1
|
Chen YYM, Chien KY, Shieh HR, Luo CJ, Chang YX, Chiang-Ni C, Lai CH, Chiu CH. Impact of vancomycin and Clostridioides difficile on the secretome and pathogenicity of Clostridium innocuum. Med Microbiol Immunol 2025; 214:21. [PMID: 40338351 DOI: 10.1007/s00430-025-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Clostridium innocuum, a member of the human gut microbiome with intrinsic resistance to vancomycin, has been increasingly associated with inflammatory bowel diseases (IBD). Clinical observations indicate that co-infection with Clostridioides difficile and C. innocuum could lead to poorer clinical remission in ulcerative colitis; however, the pathogenic mechanism of C. innocuum remains unclear. Here, we investigated the effects of vancomycin and C. difficile on C. innocuum secretomes and the functions of the modified secretomes on C. innocuum pathogenicity. The results indicated that, compared to co-culturing with C. difficile, vancomycin was more effective in stimulating the secretion of proteins without a signal peptide, whereas C. difficile was better at promoting the secretion of classical secretory proteins. Based on these results, we further analyzed the effects of three abundant classical secretory proteins on C. innocuum virulence utilizing recombinant proteins. The results demonstrated that the NlpC/P60-containing protein (NlpC/P60) can enhance C. innocuum biofilm formation and adherence to HT-29 cells. Additionally, NlpC/P60, D-Ala-D-Ala carboxypeptidase, and a polysaccharide deacetylase were able to stimulate IL-8 production of HT-29 cells and TNF-α production of Raw264.7 macrophages. Additionally, recombinant NlpC/P60 and polysaccharide deacetylase exhibited cytotoxicity on Raw264.7 cells at 48 h. As the production of IL-8 and TNF-α is closely associated with IBD development, it is suggested that C. innocuum secretomes, under the influence of vancomycin or C. difficile, could contribute to IBD progression by enhancing inflammation and host-pathogen interactions.
Collapse
Affiliation(s)
- Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular and Medical Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hui-Ru Shieh
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Jie Luo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Xun Chang
- Molecular and Medical Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
2
|
Salas-Treviño D, Flores-Treviño S, Cisneros-Rendón C, Domínguez-Rivera CV, Camacho-Ortiz A. Co-Colonization of Non- difficile Clostridial Species in Antibiotic-Associated Diarrhea Caused by Clostridioides difficile. Antibiotics (Basel) 2025; 14:397. [PMID: 40298552 PMCID: PMC12024451 DOI: 10.3390/antibiotics14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic-associated diarrhea (AAD) is a public health problem that develops in the hospital setting. The most common causative agent of AAD is Clostridioides difficile infection (CDI), although other non-difficile Clostridia (NDC) might also be present. NDC include members of the RIC group such as Clostridium ramosum [T. ramosa], Clostridium innocuum and Clostridium clostridioforme [E. clostridioformis]. The co-colonization of NDC and CDI in patients with AAD has not been fully analyzed. Methods: We compared clinical and laboratory data of patients with C. difficile infection (CDI) plus NDC against patients with only CDI. This study was a retrospective, case-control study. Hospitalized confirmed CDI cases were analyzed. CDI detection was performed using a 2-step diagnostic algorithm, including glutamate dehydrogenase (GDH) with toxin A/toxin B assays and molecular detection of the tpi gene. Stool samples were cultured and colonies morphologically compatible with any Clostridia were identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Fisher's exact test and odds ratio (OR) were calculated to determine the degree of correlation between the variables and the study groups. Results: In the CDI + NDC group (n = 7), positive culture was observed for C. ramosum [T. ramosa] (n = 3), C. innocuum (n = 3), and C. butyricum (n = 1). According to our results, CDI + NDC patients received more days of antibiotic therapy, took more days to reduce diarrhea, had a significant increase in the number of days to suppress diarrhea, and previous hospitalizations were more frequently reported. Conclusions: In conclusion, the positive culture of NDC species such as C. innocuum or C. ramosum in patients with AAD caused by CDI correlates with treatment extension and/or failure.
Collapse
Affiliation(s)
| | | | | | | | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.S.-T.); (S.F.-T.); (C.C.-R.); (C.V.D.-R.)
| |
Collapse
|
3
|
Le PH, Yeh YM, Chen YC, Chen CL, Tsou YK, Chen CC, Chiu CT, Chiu CH. Fecal microbiota transplantation for vancomycin-resistant Clostridium innocuum infection in inflammatory bowel disease: A pilot study evaluating safety and clinical and microbiota outcome. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00064-7. [PMID: 40074633 DOI: 10.1016/j.jmii.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Clostridium innocuum is a vancomycin-resistant pathobiome associated with poor clinical outcomes in inflammatory bowel disease (IBD). In ulcerative colitis (UC), it correlates with reduced remission rates, while in Crohn's disease (CD), it is linked to creeping fat formation and intestinal strictures. Notably, some patients experience refractory or recurrent C. innocuemailum infections despite metronidazole treatment. This study evaluates the safety and efficacy of single-dose fecal microbiota transplantation (FMT) in IBD patients with refractory or recurrent C. innocuum infections. METHODS We conducted a feasibility pilot study involving seven IBD patients (3 CD, 4 UC) with refractory (n = 5) or recurrent (n = 2) C. innocuum infections following metronidazole treatment. Patients underwent single-dose FMT and were monitored for six months. RESULTS No adverse events were recorded. All participants demonstrated improved disease activity post-FMT, as assessed by the Crohn's Disease Activity Index and Mayo Score. However, a mild increase in symptom severity was noted at six months. Follow-up cultures showed persistent C. innocuum infection in one patient and asymptomatic recurrence in another at three months. Alpha diversity of the gut microbiome increased post-FMT, and Bray-Curtis dissimilarity analysis revealed a microbiota composition more similar to that of the donor. CONCLUSION Single-dose FMT appears to be a safe and feasible therapeutic approach for refractory or recurrent C. innocuum infections in IBD patients, with potential benefits in disease activity and microbiome restoration. Further studies are warranted to optimize long-term outcomes.
Collapse
Affiliation(s)
- Puo-Hsien Le
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Inflammatory Bowel Disease Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Taiwan Association for the Study of Intestinal Diseases (TASID), Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yi-Ching Chen
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Kuan Tsou
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Chang Chen
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Inflammatory Bowel Disease Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Inflammatory Bowel Disease Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Shang M, Ning J, Zang C, Ma J, Yang Y, Jiang Y, Chen Q, Dong Y, Wang J, Li F, Bao X, Zhang D. FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuu m. Acta Pharm Sin B 2025; 15:973-990. [PMID: 40177576 PMCID: PMC11959932 DOI: 10.1016/j.apsb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 04/05/2025] Open
Abstract
Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by Clostridium innocuum, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota-gut-brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.
Collapse
Affiliation(s)
- Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Noori M, Azimirad M, Ghorbaninejad M, Meyfour A, Zali MR, Yadegar A. PPAR-γ agonist mitigates intestinal barrier dysfunction and inflammation induced by Clostridioides difficile SlpA in vitro. Sci Rep 2024; 14:32087. [PMID: 39738433 PMCID: PMC11686163 DOI: 10.1038/s41598-024-83815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells. Here, we investigated the role of PPAR-γ in SlpA-mediated inflammation in Caco-2 cells and THP-1 derived macrophages. The extraction of SlpA was carried out for three toxigenic C. difficile clinical strains (RT126, RT001, RT084) and a non-toxigenic strain (ATCC 700057). The gene expression of tight junction (TJ) proteins and inflammatory markers was determined using RT-qPCR. The production of proinflammatory cytokines and nitric oxide was measured by ELISA and Griss reaction, respectively. Western blotting was performed to detect PPAR-γ level before and after adding its agonist, pioglitazone. SlpA of C. difficile strains enhanced the expression of TLR-4, NF-κB, MyD88, IL-17, MCP-1, IL-8, IL-6, TNF-α, IL-1β, whilst the gene expression level of JAM-A, claudin-1, occludin, PPAR-γ and its receptor (CD36) was decreased in both Caco-2 cells and THP-1 derived macrophages. Moreover, pioglitazone caused a notable elevation in the expression level of PPAR-γ, only following treatment with RT126 SlpA. Besides, pioglitazone pretreatment improved TJ impairment in Caco-2 cells and attenuated proinflammatory cytokine expression in both SlpA-treated cell lines. SlpA can attenuate PPAR-γ expression, trigger TJ disruption, and stimulate inflammatory response in host cells. Notably, these events could be reversed by pretreatment of cells with PPAR-γ agonist. Further experiments are required to corroborate the present findings.
Collapse
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Asensio-Grau A, Garriga M, Vicente S, Andrés A, Ribes-Koninckx C, Calvo-Lerma J. The Impact of Complementary Feeding on Fecal Microbiota in Exclusively Breast-Fed Infants with Cystic Fibrosis (A Descriptive Study). Nutrients 2024; 16:4071. [PMID: 39683464 PMCID: PMC11643620 DOI: 10.3390/nu16234071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Early life gut microbiota plays a pivotal role in shaping immunity, metabolism, and overall health outcomes. This is relevant in healthy infants but may be even more crucial in infants with chronic devastating diseases, such as cystic fibrosis (CF). While the introduction of solid foods in healthy infants modifies the composition of colonic microbiota, less knowledge is available on those with CF. The aim of this descriptive observational study was to assess the composition of fecal microbiota in six exclusively breast-fed infants with CF, and then explore the changes induced upon the introduction of different foods. METHODS two types of fecal samples were collected from each subject: one during the exclusive-breastfeeding period, and the other after incorporating each new food in the ad libitum diet. The microbiota composition was analyzed by 16S rRNA amplicon sequencing. RESULTS Wide heterogenicity in the composition at the phylum level (variable proportions of Actinobacteriota, Proteobacteria, and Firmicutes, and the absence of Bacteroidota in all subjects) was found, and different enterotypes were characterized in each subject by the main presence of one genus: Bifidobacterium in Subject 1 (relative abundance of 54.4%), Klebsiella in Subject 3 (49.1%), Veillonella in Subjects 4 and 5 (32.7% and 36.9%, respectively), and Clostridium in Subject 6 (48.9%). The transition to complementary feeding induced variable changes in microbiota composition, suggesting a subject-specific response and highlighting the importance of inter-individual variation. CONCLUSIONS Further studies are required to identify which foods contribute to shaping colonic microbiota in the most favorable way for patients with CF using a personalized approach.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- ALISOST Research Group, Department of Preventive Medicine, Public Health, Food Sciences, Toxicology and Legal Medicine, Faculty of Pharmacy and Food Sciences, University of Valencia, 46010 Valencia, Spain;
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
| | - María Garriga
- Cystic Fibrosis Unit, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.G.); (S.V.)
| | - Saioa Vicente
- Cystic Fibrosis Unit, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (M.G.); (S.V.)
| | - Ana Andrés
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
- Food UPV, Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Carmen Ribes-Koninckx
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
- Celiac Disease and Digestive Immunopathology Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Joaquim Calvo-Lerma
- ALISOST Research Group, Department of Preventive Medicine, Public Health, Food Sciences, Toxicology and Legal Medicine, Faculty of Pharmacy and Food Sciences, University of Valencia, 46010 Valencia, Spain;
- NutriCura PDig Joint Research Unit UPV, La Fe Health Research Institute, 46026 Valencia, Spain;
| |
Collapse
|
7
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Chiang-Ni C, Huang JY, Hsu CY, Lo YC, Chen YYM, Lai CH, Chiu CH. Genetic diversity, biofilm formation, and Vancomycin resistance of clinical Clostridium innocuum isolates. BMC Microbiol 2024; 24:353. [PMID: 39294587 PMCID: PMC11409672 DOI: 10.1186/s12866-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Clostridium innocuum, previously considered a commensal microbe, is a spore-forming anaerobic bacterium. C. innocuum displays inherent resistance to vancomycin and is associated with extra-intestinal infections, antibiotic-associated diarrhea, and inflammatory bowel disease. This study seeks to establish a multilocus sequence typing (MLST) scheme to explore the correlation between C. innocuum genotyping and its potential pathogenic phenotypes. METHODS Fifty-two C. innocuum isolates from Linkou Chang Gung Memorial Hospital (CGMH) in Taiwan and 60 sequence-available C. innocuum isolates from the National Center for Biotechnolgy Information Genome Database were included. The concentrated sequence of housekeeping genes in C. innocuum was determined by amplicon sequencing and used for MLST and phylogenetic analyses. The biofilm production activity of the C. innocuum isolates was determined by crystal violet staining. RESULTS Of the 112 C. innocuum isolates, 58 sequence types were identified. Maximum likelihood estimation categorized 52 CGMH isolates into two phylogenetic clades. These isolates were found to be biofilm producers, with isolates in clade I exhibiting significantly higher biofilm production than isolates in clade II. The sub-inhibitory concentration of vancomycin seemed to minimally influence biofilm production by C. innocuum isolates. Nevertheless, C. innocuum embedded in the biofilm structure demonstrated resistance to vancomycin treatments at a concentration greater than 256 µg/mL. CONCLUSIONS This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Jing-Yi Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
| | - Yi-Chi Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
9
|
Wiese M, van der Wurff M, Ouwens A, van Leijden B, Verheij ER, Heerikhuisen M, van der Vossen JMBM. Modeling the effects of prebiotic interventions on luminal and mucosa-associated gut microbiota without and with Clostridium difficile challenge in vitro. Front Nutr 2024; 11:1403007. [PMID: 39183984 PMCID: PMC11342808 DOI: 10.3389/fnut.2024.1403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 08/27/2024] Open
Abstract
Prebiotics can modulate the gut microbial community composition and function for improved (gut) health and increase resilience against infections. In vitro models of the gut facilitate the study of intervention effects on the gut microbial community relevant to health. The mucosa-associated gut microbiota, which thrives in close contact with the host plays a pivotal role in colonization resistance and health. Therefore, we here introduce the Mi-screen, an experimental approach implementing a 96-well plate equipped with a mucus agar layer for the additional culturing of mucosa-associated microbiota in vitro. In this study, we screened the effects of 2'-Fucosyllactose (2'-FL), fructooligosaccharides (FOS), and inulin within a complex microbiota without and with infection with the C. difficile strains ATCC 43599 (Ribotype 001) or ATCC BAA-1870 (Ribotype 027). We analyzed the microbial community composition and short-chain fatty acid levels after 48 h of incubation. The inclusion of an additional substrate and surface in the form of the mucus agar layer allowed us to culture a microbial richness ranging between 100-160 in Chao index, with Shannon indices of 5-6 across culture conditions, indicative of a microbial diversity of physiological relevance. The mucus agar layer stimulated the growth of characteristic mucosa-associated bacteria such as Roseburia inulinovorans. The prebiotic interventions affected luminal and mucosal microbial communities cultured in vitro and stimulated short-chain fatty acid production. FOS, inulin and 2'-FL promoted the growth of Bifidobacterium adolescentis within the mucosa-associated microbiota cultured in vitro. When spiking the untreated conditions with pathogenic C. difficile, the strains thrived within the luminal and the mucosal sample types, whereas prebiotic treatments exhibited inhibitory effects on C. difficile growth and prevented colonization. In conclusion, the Mi-screen facilitates the screening of luminal and mucosa-associated gut microbial community dynamics in vitro and therefore fills an important gap in the field of in vitro modeling.
Collapse
Affiliation(s)
- Maria Wiese
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Michelle van der Wurff
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita Ouwens
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Bowien van Leijden
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Elwin R. Verheij
- Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Margreet Heerikhuisen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
10
|
Zhang F, Cai B, Luo J, Xiao Y, Tian Y, Sun Y, Liu H, Zhang J. Gut microbiota and chronic rhinosinusitis: a two-sample Mendelian randomization study. Eur Arch Otorhinolaryngol 2024; 281:3025-3030. [PMID: 38340160 DOI: 10.1007/s00405-024-08468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The nasal cavity and gut are interconnected, both housing a rich natural microbiome. Gut microbiota may interact with nasal microbiota and contribute to the development of chronic rhinosinusitis (CRS). However, the specific role of gut microbiota in CRS has not been fully investigated. Therefore, we conducted a two-sample Mendelian randomization study to reveal the potential genetic causal effect of gut microbiota on CRS. METHODS We performed a two-sample Mendelian Randomization (MR) analysis using aggregated data from genome-wide association studies (GWAS) on gut microbiota and CRS. The primary method used to assess the causal relationship between gut microbiota and CRS was the inverse variance weighting (IVW) method. In addition, sensitivity analyses were conducted to evaluate the robustness of the MR results, including heterogeneity, pleiotropy, and leave-one-out tests. RESULTS Genetically predicted twelve gut microbiota, including class Coriobacteriia, class Methanobacteria, family Coriobacteriaceae, family Methanobacteriaceae, family Pasteurellaceae, genus Haemophilus, genus Ruminococcus torques group, genus Subdoligranulum, order Coriobacteriales, order Methanobacteriales, order Pasteurellales, and phylum Proteobacteria, demonstrated a potential inhibitory effect on CRS risk (P < 0.05). In addition, four gut microbiota, including family Streptococcaceae, genus Clostridium innocuum group, genus Oscillospira, and genus Ruminococcaceae NK4A214 group, exhibited a causal role in increasing CRS risk (P < 0.05). Sensitivity analyses showed no evidence of heterogeneity or pleiotropy (P > 0.05). CONCLUSIONS This study reveals the causal relationship between specific gut microbiota and CRS, which provides a new direction and theoretical foundation for the future development of interventions and prevention and treatment strategies for CRS.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Boyu Cai
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Naval Medical University, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jing Luo
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yixi Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yang Tian
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yi Sun
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huanhai Liu
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Naval Medical University, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Jianhui Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
11
|
Liu C, Liu X, Li X. Causal relationship between gut microbiota and hidradenitis suppurativa: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1302822. [PMID: 38348190 PMCID: PMC10860757 DOI: 10.3389/fmicb.2024.1302822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Accumulating evidence suggests that alterations in gut microbiota composition are associated with the hidradenitis suppurativa (HS). However, the causal association between gut microbiota and HS remain undetermined. Methods We performed a bidirectional two-sample Mendelian randomization (MR) analysis using genome-wide association study summary data of gut microbiota and hidradenitis suppurativa from the MiBioGen consortium which concluded 18,340 individuals analyzed by the MiBioGen Consortium, comprising 211 gut microbiota. HS data were acquired from strictly defined HS data collected by FinnGenbiobank analysis, which included 211,548 European ancestors (409 HS patients, 211,139 controls). The inverse variance weighted method (IVW), weighted median (WME), simple model, weighted model, weighted median, and MR-Egger were used to determine the changes of HS pathogenic bacterial taxa, followed by sensitivity analysis including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association and the leave-one-out method assessed the reliability of the results. Additionally, a reverse MR analysis was carried out to seek for possible reverse causality. Results By combining the findings of all the MR steps, we identified four causal bacterial taxa, namely, Family XI, Porphyromonadaceae, Clostridium innocuum group and Lachnospira. The risk of HS might be positively associated with a high relative abundance of Clostridium innocuum group (Odds ratio, OR 2.17, p = 0.00038) and Lachnospira (OR 2.45, p = 0.017) but negatively associated with Family XI (OR 0.67, p = 0.049) and Porphyromonadaceae (OR 0.29, p = 0.014). There were no noticeable outliers, horizontal pleiotropy, or heterogeneity. Furthermore, there was no proof of reverse causation found in the reverse MR study. Conclusion This study indicates that Clostridium innocuum group and Lachnospira might have anti-protective effect on HS, whereas Family XI and Porphyromonadaceae might have a protective effect on HS. Our study reveals that there exists a beneficial or detrimental causal effect of gut microbiota composition on HS and offers potentially beneficial methods for therapy and avoidance of HS.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
12
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Jardon KM, Goossens GH, Most J, Galazzo G, Venema K, Penders J, Blaak EE. Examination of sex-specific interactions between gut microbiota and host metabolism after 12-week combined polyphenol supplementation in individuals with overweight or obesity. Gut Microbes 2024; 16:2392875. [PMID: 39182247 PMCID: PMC11346568 DOI: 10.1080/19490976.2024.2392875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Polyphenols exert beneficial effects on host metabolism, which may be mediated by the gut microbiota. We investigated sex-specific differences in microbiota composition and interactions with cardiometabolic parameters after polyphenol supplementation in individuals with overweight/obesity. In a double-blind, randomized, placebo-controlled trial, 19 women and 18 men with normal glucose tolerance and body mass index >25 kg/m2 received epigallocatechin-3-gallate and resveratrol (EGCG+RES, 282 + 80 mg/d) or placebo supplements for 12 weeks. Fecal microbiota composition (16S rRNA gene amplicon sequencing, V3-V4 region), in vivo whole-body fat oxidation (indirect calorimetry), and mitochondrial respiration in permeabilized skeletal muscle fibers (SkM-Ox; ex vivo respirometry) were determined pre- and post-intervention. Overall, EGCG+RES supplementation did not affect gut microbiota composition. Akkermansia, Ruminococcaceae UCG-002, Subdoligranulum, and Lachnospiraceae UCG-004 were more abundant, while Veillonella, Tyzzerella 4, Clostridium innocuum group, Ruminococcus gnavus group, Escherichia-Shigella, and an uncultured Ruminococcaceae family genus were less abundant in women compared to men. In women, only baseline Eubacterium ventriosum group abundance correlated with EGCG+RES-induced changes in SkM-Ox. In men, low Dorea, Barnsiella, Anaerotruncus, Ruminococcus, Subdoligranulum, Coprococcus, Eubacterium ventriosum group, Ruminococcaceae UCG-003, and a Ruminococcaceae family genus abundance, and high Blautia abundance at baseline were associated with improvements in SkM-Ox. Changes in whole-body fat oxidation were not associated with gut microbiota features. We conclude that baseline microbiota composition predicts changes in SkM-Ox as a result of EGCG+RES supplementation in men but not in women. Men may be more prone to diet-induced, gut microbiota-related improvements in cardiometabolic health. These sex-differences should be further investigated in future precision-based intervention studies.
Collapse
Affiliation(s)
- Kelly M. Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- TiFN, Wageningen, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jasper Most
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Orthopedics, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Gianluca Galazzo
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- TiFN, Wageningen, The Netherlands
| |
Collapse
|
14
|
Chen MJ, Chou CH, Hsiao TH, Wu TY, Li CY, Chen YL, Chao KH, Lee TH, Gicana RG, Shih CJ, Brandon-Mong GJ, Lai YL, Li PT, Tseng YL, Wang PH, Chiang YR. Clostridium innocuum, an opportunistic gut pathogen, inactivates host gut progesterone and arrests ovarian follicular development. Gut Microbes 2024; 16:2424911. [PMID: 39508647 PMCID: PMC11545266 DOI: 10.1080/19490976.2024.2424911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
\Levels of progesterone, an endogenous female hormone, increase after ovulation; progesterone is crucial in the luteal phase to maintain successful pregnancy and prevent early miscarriage. Both endogenous and exogenous progesterone are recycled between the liver and gut; thus, the gut microbiota regulate host progesterone levels by inhibiting enterohepatic progesterone circulation. Our data indicated Clostridium innocuum as a major species involved in gut progesterone metabolism in women with infertility. C. innocuum converts progesterone into the neurosteroid epipregnanolone (with negligible progestogenic activity). We purified and characterized the corresponding enzyme, namely NADPH-dependent 5β-dihydroprogesterone reductase, which is highly oxygen sensitive and whose corresponding genes are prevalent in C. innocuum. Moreover, C. innocuum-administered female C57BL/6 mice (aged 7 weeks) exhibited decreased plasma progesterone levels (~35%). Clostridium-specific antibiotics (metronidazole) restored low plasma progesterone levels in these mice. Furthermore, prolonged C. innocuum administration (12 weeks) arrested ovarian follicular development in female mice. Cytological and histological analyses indicated that C. innocuum may cause luteal phase insufficiency and affect menstrual regularity. Our findings suggest C. innocuum as a causal factor of progesterone resistance in women taking progesterone.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Livia Shan-Yu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsun-Hsien Hsiao
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ying Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuang-Han Chao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Ting Li
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Tseng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Wei D, Chen X, Xu J, Yin Y, Peng X, Li S, He W. Identification of disordered profiles of gut microbiota and functional component in stroke and poststroke epilepsy. Brain Behav 2023; 13:e3318. [PMID: 37984550 PMCID: PMC10726879 DOI: 10.1002/brb3.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
AIMS It is estimated that 11.5% of patients with stroke (STR) were at risk of suffering poststroke epilepsy (PSE) within 5 years. Gut microbiota is shown to affect health in humans by producing metabolites. The association between dysregulation of gut microbiota and STR/PSE remains unclear. The aim of this study was to identify potential gut microbiota and functional component in STR and PSE, which may provide a theoretical foundation for diagnosis and treatment of STR and PSE. METHODS The fresh stool samples were collected from 19 healthy controls, 27 STR patients, and 20 PSE patients for 16S rRNA gene sequencing. Analysis of amplicon sequence variant and community diversity was performed, followed by the identification of dominant species, species differences analysis, diagnostic, and functional analysis of species in STR and PSE. RESULTS Community diversity was decreased in STR and PSE. Some disordered profiles of gut microbiota in STR and PSE were identified, such as the increase of Enterococcus and the decrease of butyricicoccus in STR, the increase of Escherichia Shigella and Clostridium innocuum-group and the decrease of Faecalibacterium in PSE, and the decrease of Anaerostipes in both STR and PSE. Moreover, potential diagnostic biomarkers for STR (butyricicoccus), PSE (Faecalibacterium), STR, and PSE (NK4A214_group and Veillonella) were identified. Several significantly dysfunctional components were identified, including l-tryptophan biosynthesis in STR, fatty acid biosynthesis in PSE, and Stress_Tolerant and anaerobic in both STR and PSE. CONCLUSION The disturbed gut microbiota and related dysfunctional components are closely associated with the progression of STR and PSE.
Collapse
Affiliation(s)
- Duncan Wei
- Department of PharmacyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Xiaopu Chen
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Jing Xu
- Department of PharmacyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Yongling Yin
- Department of NeurologyShantou University Medical CollegeShantouGuangdongP. R. China
| | - Xiaotang Peng
- Department of NeurologyShantou University Medical CollegeShantouGuangdongP. R. China
| | - Shunxian Li
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| | - Wenzhen He
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongP. R. China
| |
Collapse
|
16
|
Wu HY, Kuo CJ, Chou CH, Ho MW, Chen CL, Hsu TS, Chen YC, Chiang-Ni C, Chen YYM, Chiu CH, Lai CH. Clostridium innocuum, an emerging pathogen that induces lipid raft-mediated cytotoxicity. Virulence 2023; 14:2265048. [PMID: 37798913 PMCID: PMC10561569 DOI: 10.1080/21505594.2023.2265048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Clostridium innocuum is an emerging spore-forming anaerobe that is often observed in Clostridioides difficile-associated inflammatory bowel disease (IBD) exacerbations. Unlike C. difficile, C. innocuum neither produces toxins nor possesses toxin-encoding genetic loci, but is commonly found in both intestinal and extra-intestinal infections. Membrane lipid rafts are composed of dynamic assemblies of cholesterol and sphingolipids, allowing bacteria to gain access to cells. However, the direct interaction between C. innocuum and lipid rafts that confers bacteria the ability to disrupt the intestinal barrier and induce pathogenesis remains unclear. In this study, we investigated the associations among nucleotide-binding oligomerization domain containing 2 (NOD2), lipid rafts, and cytotoxicity in C. innocuum-infected gut epithelial cells. Our results revealed that lipid rafts were involved in C. innocuum-induced NOD2 expression and nuclear factor (NF)-κB activation, triggering an inflammatory response. Reducing cholesterol by simvastatin significantly dampened C. innocuum-induced cell death, indicating that the C. innocuum-induced pathogenicity of cells was lipid raft-dependent. These results demonstrate that NOD2 mobilization into membrane rafts in response to C. innocuum-induced cytotoxicity results in aggravated pathogenicity.
Collapse
Affiliation(s)
- Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Kuo
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Huei Chou
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chyi-Liang Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Shan Hsu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chu Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ywan M. Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Magdy Wasfy R, Mbaye B, Borentain P, Tidjani Alou M, Murillo Ruiz ML, Caputo A, Andrieu C, Armstrong N, Million M, Gerolami R. Ethanol-Producing Enterocloster bolteae Is Enriched in Chronic Hepatitis B-Associated Gut Dysbiosis: A Case-Control Culturomics Study. Microorganisms 2023; 11:2437. [PMID: 37894093 PMCID: PMC10608849 DOI: 10.3390/microorganisms11102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a global health epidemic that causes fatal complications, leading to liver cirrhosis and hepatocellular carcinoma. The link between HBV-related dysbiosis and specific bacterial taxa is still under investigation. Enterocloster is emerging as a new genus (formerly Clostridium), including Enterocloster bolteae, a gut pathogen previously associated with dysbiosis and human diseases such as autism, multiple sclerosis, and inflammatory bowel diseases. Its role in liver diseases, especially HBV infection, is not reported. METHODS The fecal samples of eight patients with chronic HBV infection and ten healthy individuals were analyzed using the high-throughput culturomics approach and compared to 16S rRNA sequencing. Quantification of ethanol, known for its damaging effect on the liver, produced from bacterial strains enriched in chronic HBV was carried out by gas chromatography-mass spectrometry. RESULTS Using culturomics, 29,120 isolated colonies were analyzed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF); 340 species were identified (240 species in chronic HBV samples, 254 species in control samples) belonging to 169 genera and 6 phyla. In the chronic HBV group, 65 species were already known in the literature; 48 were associated with humans but had not been previously found in the gut, and 17 had never been associated with humans previously. Six species were newly isolated in our study. By comparing bacterial species frequency, three bacterial genera were serendipitously found with significantly enriched bacterial diversity in patients with chronic HBV: Enterocloster, Clostridium, and Streptococcus (p = 0.0016, p = 0.041, p = 0.053, respectively). However, metagenomics could not identify this enrichment, possibly concerning its insufficient taxonomical resolution (equivocal assignment of operational taxonomic units). At the species level, the significantly enriched species in the chronic HBV group almost all belonged to class Clostridia, such as Clostridium perfringens, Clostridium sporogenes, Enterocloster aldenensis, Enterocloster bolteae, Enterocloster clostridioformis, and Clostridium innocuum. Two E. bolteae strains, isolated from two patients with chronic HBV infection, showed high ethanol production (27 and 200 mM). CONCLUSIONS Culturomics allowed us to identify Enterocloster species, specifically, E. bolteae, enriched in the gut microbiota of patients with chronic HBV. These species had never been isolated in chronic HBV infection before. Moreover, ethanol production by E. bolteae strains isolated from the chronic HBV group could contribute to liver disease progression. Additionally, culturomics might be critical for better elucidating the relationship between dysbiosis and chronic HBV infection in the future.
Collapse
Affiliation(s)
- Reham Magdy Wasfy
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Babacar Mbaye
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Patrick Borentain
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Maria Leticia Murillo Ruiz
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Aurelia Caputo
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Claudia Andrieu
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Nicholas Armstrong
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Rene Gerolami
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| |
Collapse
|
18
|
Lin WH, Tsai TS. Comparisons of the Oral Microbiota from Seven Species of Wild Venomous Snakes in Taiwan Using the High-Throughput Amplicon Sequencing of the Full-Length 16S rRNA Gene. BIOLOGY 2023; 12:1206. [PMID: 37759605 PMCID: PMC10525742 DOI: 10.3390/biology12091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
A venomous snake's oral cavity may harbor pathogenic microorganisms that cause secondary infection at the wound site after being bitten. We collected oral samples from 37 individuals belonging to seven species of wild venomous snakes in Taiwan, including Naja atra (Na), Bungarus multicinctus (Bm), Protobothrops mucrosquamatus (Pm), Trimeresurus stejnegeri (Ts), Daboia siamensis (Ds), Deinagkistrodon acutus (Da), and alpine Trimeresurus gracilis (Tg). Bacterial species were identified using full-length 16S rRNA amplicon sequencing analysis, and this is the first study using this technique to investigate the oral microbiota of multiple Taiwanese snake species. Up to 1064 bacterial species were identified from the snake's oral cavities, with 24 pathogenic and 24 non-pathogenic species among the most abundant ones. The most abundant oral bacterial species detected in our study were different from those found in previous studies, which varied by snake species, collection sites, sampling tissues, culture dependence, and analysis methods. Multivariate analysis revealed that the oral bacterial species compositions in Na, Bm, and Pm each were significantly different from the other species, whereas those among Ts, Ds, Da, and Tg showed fewer differences. Herein, we reveal the microbial diversity in multiple species of wild snakes and provide potential therapeutic implications regarding empiric antibiotic selection for wildlife medicine and snakebite management.
Collapse
Affiliation(s)
- Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
19
|
Hoskinson C, Dai DLY, Del Bel KL, Becker AB, Moraes TJ, Mandhane PJ, Finlay BB, Simons E, Kozyrskyj AL, Azad MB, Subbarao P, Petersen C, Turvey SE. Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease. Nat Commun 2023; 14:4785. [PMID: 37644001 PMCID: PMC10465508 DOI: 10.1038/s41467-023-40336-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Allergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (βindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Del Bel
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Tams KW, Larsen I, Hansen JE, Spiegelhauer H, Strøm-Hansen AD, Rasmussen S, Ingham AC, Kalmar L, Kean IRL, Angen Ø, Holmes MA, Pedersen K, Jelsbak L, Folkesson A, Larsen AR, Strube ML. The effects of antibiotic use on the dynamics of the microbiome and resistome in pigs. Anim Microbiome 2023; 5:39. [PMID: 37605221 PMCID: PMC10440943 DOI: 10.1186/s42523-023-00258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.
Collapse
Affiliation(s)
- Katrine Wegener Tams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1871, Copenhagen, Denmark
| | - Julie Elvekjær Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Spiegelhauer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | | | - Sophia Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89, Uppsala, Sweden
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Del Chierico F, Marzano V, Scanu M, Reddel S, Dentici ML, Capolino R, Di Donato M, Spasari I, Fiscarelli EV, Digilio MC, Abreu MT, Dallapiccola B, Putignani L. Analysis of gut microbiota in patients with Williams-Beuren Syndrome reveals dysbiosis linked to clinical manifestations. Sci Rep 2023; 13:9797. [PMID: 37328513 PMCID: PMC10275996 DOI: 10.1038/s41598-023-36704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
22
|
Dutton CL, Maisha FM, Quinn EB, Morales KL, Moore JM, Mulligan CJ. Maternal Psychosocial Stress Is Associated with Reduced Diversity in the Early Infant Gut Microbiome. Microorganisms 2023; 11:microorganisms11040975. [PMID: 37110398 PMCID: PMC10142543 DOI: 10.3390/microorganisms11040975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The developing infant gut microbiome is highly sensitive to environmental exposures, enabling its evolution into an organ that supports the immune system, confers protection from infection, and facilitates optimal gut and central nervous system function. In this study, we focus on the impact of maternal psychosocial stress on the infant gut microbiome. Forty-seven mother-infant dyads were recruited at the HEAL Africa Hospital in Goma, Democratic Republic of Congo. Extensive medical, demographic, and psychosocial stress data were collected at birth, and infant stool samples were collected at six weeks, three months, and six months. A composite maternal psychosocial stress score was created, based on eight questionnaires to capture a diverse range of stress exposures. Full-length 16S rRNA gene sequences were generated. Infants of mothers with high composite stress scores showed lower levels of gut microbiome beta diversity at six weeks and three months, as well as higher levels of alpha diversity at six months compared to infants of low stress mothers. Longitudinal analyses showed that infants of high stress mothers had lower levels of health-promoting Lactobacillus gasseri and Bifidobacterium pseudocatenulatum at six weeks compared to infants of low stress mothers, but the differences largely disappeared by three to six months. Previous research has shown that L. gasseri can be used as a probiotic to reduce inflammation, stress, and fatigue, as well as to improve mental state, while B. pseudocatenulatum is important in modulating the gut-brain axis in early development and in preventing mood disorders. Our finding of reduced levels of these health-promoting bacteria in infants of high stress mothers suggests that the infant gut microbiome may help mediate the effect of maternal stress on infant health and development.
Collapse
Affiliation(s)
- Christopher L Dutton
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Felicien Masanga Maisha
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
- HEAL Africa Hospital, Rue Lyn Lusi No. 111, Goma BP 319, Democratic Republic of the Congo
| | - Edward B Quinn
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Katherine Liceth Morales
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| | - Julie M Moore
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Room V3-111B, P.O. Box 110880, Gainesville, FL 32611-4111, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, 1115 Turlington Hall, P.O. Box 117305, Gainesville, FL 32611-7305, USA
- Genetics Institute, University of Florida, 2033 Mowry Rd, P.O. Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
23
|
Bhattacharjee D, Flores C, Woelfel-Monsivais C, Seekatz AM. Diversity and Prevalence of Clostridium innocuum in the Human Gut Microbiota. mSphere 2023; 8:e0056922. [PMID: 36541771 PMCID: PMC9942572 DOI: 10.1128/msphere.00569-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Clostridia are a polyphyletic group of Gram-positive, spore-forming anaerobes in the Firmicutes phylum that significantly impact metabolism and functioning of the human gastrointestinal tract. Recently, Clostridia were divided into two separate classes, Clostridia and Erysipelotrichia, based on phenotypic and 16S rRNA gene-based differences. While Clostridia include many well-known pathogenic bacteria, Erysipelotrichia remain relatively uncharacterized, particularly regarding their role as a pathogen versus commensal. Despite wide recognition as a commensal, the erysipelotrichial species Clostridium innocuum has recently been associated with various disease states. To further understand the ecological and potential virulent role of C. innocuum, we conducted a genomic comparison across 38 C. innocuum isolates and 194 publicly available genomes. Based on colony morphology, we isolated multiple C. innocuum cultivars from the feces of healthy human volunteers (n = 5). Comparison of the 16S rRNA gene of our isolates against publicly available microbiota data sets in healthy individuals suggests a high prevalence of C. innocuum across the human population (>80%). Analysis of single nucleotide polymorphisms (SNPs) across core genes and average nucleotide identify (ANI) revealed the presence of four clades among all available genomes (n = 232 total). Investigation of carbohydrate and protein utilization pathways, including comparison against the carbohydrate-activating enzyme (CAZyme) database, demonstrated inter- and intraclade differences that were further substantiated in vitro. Collectively, these data indicate genetic variance within the C. innocuum species that may help clarify its role in human disease and health. IMPORTANCE Clostridia are a group of medically important anaerobes as both commensals and pathogens. Recently, a new class of Erysipelotrichia containing a number of reassigned clostridial species has emerged, including Clostridium innocuum. Recent studies have implicated C. innocuum as a potential causative agent of diarrhea in patients from whom Clostridioides difficile could not be isolated. Using genomic and in vitro comparison, this study sought to characterize C. innocuum in the healthy human gut. Our analyses suggest that C. innocuum is a highly prevalent and diverse species, demonstrating clade-specific differences in metabolism and potential virulence. Collectively, this study is the first investigation into a broader description of C. innocuum as a human gut inhabitant.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Clara Flores
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
24
|
Cherny KE, Muscat EB, Balaji A, Mukherjee J, Ozer EA, Angarone MP, Hauser AR, Sichel JS, Amponsah E, Kociolek LK. Association Between Clostridium innocuum and Antibiotic-Associated Diarrhea in Adults and Children: A Cross-sectional Study and Comparative Genomics Analysis. Clin Infect Dis 2023; 76:e1244-e1251. [PMID: 35724319 PMCID: PMC10169446 DOI: 10.1093/cid/ciac483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A recent study from Taiwan suggested that Clostridium innocuum may be an unrecognized cause of antibiotic-associated diarrhea (AAD) and clinically indistinguishable from Clostridioides difficile infection. Our objective was to compare C. innocuum prevalence and strain between those with AAD and asymptomatic controls. METHODS In this cross-sectional study, we collected stool from 200 individuals with AAD and 100 asymptomatic controls. We evaluated the association between AAD and C. innocuum in stool using anaerobic culture and quantitative polymerase chain reaction (qPCR). To identify strain-specific associations with AAD, we performed whole-genome sequencing of C. innocuum isolates using Illumina MiSeq and constructed comparative genomics analyses. RESULTS C. innocuum was isolated from stool of 126/300 (42%) subjects and more frequently from asymptomatic controls than AAD subjects (50/100 [50%] vs 76/200 [38%], respectively; P = .047). C. innocuum isolation frequency was not associated with AAD in either the adult or pediatric subgroups. C. innocuum and C. difficile were frequently co-prevalent in individuals with and without diarrhea. There were no phylogenetic differences or accessory genome associations between C. innocuum isolates from AAD subjects and asymptomatic controls. CONCLUSIONS C. innocuum was frequently isolated and at a greater frequency in asymptomatic controls than those with AAD. We did not identify strain lineages or accessory genomic elements associated with AAD. These data highlight that differentiating C. innocuum-associated diarrhea from asymptomatic colonization, and differentiating diarrhea caused by C. difficile from C. innocuum, are clinical microbiology challenges that require additional investigation to identify host-specific factors and/or biomarkers that distinguish these conditions.
Collapse
Affiliation(s)
- Kathryn E Cherny
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emily B Muscat
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Aakash Balaji
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Jayabrata Mukherjee
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Egon A Ozer
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael P Angarone
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R Hauser
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph S Sichel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Amponsah
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Larry K Kociolek
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Zakia LS, MacNicol JL, Borges AS, Yu S, Boerlin P, Gomez DE, Surette MG, Arroyo LG. Fecal prevalence of Clostridium innocuum DNA in healthy horses and horses with colitis. Anaerobe 2023; 79:102681. [PMID: 36481352 DOI: 10.1016/j.anaerobe.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
This study compared the prevalence of C. innocuum DNA in the feces of healthy horses and horses with acute colitis. C. innocuum was identified in 22% (15/68) of colitis cases and 18% (12/68) of healthy horses (p = 0.416).
Collapse
Affiliation(s)
- Luiza S Zakia
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Jennifer L MacNicol
- Department of Animal Bioscience, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexandre S Borges
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science, Walter Mauricio Correa Street, No Number, Botucatu, Sao Paulo, 18618-681, Brazil.
| | - Serena Yu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
26
|
Yu S, Ge X, Xu H, Tan B, Tian B, Shi Y, Dai Y, Li Y, Hu S, Qian J. Gut microbiome and mycobiome in inflammatory bowel disease patients with Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1129043. [PMID: 36814443 PMCID: PMC9940757 DOI: 10.3389/fcimb.2023.1129043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background Clostridium difficile infection (CDI) is common in patients with inflammatory bowel disease (IBD) and has been reported as a risk factor for poor outcome. However, gut microbiome and mycobiome of IBD patients with CDI have been barely investigated. This study aimed to assess the gut microbiome and mycobiome in IBD patients with CDI. Methods We collected fecal samples from patients with active IBD and concomitant CDI (IBD-CDI group, n=25), patients with active IBD and no CDI (IBD-only group, n=51), and healthy subjects (HC, n=40). Patients' characteristics including demographic data, disease severity, and medication history were collected. Metagenomic sequencing, taxonomic and functional analysis were carried out in the samples. Results We found that the bacterial alpha diversity of the IBD-CDI group was decreased. The bacterial and fungal beta diversity variations between IBD patients and HC were significant, regardless of CDI status. But the IBD-CDI group did not significantly cluster separately from the IBD-only group. Several bacterial taxa, including Enterococcus faecium, Ruminococcus gnavus, and Clostridium innocuum were overrepresented in the IBD-CDI group. Furthermore, IBD patients with CDI were distinguished by several fungal taxa, including overrepresentation of Saccharomyces cerevisiae. We also identified functional differences in IBD patients with CDI include enrichment of peptidoglycan biosynthesis. The network analysis indicated specific interactions between microbial markers in IBD-CDI patients. Conclusion IBD patients with CDI had pronounced microbial dysbiosis. Gut micro-ecological changes in IBD patients with CDI might provide insight into the pathological process and potential strategies for diagnosis and treatment in this subset of patients.
Collapse
Affiliation(s)
- Si Yu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaomeng Ge
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Xu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bowen Tian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujie Shi
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yimin Dai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Yue Li, ; Songnian Hu,
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yue Li, ; Songnian Hu,
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Kiersnowska ZM, Lemiech-Mirowska E, Michałkiewicz M, Sierocka A, Marczak M. Detection and Analysis of Clostridioides difficile Spores in a Hospital Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15670. [PMID: 36497742 PMCID: PMC9740219 DOI: 10.3390/ijerph192315670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Clostridioides difficile, due to its long survival time in a hospital environment, is considered to be one of the most frequent factors in healthcare-associated infections. Patient care requires not only rapid and accurate diagnosis, but also knowledge of individual risk factors for infections, e.g., with C. difficile, in various clinical conditions. The goal of this study was to analyse the degree of contamination of a hospital environment with C. difficile spores. Culturing was performed using C diff Banana BrothTM medium, which enables germination of the spores of these bacteria. Samples were collected from inanimate objects within a hospital environment in a specialist hospital in Poland. The results of the study demonstrated the presence of 18 positive samples of Clostridioides spp. (15.4%). Of these, C. difficile spores were detected in six samples, Clostridioides perfringens in eight samples, Clostridioides sporogenes in two samples and Clostridioides innocuum and Clostridioides baratii in one sample each. Among the six samples of C. difficile, a total of four strains which produce the B toxin were cultured. The binary toxin related to ribotype 027 was not detected in our study. Nosocomial infection risk management is a significant problem, mainly concerning the issues of hygiene maintenance, cleaning policy and quality control, and awareness of infection risk.
Collapse
Affiliation(s)
- Zofia Maria Kiersnowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Michałkiewicz
- Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
28
|
Vega L, Bohórquez L, Ramírez JD, Muñoz M. Do we need to change our perspective about gut biomarkers? A public data mining approach to identify differentially abundant bacteria in intestinal inflammatory diseases. Front Cell Infect Microbiol 2022; 12:918237. [PMID: 36478676 PMCID: PMC9719923 DOI: 10.3389/fcimb.2022.918237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction The gut microbiome is involved in multiple processes that influence host physiology, and therefore, disruptions in microbiome homeostasis have been linked to diseases or secondary infections. Given the importance of the microbiome and the communities of microorganisms that compose it (microbiota), the term biomarkers were coined, which are bacteria correlated with disease states, diets, and the lifestyle of the host. However, a large field in the study of intestinal biomarkers remains unexplored because the bacterial communities associated with a given disease state have not been exactly defined yet. Methods Here, we analyzed public data of studies focused on describing the intestinal microbiota of patients with some intestinal inflammatory diseases together with their respective controls. With these analyses, we aimed to identify differentially abundant bacteria between the subjects with the disease and their controls. Results We found that frequently reported bacteria such as Fusobacterium, Streptococcus, and Escherichia/Shigella were differentially abundant between the groups, with a higher abundance mostly in patients with the disease in contrast with their controls. On the other hand, we also identified potentially beneficial bacteria such as Faecalibacterium and Phascolarctobacterium, with a higher abundance in control patients. Discussion Our results of the differentially abundant bacteria contrast with what was already reported in previous studies on certain inflammatory diseases, but we highlight the importance of considering more comprehensive approaches to redefine or expand the definition of biomarkers. For instance, the intra-taxa diversity within a bacterial community must be considered, as well as environmental and genetic factors of the host, and even consider a functional validation of these biomarkers through in vivo and in vitro approaches. With the above, these key bacterial communities in the intestinal microbiota may have potential as next-generation probiotics or may be functional for the design of specific therapies in certain intestinal diseases.
Collapse
Affiliation(s)
- Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Bohórquez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia,*Correspondence: Marina Muñoz,
| |
Collapse
|
29
|
Liu Q, Su Q, Zhang F, Tun HM, Mak JWY, Lui GCY, Ng SSS, Ching JYL, Li A, Lu W, Liu C, Cheung CP, Hui DSC, Chan PKS, Chan FKL, Ng SC. Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome. Nat Commun 2022; 13:6806. [PMID: 36357381 PMCID: PMC9648868 DOI: 10.1038/s41467-022-34535-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.
Collapse
Affiliation(s)
- Qin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fen Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce Wing Yan Mak
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Chung-Yan Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna So Shan Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amy Li
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis Ka Leung Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Hu J, Yang J, Chen L, Meng X, Zhang X, Li W, Li Z, Huang G. Alterations of the Gut Microbiome in Patients With Pituitary Adenoma. Pathol Oncol Res 2022; 28:1610402. [PMID: 35991836 PMCID: PMC9385953 DOI: 10.3389/pore.2022.1610402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
Pituitary adenoma (PA) includes invasive pituitary adenoma (IPA) and noninvasive pituitary adenoma (NIPA), which are associated with the endocrine system. The gut microbiome plays an important role in human metabolism, but the association between the gut microbiome and pituitary adenoma remains unclear. A total of 44 subjects were enrolled in this study. Of these, 29 PA patients were further divided into IPA patients (n = 13) and NIPA patients (n = 16), while 15 healthy age-matched subjects were defined as control subjects. We collected faecal samples and characterized the gut microbial profiles by metagenomic sequencing using the Illumina X-ten platform. PLS-DA showed different microbial clusters among the three groups, and slightly different microbial ecological networks were observed. LEfSe analysis revealed significant alterations in the microbial community among PA patients. In particular, the enrichment of Clostridium innocuum, along with the reduced abundance of Oscillibacter sp. 57_20 and Fusobacterium mortiferum, were observed both in the IPA and NIPA groups compared to the control group. Moreover, PA patients could be effectively classified based on these bacteria using a support vector machine algorithm. In summary, this study demonstrated significant differences in the gut microbiome between PA patients and healthy controls. Future mechanistic experiments are needed to determine whether such alterations are a cause or consequence of pituitary adenoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
31
|
Greentree DH, Rice LB, Donskey CJ. Houston, We Have a Problem: Reports of Clostridioides difficile Isolates with Reduced Vancomycin Susceptibility. Clin Infect Dis 2022; 75:1661-1664. [PMID: 35653393 DOI: 10.1093/cid/ciac444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
During the past 4 decades, oral vancomycin has been a mainstay of Clostridioides difficile infection (CDI) therapy with no reports of treatment failure due to emergence of vancomycin resistance. However, C. difficile isolates with high-level phenotypic resistance to vancomycin have recently been reported in 3 distinct geographic regions. There is an urgent need for surveillance to determine if strains with reduced vancomycin susceptibility are circulating in other areas. In a Cleveland area hospital, screening of 176 CDI stool specimens yielded no C. difficile isolates with reduced vancomycin susceptibility and highlighted the potential for false-positive results due to contamination with vancomycin-resistant enterococci. Additional studies are needed to clarify whether reduced vancomycin susceptibility is an emerging problem that will alter clinical practice. Clinicians should alert their health department if they observe a substantial increase in the frequency of vancomycin treatment failure in patients diagnosed with CDI with no alternative explanation for diarrhea.
Collapse
Affiliation(s)
| | - Louis B Rice
- Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Cherny KE, Balaji A, Mukherjee J, Goo YA, Hauser AR, Ozer E, Satchell KJF, Bachta KER, Kochan TJ, Mitra SD, Kociolek LK. Identification of Clostridium innocuum hypothetical protein that is cross-reactive with C. difficile anti-toxin antibodies. Anaerobe 2022; 75:102555. [PMID: 35367613 PMCID: PMC9197939 DOI: 10.1016/j.anaerobe.2022.102555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Previously considered solely an opportunistic pathogen, Clostridium innocuum (CI) was recently reported in Taiwan to be an emerging cause of antibiotic-associated diarrhea and clinically indistinguishable from Clostridioides difficile (CD) infection. We previously identified CI culture supernatant being cross-reactive with commercial CD toxin enzyme immunoassays. We aimed to identify and characterize the cross-reacting protein and determine whether it functioned as a human toxin. METHODS We performed western blots using CI culture supernatants and CD anti-toxin antibodies and identified interacting bands. We identified protein(s) using tandem mass spectrometry and evaluated them by cytotoxicity assays. RESULTS CI, but not CD, was isolated from stool of 12 children and adults with diarrhea. Culture supernatant from 6/12 CI isolates, and an ATCC reference strain, tested positive for CD toxins (total 7/13 isolates) by commercial EIA. Using two of these isolates, we identified two ∼40 kDa hypothetical proteins, CI_01447 and CI_01448, and confirmed cross-reactivity with CD anti-toxin antibodies by enzyme immunoassay and Western blot. Whole-genome sequencing confirmed all 13 isolates contained both genes, which were highly conserved. We observed no cytopathic or cytotoxic effects to HeLa cells when treated with these proteins. We identified amino acid sequence similarity to the NlpC/P60 family of proteins. CONCLUSIONS Our findings do not suggest CI proteins CI_01448 and CI_01447, which cross-react with antibodies against CD toxins A and B, are toxic to HeLa cells. Further studies are needed to determine the function of these cross-reacting proteins and the potential virulence factors that could be responsible for CI diarrheal disease.
Collapse
Affiliation(s)
- K E Cherny
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - A Balaji
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - J Mukherjee
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Y A Goo
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - A R Hauser
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - E Ozer
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - K J F Satchell
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - K E R Bachta
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T J Kochan
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - S D Mitra
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - L K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
33
|
Chen K, Wei X, Kortesniemi M, Pariyani R, Zhang Y, Yang B. Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Res Int 2022; 153:110978. [DOI: 10.1016/j.foodres.2022.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
|
34
|
Zorkina Y, Syunyakov T, Abramova O, Yunes R, Averina O, Kovtun A, Angelova I, Khobta E, Susloparova D, Pavlichenko A, Karpenko O, Andreyuk D, Tovmasyan A, Danilenko V, Gurina O, Kostyuk G, Morozova A. Effects of diet on the gut microbiome in patients with depression. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:59-64. [DOI: 10.17116/jnevro202212201259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|