associated morbidities will be discussed.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Francesco Leonforte
- Hygiene Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95124 Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
4
|
Pagnussatti MEL, de Barros Santos HS, Parolo CCF, Hilgert JB, Arthur RA. Oral microbiota: Taxonomic composition and functional profile in caries-free and in caries-affected individuals - A systematic review. Arch Oral Biol 2024; 168:106070. [PMID: 39226678 DOI: 10.1016/j.archoralbio.2024.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To compare the oral microbiota among caries-free (CF) with caries-affected (CA) individuals, both at taxonomic and at functional levels. DESIGN This systematic review was conducted following PRISMA guidelines. A structured search was carried out in MEDLINE/PUBMED, Web of Science, EMBASE, LILACS, SciELO, Scopus and Google Scholar databases up to September, 2023. Observational studies, without any restriction on date of publication and using next-generation targeted or untargeted sequencing methods for identification of microbial communities were included. Qualitative synthesis was performed from all included studies. RESULTS 54 studies were included (43 cross-sectional; 11 cohort) comprising more than 3486 participants (at least 1666 CF and 1820 CA) whose saliva and/or dental plaque were used as clinical samples. Methodological quality was graded as "fair" for most of the studies. The abundance of 87 bacterial and 44 fungal genera were statistically different among CF and CA individuals. Atopobium spp., Capnocytophaga spp., Lactobacillus spp., Prevotella spp., Scardovia spp., Selenomonas spp. among others were frequently reported as being more abundant in CA individuals. Several functional patterns, such as lipids, carbohydrate, starch, sucrose, amino sugar metabolisms, among others, were identified as being specifically related to CF or to CA conditions. CONCLUSION In spite of the variability among the included studies and of the predominance of qualitative synthesis, groups of microorganisms as well as specific functional profiles coded by the assessed microbiota are differently abundant among caries-affected and caries-free individuals. These results need to be interpreted with caution considering the limitations inherent to each assessed primary study.
Collapse
Affiliation(s)
- Maria Eduarda Lisbôa Pagnussatti
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Clarissa Cavalcanti Fatturi Parolo
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Juliana Balbinot Hilgert
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil; National Council for Research and Development (CNPq).
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| |
Collapse
|
5
|
Pilliol V, Mahmoud Abdelwadoud B, Aïcha H, Lucille T, Gérard A, Hervé T, Michel D, Ghiles G, Elodie T. Methanobrevibacter oralis: a comprehensive review. J Oral Microbiol 2024; 16:2415734. [PMID: 39502191 PMCID: PMC11536694 DOI: 10.1080/20002297.2024.2415734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Methanobrevibacter oralis (M. oralis) has predominated human oral microbiota methanogenic archaea as far back as the Palaeolithic era in Neanderthal populations and gained dominance from the 18th century onwards. M. oralis was initially isolated from dental plaque samples collected from two apparently healthy individuals allowing its first characterization. The culture of M. oralis is fastidious and has been the subject of several studies to improve its laboratory growth. Various PCR methods are used to identify M. oralis, targeting either the 16S rRNA gene or the mcrA gene. However, only one RTQ-PCR system, based on a chaperonin gene, offers specificity, and allows for microbial load quantification. Next-generation sequencing contributed five draft genomes, each approximately 2.08 Mb (±0.052 Mb) with a 27.82 (±0.104) average GC%, and two ancient metagenomic assembled genomes. M. oralis was then detected in various oral cavity sites in healthy individuals and those diagnosed with oral pathologies, notably periodontal diseases, and endodontic infections. Transmission pathways, possibly involving maternal milk and breastfeeding, remain to be clarified. M. oralis was further detected in brain abscesses and respiratory tract samples, bringing its clinical significance into question. This review summarizes the current knowledge about M. oralis, emphasizing its prevalence, associations with dysbiosis and pathologies in oral and extra-oral situations, and symbiotic relationships, with the aim of paving the way for further investigations.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Boualam Mahmoud Abdelwadoud
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hamiech Aïcha
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Tellissi Lucille
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Aboudharam Gérard
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Tassery Hervé
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Drancourt Michel
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Grine Ghiles
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Terrer Elodie
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| |
Collapse
|
6
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
7
|
Soza-Bolaños AI, Domínguez-Pérez RA, Ayala-Herrera JL, Pérez-Serrano RM, Soto-Barreras U, Espinosa-Cristóbal LF, Rivera-Albarrán CA, Zaldívar-Lelo de Larrea G. Presence of methanogenic archaea in necrotic root canals of patients with or without type 2 diabetes mellitus. AUST ENDOD J 2023; 49:641-647. [PMID: 37715368 DOI: 10.1111/aej.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Theoretically, a necrotic root canal fulfils all requirements as a niche for methanogens to inhabit. However, their presence in it and its implication in apical periodontitis (AP) is controversial. Therefore, to contribute to ending the controversy, this study aimed to detect and compare methanogens' presence in two distinct niches with supposedly different microenvironments; both were necrotic root canals associated with AP but one from patients with type 2 diabetes mellitus (T2DM) while the other from non-diabetic patients. A clinical examination was performed on 65 T2DM patients and 73 non-diabetic controls. Samples from necrotic root canals were obtained, and methanogens were identified. The presence of methanogens was three times higher (27.6%) in the T2DM group than in non-diabetic patients (8.2%). In addition, methanogens' presence was associated with a higher prevalence of periapical symptoms.
Collapse
Affiliation(s)
- Ana I Soza-Bolaños
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Rubén A Domínguez-Pérez
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - Rosa M Pérez-Serrano
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - León F Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez, Ciudad Juarez, Mexico
| | - Claudia A Rivera-Albarrán
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Guadalupe Zaldívar-Lelo de Larrea
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| |
Collapse
|
8
|
Xiao X, Liu S, Deng H, Song Y, Zhang L, Song Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front Microbiol 2023; 14:1121737. [PMID: 36814562 PMCID: PMC9939651 DOI: 10.3389/fmicb.2023.1121737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Several studies have shown that the dysregulation of the oral microbiota plays a crucial role in human health conditions, such as dental caries, periodontal disease, oral cancer, other oral infectious diseases, cardiovascular diseases, diabetes, bacteremia, and low birth weight. The use of traditional detection methods in conjunction with rapidly advancing molecular techniques in the diagnosis of harmful oral microorganisms has expanded our understanding of the diversity, location, and function of the microbiota associated with health and disease. This review aimed to highlight the latest knowledge in this field, including microbial colonization; the most modern detection methods; and interactions in disease progression. The next decade may achieve the rapid diagnosis and precise treatment of harmful oral microorganisms.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuhan Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China,Liang Zhang,
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,*Correspondence: Zhifeng Song,
| |
Collapse
|
9
|
Girija AS, Ganesh PS. Functional biomes beyond the bacteriome in the oral ecosystem. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:217-226. [PMID: 35814739 PMCID: PMC9260289 DOI: 10.1016/j.jdsr.2022.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selective constraint and pressures upon the host tissues often signifies a beneficial microbiome in any species. In the context of oral microbiome this displays a healthy microbial cosmos resisting the colonization and helps in rendering protection. This review highlights the endeavors of the oral microbiome beyond the bacteriome encompassing virome, mycobiome, protozoa and archaeomes in maintaining the oral homeostasis in health and disease. Scientific data based on the peer-reviewed publications on the microbial communities of the oral microbiome were selected and collated from the scientific database collection sites of web of science (WOS), pubmed central, Inspec etc., from 2010 to 2021 using the search key words like oral microbiome, oral microbiota, oral virome, oral bacteriome, oral mycobiome and oral archaeome. Data excluded were from conference proceedings, abstracts and book chapters. The oral homeostasis in both the health and disease conditions, mostly is balanced by the unrevealed virome, mycobiome, oral protozoa and archaeome. The review documents the need to comprehend the diversity that prevails among the kingdoms in order to determine the specific role played by each domain. Oral microbiome is also a novel research arena to develop drug and targeted therapies to treat various oro-dental infections.
Collapse
|
10
|
Zhang JS, Chu CH, Yu OY. Oral Microbiome and Dental Caries Development. Dent J (Basel) 2022; 10:184. [PMID: 36285994 PMCID: PMC9601200 DOI: 10.3390/dj10100184] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental caries remains the most prevalent oral disease worldwide. The development of dental caries is highly associated with the microbiota in the oral cavity. Microbiological research of dental caries has been conducted for over a century, with conventional culture-based methods and targeted molecular methods being used in order to identify the microorganisms related to dental caries. These methods' major limitation is that they can identify only part of the culturable microorganisms in the oral cavity. Introducing sequencing-based technology and bioinformatics analysis has boosted oral microbiome research and greatly expanded the understanding of complex oral microbiology. With the continuing revolution of molecular technologies and the accumulated sequence data of the oral microbiome, researchers have realized that microbial composition alone may be insufficient to uncover the relationship between caries and the microbiome. Most updated evidence has coupled metagenomics with transcriptomics and metabolomics techniques in order to comprehensively understand the microbial contribution to dental caries. Therefore, the objective of this article is to give an overview of the research of the oral microbiome and the development of dental caries. This article reviews the classical concepts of the microbiological aspect of dental caries and updates the knowledge of caries microbiology with the results of current studies on the oral microbiome. This paper also provides an update on the caries etiological theory, the microorganisms related to caries development, and the shifts in the microbiome in dental caries development.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr Opin Microbiol 2022; 67:102146. [PMID: 35427870 DOI: 10.1016/j.mib.2022.102146] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, 8010 Graz, Austria.
| |
Collapse
|
12
|
Djemai K, Drancourt M, Tidjani Alou M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. MICROBIAL ECOLOGY 2022; 83:536-554. [PMID: 34169332 DOI: 10.1007/s00248-021-01796-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Methanogens are microorganisms belonging to the Archaea domain and represent the primary source of biotic methane. Methanogens encode a series of enzymes which can convert secondary substrates into methane following three major methanogenesis pathways. Initially recognized as environmental microorganisms, methanogens have more recently been acknowledged as host-associated microorganisms after their detection and initial isolation in ruminants in the 1950s. Methanogens have also been co-detected with bacteria in various pathological situations, bringing their role as pathogens into question. Here, we review reported associations between methanogens and bacteria in physiological and pathological situations in order to understand the metabolic interactions explaining these associations. To do so, we describe the origin of the metabolites used for methanogenesis and highlight the central role of methanogens in the syntrophic process during carbon cycling. We then focus on the metabolic abilities of co-detected bacterial species described in the literature and infer from their genomes the probable mechanisms of their association with methanogens. The syntrophic interactions between bacteria and methanogens are paramount to gut homeostasis. Therefore, any dysbiosis affecting methanogens might impact human health. Thus, the monitoring of methanogens may be used as a bio-indicator of dysbiosis. Moreover, new therapeutic approaches can be developed based on their administration as probiotics. We thus insist on the importance of investigating methanogens in clinical microbiology.
Collapse
Affiliation(s)
- Kenza Djemai
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
| | - Maryam Tidjani Alou
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
13
|
Meta-analyses on the Periodontal Archaeome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:69-93. [DOI: 10.1007/978-3-030-96881-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Balmasova IP, Tsarev VN, Unanyan KG, Ippolitov EV, Tsareva TV, Kharakh YN, Akhmedov GD, Stepanova SY, Katkov II, Arutyunov SD. Diagnostic value of microbiome biomarkers of the periodonite microbiome in patients with the association of chronic periodontitis and diabetes mellitus type 2. Klin Lab Diagn 2021; 66:678-683. [PMID: 34882353 DOI: 10.51620/0869-2084-2021-66-11-678-683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The place of high-tech methods of molecular biology in clinical laboratory diagnostics of various diseases and the development of a system of biomarkers as an important component of diagnostic research is currently attracting the closest attention of the scientific community. In this paper, an attempt is made to use high-tech metagenomic analysis to solve problems that arise due to the high frequency of association of periodontal diseases with systemic pathology, in particular, with type 2 diabetes mellitus. The aim of the study was to determine the taxonomic and metabolic features of the microbiome of periodontal tissues in periodontal diseases associated with type 2 diabetes mellitus, as a model of the ratio of local and systemic effects of periodontal pathogenic bacteria. The study included 16S shotgun sequencing of bacterial DNA as part of biological material from periodontal pockets/dentoalveolar furrows of 46 people - 15 patients with chronic periodontitis associated with type 2 diabetes mellitus, 15 patients with chronic periodontitis unrelated to systemic pathology, as well as 16 healthy people in the control group, followed by bioinformatic processing of the data obtained. The obtained data allowed us to establish the taxonomic features of the periodontal microbiome in the association of chronic periodontitis with type 2 diabetes mellitus, which included the predominance of representatives of the families Prevotellaceae and Spirochaetaceae in its composition. The features of metabolic processes in periodontal tissues with the participation of the microbiome were also revealed, which consisted in an increase in the exchange of cysteine and methionine against the background of a decrease in the metabolism of pyrimidine, methane, sphingolipids, and the synthesis of fatty acids, which are of diagnostic value in assessing the condition of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - V N Tsarev
- Moscow State University of Medicine and Dentistry
| | - K G Unanyan
- Moscow State University of Medicine and Dentistry
| | | | - T V Tsareva
- Moscow State University of Medicine and Dentistry
| | - Y N Kharakh
- Moscow State University of Medicine and Dentistry
| | - G D Akhmedov
- Moscow State University of Medicine and Dentistry
| | | | - I I Katkov
- Moscow State University of Medicine and Dentistry
| | | |
Collapse
|
15
|
Bioconversion pathways and metabolic profile of daidzin by human intestinal bacteria using UPLC–Q-TOF/MS. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03736-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Abstract
The microbial communities that inhabit the gingival crevice are responsible for the pathological processes that affect the periodontium. The changes in composition and function of subgingival bacteria as disease develops have been extensively studied. Subgingival communities, however, also contain fungi, Archaea, and viruses, which could contribute to the dysbiotic processes associated with periodontal diseases. High-throughput DNA sequencing has facilitated a better understanding of the mycobiome, archaeome, and virome. However, the number of studies available on the nonbacterial components of the subgingival microbiome remains limited in comparison with publications focusing on bacteria. Difficulties in characterizing fungal, archaeal, and viral populations arise from the small portion of the total metagenome mass they occupy and lack of comprehensive reference genome databases. In addition, specialized approaches potentially introducing bias are required to enrich for viral particles, while harsh methods of cell lysis are needed to recover nuclei acids from certain fungi. While the characterization of the subgingival diversity of fungi, Archaea and viruses is incomplete, emerging evidence suggests that they could contribute in different ways to subgingival dysbiosis. Certain fungi, such as Candida albicans are suggested to facilitate colonization of bacterial pathogens. Methanogenic Archaea are associated with periodontitis severity and are thought to partner synergistically with bacterial fermenters, while viruses may affect immune responses or shape microbial communities in ways incompletely understood. This review describes the manner in which omics approaches have improved our understanding of the diversity of fungi, Archaea, and viruses within subgingival communities. Further characterization of these understudied components of the subgingival microbiome is required, together with mechanistic studies to unravel their ecological role and potential contributions to dysbiosis.
Collapse
Affiliation(s)
- Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
17
|
Abstract
The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.
Collapse
Affiliation(s)
- A Belmok
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - J A de Cena
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| | - C M Kyaw
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - N Damé-Teixeira
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
18
|
Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics. Appl Microbiol Biotechnol 2020; 104:4705-4716. [PMID: 32281023 DOI: 10.1007/s00253-020-10599-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Trimethylamine (TMA) and its oxide TMAO are important biomolecules involved in disease-associated processes in humans (e.g., trimethylaminuria and cardiovascular diseases). TMAO in plasma (pTMAO) stems from intestinal TMA, which is formed from various components of the diet in a complex interplay between diet, gut microbiota, and the human host. Most approaches to prevent the occurrence of such deleterious molecules focus on actions to interfere with gut microbiota metabolism to limit the synthesis of TMA. Some human gut archaea however use TMA as terminal electron acceptor for producing methane, thus indicating that intestinal TMA does not accumulate in some human subjects. Therefore, a rational alternative approach is to eliminate neo-synthesized intestinal TMA. This can be achieved through bioremediation of TMA by these peculiar methanogenic archaea, either by stimulating or providing them, leading to a novel kind of next-generation probiotics referred to as archaebiotics. Finally, specific components which are involved in this archaeal metabolism could also be used as intestinal TMA sequesters, facilitating TMA excretion along with stool. Referring to a standard pharmacological approach, these TMA traps could be synthesized ex vivo and then delivered into the human gut. Another approach is the engineering of known probiotic strain in order to metabolize TMA, i.e., live engineered biotherapeutic products. These alternatives would require, however, to take into account the necessity of synthesizing the 22nd amino acid pyrrolysine, i.e., some specificities of the genetics of TMA-consuming archaea. Here, we present an overview of these different strategies and recent advances in the field that will sustain such biotechnological developments. KEY POINTS: • Some autochthonous human archaea can use TMA for their essential metabolism, a methyl-dependent hydrogenotrophic methanogenesis. • They could therefore be used as next-generation probiotics for preventing some human diseases, especially cardiovascular diseases and trimethylaminuria. • Their genetic capacities can also be used to design live recombinant biotherapeutic products. • Encoding of the 22nd amino acid pyrrolysine is necessary for such alternative developments.
Collapse
|
19
|
Presence of Archaea in dental caries biofilms. Arch Oral Biol 2020; 110:104606. [DOI: 10.1016/j.archoralbio.2019.104606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
20
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
The human archaeome: methodological pitfalls and knowledge gaps. Emerg Top Life Sci 2018; 2:469-482. [PMID: 33525835 DOI: 10.1042/etls20180037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Forty years ago, archaea were described as a separate domain of life, distinct from bacteria and eukarya. Although it is known for quite a long time that methanogenic archaea are substantial components of the human gastrointestinal tract (GIT) and the oral cavity, the knowledge on the human archaeome is very limited. Various methodological problems contribute to the invisibility of the human archaeome, resulting in severe knowledge gaps and contradictory information. Similar to the bacteriome, the archaeal biogeography was found to be site-specific, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal GIT landscape, (iii) a mixed skin/GIT landscape in nose, and (iv) a woesearchaeal lung landscape, including numerous unknown archaeal clades. Compared with so-called universal microbiome approaches, archaea-specific protocols reveal a wide diversity and high quantity of archaeal signatures in various human tissues, with up to 1 : 1 ratios of bacteria and archaea in appendix and nose samples. The archaeome interacts closely with the bacteriome and the human body cells, whereas the roles of the human-associated archaea with respect to human health are only sparsely described. Methanogenic archaea and methane production were correlated with many health issues, including constipation, periodontitis and multiple sclerosis. However, one of the most burning questions - do archaeal pathogens exist? - still remains obscure to date.
Collapse
|
22
|
Ramiro FS, de Lira E, Soares G, Retamal-Valdes B, Feres M, Figueiredo LC, Faveri M. Effects of different periodontal treatments in changing the prevalence and levels of Archaea present in the subgingival biofilm of subjects with periodontitis: A secondary analysis from a randomized controlled clinical trial. Int J Dent Hyg 2018; 16:569-575. [PMID: 29797436 DOI: 10.1111/idh.12347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this randomized double-blind and placebo-controlled study was to assess if periodontal treatment with or without systemic antibiotic would change the mean level of Archaea. METHODS Fifty-nine (59) subjects were randomly assigned to receive scaling and root planing (SRP) alone or combined with metronidazole (MTZ; 400 mg/TID) or either with MTZ and amoxicillin (AMX; 500 mg/TID) for 14 days. Clinical and microbiological examinations were performed at baseline and at 6 months post-SRP. Six subgingival plaque samples per subject were analysed for the presence and levels of Archaea using quantitative polymerase chain reaction. RESULTS Scaling and root planing alone or combined with MTZ or MTZ + AMX significantly reduced the prevalence of subjects colonized by Archaea at 6 months post-therapy, without significant differences among groups (P > .05). Both therapies led to a statistically significant decrease in the mean percentage of sites colonized by Archaea (P < .05). The MTZ and MTZ + AMX group had a significantly lower mean number of sites colonized by Archaea and lower levels of these micro-organisms at sites with probing depth ≥5 mm at 6 months compared with SRP group (P < .05). CONCLUSION Periodontal treatments including adjunctive MTZ or MTZ + AMX are more effective than mechanical treatment alone in reducing the levels and prevalence of sites colonized by Archaea in subjects with chronic periodontitis.
Collapse
Affiliation(s)
- F S Ramiro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Eag de Lira
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Gms Soares
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - B Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - M Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - L C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - M Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| |
Collapse
|
23
|
Comparison of Oral Microbe Quantities from Tongue Samples and Subgingival Pockets. Int J Dent 2018; 2018:2048390. [PMID: 29853892 PMCID: PMC5944217 DOI: 10.1155/2018/2048390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022] Open
Abstract
Objectives To improve understanding of periodontitis pathology, we need more profound knowledge of relative abundances of single prokaryotic species and colonization dynamics between habitats. Thus, we quantified oral microbes from two oral habitats to gain insights into colonization variability and correlation to the clinical periodontal status. Methods We analyzed tongue scrapings and subgingival pocket samples from 237 subjects (35–54 years) with at least 10 teeth and no recent periodontal treatment from the 11-year follow-up of the Study of Health in Pomerania. Relative abundances of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Streptococcus sanguinis, total bacteria, and Archaea were correlated to clinically assessed pocket depths (PD) and clinical attachment levels (CAL). Results Increased relative abundances of P. gingivalis, A. actinomycetemcomitans, and F. nucleatum were linked to increased levels of PD and CAL (i) on the subject level (mean PD, mean CAL) and (ii) in subgingival pockets. Relative abundances of Archaea from tongue samples correlated negatively with mean PD or mean CAL. Detection and quantity of bacterial species correlated weakly to moderately between the tongue and subgingival pocket, except for Archaea. Conclusions Relative abundances of specific oral species correlated weakly to moderately between habitats. Single species, total bacteria, and Archaea were linked to clinically assessed severity of periodontitis in a habitat-dependent manner.
Collapse
|
24
|
Huynh HTT, Pignoly M, Drancourt M, Aboudharam G. A new methanogen "Methanobrevibacter massiliense" isolated in a case of severe periodontitis. BMC Res Notes 2017; 10:657. [PMID: 29191236 PMCID: PMC5710069 DOI: 10.1186/s13104-017-2980-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Background A few methanogens have been previously recovered from periodontitis lesions, yet their repertoire may not be completed. We recovered a previously unreported methanogen species in this situation. Case presentation A 64-year-old Caucasian woman was diagnosed with chronic, severe generalized periodontitis. In the presence of negative controls, an 18-month culture of periodontal pockets in anaerobe Hungate tube yielded “Methanobrevibacter massiliense” and Pyramidobacter piscolens. Conclusions This case report provides evidence of the symbiotic strategy deployed by the methanogens and the anaerobes, and reports the first culture of a new methanogen, “M. massiliense”. Electronic supplementary material The online version of this article (10.1186/s13104-017-2980-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong T T Huynh
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France.,URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France
| | - Marion Pignoly
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France
| | - Michel Drancourt
- URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France.
| | - Gérard Aboudharam
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France.,URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
25
|
Abstract
Periodontitis is an extremely prevalent disease worldwide and is driven by complex dysbiotic microbiota. Here we analyzed the transcriptional activity of the periodontal pocket microbiota from all domains of life as well as the human host in health and chronic periodontitis. Bacteria showed strong enrichment of 18 KEGG functional modules in chronic periodontitis, including bacterial chemotaxis, flagellar assembly, type III secretion system, type III CRISPR-Cas system, and two component system proteins. Upregulation of these functions was driven by the red-complex pathogens and candidate pathogens, e.g. Filifactor alocis, Prevotella intermedia, Fretibacterium fastidiosum and Selenomonas sputigena. Nine virulence factors were strongly up-regulated, among them the arginine deiminase arcA from Porphyromonas gingivalis and Mycoplasma arginini. Viruses and archaea accounted for about 0.1% and 0.22% of total putative mRNA reads, respectively, and a protozoan, Entamoeba gingivalis, was highly enriched in periodontitis. Fourteen human transcripts were enriched in periodontitis, including a gene for a ferric iron binding protein, indicating competition with the microbiota for iron, and genes associated with cancer, namely nucleolar phosphoprotein B23, ankyrin-repeat domain 30B-like protein and beta-enolase. The data provide evidence on the level of gene expression in vivo for the potentially severe impact of the dysbiotic microbiota on human health.
Collapse
|
26
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
27
|
Salhi A, Essack M, Radovanovic A, Marchand B, Bougouffa S, Antunes A, Simoes MF, Lafi FF, Motwalli OA, Bokhari A, Malas T, Amoudi SA, Othum G, Allam I, Mineta K, Gao X, Hoehndorf R, C Archer JA, Gojobori T, Bajic VB. DESM: portal for microbial knowledge exploration systems. Nucleic Acids Res 2015; 44:D624-33. [PMID: 26546514 PMCID: PMC4702830 DOI: 10.1093/nar/gkv1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andre Antunes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Marta Filipa Simoes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Olaa A Motwalli
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tariq Malas
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Soha Al Amoudi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ghofran Othum
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Intikhab Allam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - John A C Archer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
|