1
|
Yao S, Ord TJ. Adaptation for crypsis versus conspicuous social signalling following transitions across an extreme ecotone. J Evol Biol 2025; 38:580-593. [PMID: 40109254 DOI: 10.1093/jeb/voaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
A key selection pressure in most habitats is predation, and a common strategy adopted by prey is crypsis through background matching. Many marine blenny fishes are in the process of a dramatic transition across one of the world's most extreme ecotones: the invasion of land across the intertidal zone. We investigated the impact of this transition on body crypsis versus the conspicuousness of visual signals across 56 blenny taxa relative to 59 biologically relevant backgrounds, as viewed by conspecifics and four representative fish and avian predators. We computed 33 colour and 23 pattern indices from standardised digital photographs of six individuals for each taxa (median sample). Six of these indices were selected for detailed analysis following phylogenetic Principal Component Analysis. While phylogenetic regressions revealed some aspects of body crypsis appeared to have changed adaptively with the progressive transition to land (specifically a reduction in body colour saturation), colonisation was primarily facilitated by a generalist form of crypsis. That is, the colours and patterns of aquatic blennies were already well matched to the range of terrestrial backgrounds where amphibious and terrestrial species were observed out of water. Predation appears to have been an important selection pressure constraining the colour and pattern of the dorsal fins used in social communication, which also matched visual backgrounds. Our data implies anti-predator strategies that translate well across habitats and different predator regimes will facilitate colonisation by either reducing predation risk or allowing species to persist long enough to respond adaptively to environmental change.
Collapse
Affiliation(s)
- Shizhi Yao
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Terry J Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Thierry M, Dupont L, Legrand D, Jacob S. Phenotypic and dispersal plasticity are not alternative strategies for organisms to face thermal changes. Proc Biol Sci 2025; 292:20242796. [PMID: 40300624 PMCID: PMC12040457 DOI: 10.1098/rspb.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025] Open
Abstract
To buffer the effects of local environmental changes, organisms may modify their phenotypic traits (i.e. phenotypic plasticity) or disperse towards other potential habitats (i.e. dispersal plasticity). Despite extensive work studying either 'local phenotypic plasticity' or 'dispersal plasticity' independently, little is known about their potential covariation and interplay. These strategies are classically viewed as alternatives. However, this expectation has been challenged by theoretical work suggesting that they may instead evolve together under some environmental contexts. Here, we experimentally quantified morphological, movement and dispersal plasticity in response to thermal changes in 12 strains of the ciliate Tetrahymena thermophila. We showed that phenotypic and dispersal plasticity are not alternative strategies, with half of the strains expressing simultaneously all dimensions of plasticity in response to thermal changes. Furthermore, the extent of morphological and movement plasticity weakly but significantly differed between residents and dispersers. Interestingly, we found no covariation between these different plasticity dimensions, suggesting that they may evolve independently, which pleads for studying which environmental contexts favour the evolution of each. The fact that phenotypic and dispersal plasticity are not alternative strategies and may affect the expression of one another opens interesting perspectives about their joint evolution and the potential consequences of their interplay.
Collapse
Affiliation(s)
- Mélanie Thierry
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, CNRS, Toulouse, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
3
|
Marom S, Kiflawi M, Akkaynak D, Holzman R. Dynamic color change in the grouper Variola louti during interspecific interactions and swimming. Behav Ecol 2025; 36:araf005. [PMID: 40008180 PMCID: PMC11851106 DOI: 10.1093/beheco/araf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Animals can change their body color for various ecological functions. In fish, rapid dynamic color change is primarily known in contexts of intraspecific communication and camouflage, while examples in interspecific contexts are rare. We studied dynamic color changes and their associated behaviors in the grouper Variola louti in its native coral reef environment in the Red Sea. Using underwater videos to record natural behaviors and color-calibrated still images to measure body colors, we quantified color displays as the brightness of the body and the contrast of three distinct patterns: body patches, head stripe, and side bars. V. louti exhibited a diverse range of pattern displays, which rapidly transformed according to its behavioral shifts. A high-contrast head stripe pattern was observed when V. louti engaged in agonistic interspecific interactions, but was interestingly absent when hunting alone or in cooperation with moray eels. The brightness of V. louti's body color and the contrasts of the body patches and side bars were associated with its swimming behavior. Darker body colors and high contrast body patches and side bars were expressed when the fish rested on the bottom, whereas bright and uniform body colors were displayed when swimming higher above the reef. Our results suggest that V. louti utilizes dynamic color displays for camouflage and interspecific communication in agonistic and competitive interspecific interactions. These findings highlight the importance of dynamic color changes for communication and provide valuable insights into the behavioral ecology of animals.
Collapse
Affiliation(s)
- Sagi Marom
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- The Inter-University Institute for Marine Sciences, P.O. Box 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Derya Akkaynak
- Hatter Department of Marine Technologies, Leon H. Charney School of Marine Sciences, University of Haifa, P.O. Box 3338, Haifa 3103301, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- The Inter-University Institute for Marine Sciences, P.O. Box 469, Eilat 88103, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Graham ZA, de Jesus Florentino J, Smithers SP, Menezes JCT, de Carvalho JE, Palaoro AV. Claw coloration in the fiddler crab Leptuca uruguayensis has no correlation with male quality. Curr Zool 2025; 71:109-123. [PMID: 40051462 PMCID: PMC11884406 DOI: 10.1093/cz/zoae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/20/2024] [Indexed: 03/09/2025] Open
Abstract
Sexual selection is thought to play a major role in the evolution of color due to the correlation between a signaler's physiological state and the displayed color. As such, researchers often investigate how color correlates to the quality of the signaler. However, research on the relationship between color and individual quality is often taxonomically limited and researchers typically investigate how color phenotypes relate to one index of quality, such as a linear measure of body size. Here, we investigated the relationship among body size, claw size, claw muscle mass, lipid content, and the color of the claw in male fiddler crabs (Leptuca uruguayensis) which wield an exaggerated claw that varies in color from brown to red. We hypothesized that if the color was correlated to one or more indices of male quality, the color displayed on the claws of male L. uruguayensis could be under sexual selection. We found L. uruguayensis claw color varies substantially among the individuals we photographed. However, we did not find a correlation between claw color and indices of quality; neither brightness nor hue correlated to the indices of quality we measured. Our findings suggest that claw color in L. uruguayensis is unlikely to have evolved to signal quality, but may instead function as a species identity or as a non-indicator sexual signal.
Collapse
Affiliation(s)
- Zackary A Graham
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, 208 University Drive, West Liberty, WV 26074, USA
| | - Jônatas de Jesus Florentino
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
| | - Samuel P Smithers
- Department of Psychology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - João C T Menezes
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - José Eduardo de Carvalho
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua São Nicolau, n 210, Centro District, Diadema, SP 09972-270, Brazil
| | - Alexandre V Palaoro
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua São Nicolau, n 210, Centro District, Diadema, SP 09972-270, Brazil
- Department of Materials Science and Engineering, Clemson University, 515 Calhoun Dr, Clemson, SC 29634, USA
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, n 100, Jardim das Américas District, Curitiba, PR 82590-300, Brazil
| |
Collapse
|
5
|
Ackroyd EJ, Heathcote RJP, Ioannou CC. Dynamic colour change in zebrafish ( Danio rerio) across multiple contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241073. [PMID: 39780969 PMCID: PMC11706659 DOI: 10.1098/rsos.241073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish (Danio rerio) across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions. We show that zebrafish respond to different visual environments by darkening their overall colouration in a dark environment and lightening in a light environment. This is consistent with crypsis through background matching as a function of dynamic colour change. Additionally, we find that zebrafish use dynamic colour change to increase the internal contrast of their striped patterning in the presence of conspecifics. We speculate that this may function in social signalling and/or dazzle colouration. We find no effect of a predator stimulus on dynamic colour change. Finally, we discuss the potential for zebrafish to use multiple colouration strategies simultaneously as distance-dependent effects, considering the typical viewing distances of zebrafish and their predators.
Collapse
Affiliation(s)
- Ella J. Ackroyd
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Robert J. P. Heathcote
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Green SD, Wilson A, Stevens M. Background selection for camouflage shifts in accordance with color change in an intertidal prawn. Behav Ecol 2024; 35:arae060. [PMID: 39372492 PMCID: PMC11453103 DOI: 10.1093/beheco/arae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 10/08/2024] Open
Abstract
To maximize camouflage across visually heterogeneous habitats, animals have evolved a variety of strategies, including polyphenism, color change, and behavioral background matching. Despite the expected importance of behavioral processes for mediating camouflage, such as selection for matching substrates, behavior has received less attention than color traits themselves, and interactions between color change and behavior are largely unexplored. Here, we investigated behavioral background matching in green and red chameleon prawns (Hippolyte varians) over the course of a color change experiment. Prawns were housed on mismatching green and red seaweeds for 30 days and periodically given a choice test between the same seaweeds in y-choice trials over the experiment. We found that, as prawns change color and improve camouflage (to the perspective of a fish predator), there is a reinforcing shift in behavior. That is, as prawns shift from red to green color, or vice versa, their seaweed color preference follows this. We provide key empirical evidence that plasticity of appearance (color) is accompanied by a plastic shift in behavior (color preference) that reinforces camouflage in a color changing species on its natural substrate. Overall, our research highlights how short-term plasticity of behavior and longer-term color change act in tandem to maintain crypsis over time.
Collapse
Affiliation(s)
- Samuel D Green
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
7
|
Liedtke HC, Lopez-Hervas K, Galván I, Polo-Cavia N, Gomez-Mestre I. Background matching through fast and reversible melanin-based pigmentation plasticity in tadpoles comes with morphological and antioxidant changes. Sci Rep 2023; 13:12064. [PMID: 37495600 PMCID: PMC10371988 DOI: 10.1038/s41598-023-39107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Facultative colour change is widespread in the animal kingdom, and has been documented in many distantly related amphibians. However, experimental data testing the extent of facultative colour change, and associated physiological and morphological implications are comparatively scarce. Background matching in the face of spatial and temporal environmental variation is thought to be an important proximate function of colour change in aquatic amphibian larvae. This is particularly relevant for species with long larval periods such as the western spadefoot toad, Pelobates cultripes, whose tadpoles spend up to six months developing in temporary waterbodies with temporally variable vegetation. By rearing tadpoles on different coloured backgrounds, we show that P. cultripes larvae can regulate pigmentation to track fine-grained differences in background brightness, but not hue or saturation. We found that colour change is rapid, reversible, and primarily achieved through changes in the quantity of eumelanin in the skin. We show that this increased eumelanin production and/or maintenance is also correlated with changes in morphology and oxidative stress, with more pigmented tadpoles growing larger tail fins and having an improved redox status.
Collapse
Affiliation(s)
- H Christoph Liedtke
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain.
| | - Karem Lopez-Hervas
- Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany
| | - Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Nuria Polo-Cavia
- Department of Biology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ivan Gomez-Mestre
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain
| |
Collapse
|
8
|
Tong H, Shao G, Wang L, Li J, Wang T, Zhang L, Lv Y, Ye F, Fu C, Jin Y. Association of a single amino acid replacement with dorsal pigmentation in a lizard from the Qinghai-Tibetan Plateau. Int J Biol Macromol 2023; 242:124907. [PMID: 37230451 DOI: 10.1016/j.ijbiomac.2023.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Reptiles can evolve adaptive colors in different environments, but relatively little is known about the genetic mechanisms. Here, we identified the MC1R gene and its association with intraspecific color variation in the lizard Phrynocephalus erythrurus. Analysis of the MC1R sequence in 143 individuals from dark South Qiangtang Plateau (SQP) and light North Qiangtang plateau (NQP) populations, revealed two amino acid sites that showed significant differences in frequency between two areas. One SNP, corresponding to Glu183Lys residue, was found to be a highly significant outlier and differentially fixed for SQP and NQP populations. This residue is located in an extracellular area in the second small extracellular loop within the secondary structure of MC1R, which represents an "attachment pocket" part of the 3D structure. Cytological expression of MC1R alleles with the Glu183Lys replacement showed a 39 % increase in intracellular agonist-induced cyclic AMP levels and a 23.18 % greater cell surface expression of MC1R protein in the SQP relative to the NQP allele. Further in silico 3D modeling and in vitro binding experiments indicated a higher MC1R-α-MSH binding for the SQP allele, and elevated melanin synthesis. We provide an overview of how a single amino acid replacement leads to fundamental changes in MC1R function, and hence shapes variation in dorsal pigmentation in lizards from different environments.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Leijie Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Jiasheng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Tao Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lun Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yudie Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China.
| |
Collapse
|
9
|
Kleinhappel TK, Pike TW, Burman OHP. Changes in group behaviour in response to a preferred environment reflect positive affect. Sci Rep 2023; 13:10576. [PMID: 37386060 PMCID: PMC10310767 DOI: 10.1038/s41598-023-37763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
When observed in their preferred environments, animals display behavioural changes, such as an increase in resting or a reduction in agonism, suggestive of positive affect and improved welfare. However, most studies focus on the behaviour of individuals or, at most, pairs of animals; even though in group-living animals beneficial environmental changes may impact on how the group behaves as a whole. In this study, we investigated whether experiencing a preferred visual environment affected the shoaling behaviour of zebrafish (Danio rerio) groups. We first confirmed a group preference for an image of gravel placed underneath the base of a tank compared to a plain white image. Second, we observed replicated groups either with or without the preferred (gravel) image present to determine if a visually enriched and preferred environment could elicit changes in shoaling behaviour. We found a significant interaction between the observation time and test condition, with differences in shoaling behaviour reflective of increased relaxation emerging gradually over time in the gravel condition. The findings of this study reveal that experiencing a preferred environment can alter group behaviour, making such holistic changes valuable as potential indicators of positive welfare.
Collapse
Affiliation(s)
| | - Thomas W Pike
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Oliver H P Burman
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
10
|
John L, Santon M, Michiels NK. Scorpionfish rapidly change colour in response to their background. Front Zool 2023; 20:10. [PMID: 36864453 PMCID: PMC9983180 DOI: 10.1186/s12983-023-00488-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND To facilitate background matching in heterogenous environments, some animals rapidly change body colouration. Marine predatory fishes might use this ability to hide from predators and prey. Here, we focus on scorpionfishes (Scorpaenidae), well-camouflaged, bottom-dwelling sit-and-wait predators. We tested whether Scorpaena maderensis and Scorpaena porcus adjust body luminance and hue in response to three artificial backgrounds and thereby achieve background matching. Both scorpionfish species are also red fluorescent, which could contribute to background matching at depth. Therefore, we tested whether red fluorescence is also regulated in response to different backgrounds. The darkest and the lightest backgrounds were grey, while the third background was orange of intermediate luminance. Scorpionfish were placed on all three backgrounds in a randomised repeated measures design. We documented changes in scorpionfish luminance and hue with image analysis and calculated contrast to the backgrounds. Changes were quantified from the visual perspective of two potential prey fishes, the triplefin Tripterygion delaisi and the goby Pomatoschistus flavescens. Additionally, we measured changes in the area of scorpionfish red fluorescence. Because scorpionfish changed quicker than initially expected, we measured luminance change at a higher temporal resolution in a second experiment. RESULTS Both scorpionfish species rapidly adjusted luminance and hue in response to a change of background. From prey visual perspective, scorpionfishes' body achromatic and chromatic contrasts against the background were high, indicating imperfect background matching. Chromatic contrasts differed considerably between the two observer species, highlighting the importance of choosing natural observers with care when studying camouflage. Scorpionfish displayed larger areas of red fluorescence with increasing luminance of the background. With the second experiment, we showed that about 50% of the total luminance change observed after one minute is achieved very rapidly, in five to ten seconds. CONCLUSION Both scorpionfish species change body luminance and hue in response to different backgrounds within seconds. While the achieved background matching was suboptimal for the artificial backgrounds, we propose that the observed changes were intended to reduce detectability, and are an essential strategy to camouflage in the natural environment.
Collapse
Affiliation(s)
- Leonie John
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Matteo Santon
- grid.10392.390000 0001 2190 1447Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076 Tübingen, Germany ,grid.5337.20000 0004 1936 7603Ecology of Vision Group, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Nico K. Michiels
- grid.10392.390000 0001 2190 1447Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf Der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Alfakih A, Watt PJ, Nadeau NJ. The physiological cost of colour change: evidence, implications and mitigations. J Exp Biol 2022; 225:275479. [PMID: 35593398 DOI: 10.1242/jeb.210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.
Collapse
Affiliation(s)
- Ateah Alfakih
- Department of Biology, Faculty of Science and Arts, Albaha University, Almakhwah 65553, Saudi Arabia.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Penelope J Watt
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Katlein N, Ray M, Wilkinson A, Claude J, Kiskowski M, Wang B, Glaberman S, Chiari Y. Does colour impact responses to images in geckos? J Zool (1987) 2022. [DOI: 10.1111/jzo.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. Katlein
- Department of Biology University of South Alabama Mobile AL USA
| | - M. Ray
- Department of Biology University of South Alabama Mobile AL USA
| | - A. Wilkinson
- School of Life Sciences University of Lincoln Lincoln UK
| | - J. Claude
- UMR UM/CNRS/IRD/EPHE Institut des Sciences de l’Evolution de Montpellier MontpellierFrance
| | - M. Kiskowski
- Department of Mathematics and Statistics University of South Alabama Mobile AL USA
| | - B. Wang
- Department of Mathematics and Statistics University of South Alabama Mobile AL USA
| | - S. Glaberman
- Department of Environmental Science and Policy George Mason University Fairfax VA USA
| | - Y. Chiari
- Department of Biology University of South Alabama Mobile AL USA
- Department of Biology George Mason University Fairfax VA USA
| |
Collapse
|
15
|
Sheng J, Guan L, Sheng B, Geng S, Wu D, Hu B, Li Z, Le S, Hong Y. Analysis of pigment cell composition, pigment content, tyrosinase content and activity of three kinds of loaches Misgurnus anguillicaudatus from Poyang Lake. JOURNAL OF FISH BIOLOGY 2022; 100:366-377. [PMID: 34751443 DOI: 10.1111/jfb.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Pigment cell composition, pigment content, tyrosinase content and activity analysis were investigated on three kinds of loaches Misgurnus anguillicaudatus: big blackspot loaches (BBL), small blackspot loaches (SBL) and non-blackspot loaches (NBL), from Poyang Lake. Results showed that there were three types of skin pigment cells, namely melanophores, xanthophores and iridophores. Melanophores in dorsum were more than those in abdomen. Melanophore cytosomes in BBL were larger than those in SBL and NBL, and melanosomes were the largest in stage four. The melanophores in dorsal skin of SBL or NBL were small cell bodies, spindle-like and in chain distribution. There was an extremely significant difference in melanin content in BBL between the dorsum and abdomen (P < 0.01). There were no significant differences in melanin abdominal content, lutein and carotenoid contents among three kinds of loaches (P > 0.05). In dorsal skin, tyrosinase content was the highest in BBL, and it was significantly lower in NBL than in BBL and SBL (P < 0.01). This study reveals the differences in pigment and tyrosinase content in three kinds of loaches and provides a theoretical basis for further study of the mechanism of black spot formation.
Collapse
Affiliation(s)
- Junqing Sheng
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Le Guan
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Bin Sheng
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Shiyu Geng
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Zhixiong Li
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Shunlong Le
- Jiayu Agriculture Development Company Limited, Fuzhou, China
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| |
Collapse
|
16
|
Zhang N, Luo W, Chen P, Zhang S, Zhang Y, Chen D, Huang X, Jiang J, Wang Y, Yang S, Yang S, Zhao L, Guo Z, Huang J, Long Y, Du Z. A novel fish behavior: “Floating” of Paramisgurnus dabryanus loaches. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Wuthrich KL, Nagel A, Swierk L. Rapid Body Color Change Provides Lizards with Facultative Crypsis in the Eyes of Their Avian Predators. Am Nat 2021; 199:277-290. [DOI: 10.1086/717678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kelly Lin Wuthrich
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Amber Nagel
- Department of Chemical Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
- School of the Environment, Yale University, New Haven, Connecticut 06511; and Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú
| |
Collapse
|
18
|
Preißler K, Rodríguez A, Pröhl H. Evidence for coloration plasticity in the yellow-bellied toad, Bombina variegata. Ecol Evol 2021; 11:17557-17567. [PMID: 34938529 PMCID: PMC8668782 DOI: 10.1002/ece3.8391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic adaptation in terms of background color matching to the local habitat is an important mechanism for survival in prey species. Thus, intraspecific variation in cryptic coloration is expected among localities with dissimilar habitat features (e.g., soil, vegetation). Yellow-bellied toads (Bombina variegata) display a dark dorsal coloration that varies between populations, assumed to convey crypsis. In this study, we explored I) geographic variation in dorsal coloration and II) coloration plasticity in B. variegata from three localities differing in substrate coloration. Using avian visual modeling, we found that the brightness contrasts of the cryptic dorsa were significantly lower on the local substrates than substrates of other localities. In experiments, individuals from one population were able to quickly change the dorsal coloration to match a lighter substrate. We conclude that the environment mediates an adaptation in cryptic dorsal coloration. We suggest further studies to test the mechanisms by which the color change occurs and explore the adaptive potential of coloration plasticity on substrates of varying brightness in B. variegata and other species.
Collapse
Affiliation(s)
- Kathleen Preißler
- Molecular Evolution and Systematics of AnimalsInstitute of BiologyUniversity LeipzigLeipzigGermany
| | - Ariel Rodríguez
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| | - Heike Pröhl
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| |
Collapse
|
19
|
Encel SA, Ward AJW. Social context affects camouflage in a cryptic fish species. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211125. [PMID: 34659783 PMCID: PMC8511788 DOI: 10.1098/rsos.211125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crypsis, or the ability to avoid detection and/or recognition, is an important and widespread anti-predator strategy across the animal kingdom. Many animals are able to camouflage themselves by adapting their body colour to the local environment. In particular, rapid changes in body colour are often critical to the survival of cryptic prey which rely on evading detection by predators. This is especially pertinent for animals subject to spatio-temporal variability in their environment, as they must adapt to acute changes in their visual surroundings. However, which features of the local environment are most relevant is not well understood. In particular, little is known about how social context interacts with other environmental stimuli to influence crypsis. Here, we use a common cryptic prey animal, the goby (Pseudogobius species 2) to examine how the presence and body colour of conspecifics influence the rate and extent to which gobies change colour. We find that solitary gobies change colour to match their background faster and to a greater extent than gobies in pairs. Further, we find that this relationship holds irrespective of the colour of nearby conspecifics. This study demonstrates the importance of social context in mediating colour change in cryptic animals.
Collapse
Affiliation(s)
- Stella A. Encel
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Bertolesi GE, Debnath N, Atkinson-Leadbeater K, Niedzwiecka A, McFarlane S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol Ecol 2021; 30:6659-6676. [PMID: 34592025 DOI: 10.1111/mec.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Crypsis increases survival by reducing predator detection. Xenopus laevis tadpoles decode light properties from the substrate to induce two responses: a cryptic coloration response where dorsal skin pigmentation is adjusted to the colour of the substrate (background adaptation) and a behavioural crypsis where organisms move to align with a specific colour surface (background preference). Both processes require organisms to detect reflected light from the substrate. We explored the relationship between background adaptation and preference and the light properties able to trigger both responses. We also analysed which retinal photosensor (type II opsin) is involved. Our results showed that these two processes are segregated mechanistically, as there is no correlation between the preference for a specific background with the level of skin pigmentation, and different dorsal retina-localized type II opsins appear to underlie the two crypsis modes. Indeed, inhibition of melanopsin affects background adaptation but not background preference. Instead, we propose pinopsin is the photosensor involved in background preference. pinopsin mRNA is co-expressed with mRNA for the sws1 cone photopigment in dorsally located photoreceptors. Importantly, the developmental onset of pinopsin expression aligns with the emergence of the preference for a white background, but after the background adaptation phenotype appears. Furthermore, white background preference of tadpoles is associated with increased pinopsin expression, a feature that is lost in premetamorphic froglets along with a preference for a white background. Thus, our data show a mechanistic dissociation between background adaptation and background preference, and we suggest melanopsin and pinopsin, respectively, initiate the two responses.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nilakshi Debnath
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | | | - Anna Niedzwiecka
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
21
|
All Shades of Shrimp: Preferences of Colour Morphs of a Freshwater Shrimp Neocaridina davidi (Decapoda, Atyidae) for Substrata of Different Colouration. Animals (Basel) 2021; 11:ani11041071. [PMID: 33918889 PMCID: PMC8069546 DOI: 10.3390/ani11041071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Examination of preferences of an aquarium “Red Cherry” shrimp for differently coloured backgrounds revealed common traits, irrespective of shrimp body colouration. The shrimp selected dark backgrounds and coarse patterns over light and fine patterned substrata. Thus, the use of materials with dark and uniform colouration can contribute to designing proper monitoring tools to detect biological invasions after releasing this pet into the wild, as well as to provide shrimp with comfortable conditions in captivity. Abstract An ornamental freshwater shrimp, Neocaridina davidi, is popular as an aquarium hobby and, therefore, a potentially invasive species. There is a growing need for proper management of this species to determine not only their optimum breeding conditions, but also their ability to colonise novel environments. We tested habitat preferences of colour morphs (brown, red, white) of N. davidi for substratum colour (black, white, grey shades, red) and fine or coarse chess-board patterns to recognise their suitable captivity conditions and predict their distribution after potential release into nature. We conducted laboratory choice experiments (n = 8) with three individuals of the same morph exposed for two hours to a range of backgrounds. Shrimp preferred dark backgrounds over light ones irrespective of their own colouration and its match with the background colour. Moreover, the brown and red morphs, in contrast to the white morph, preferred the coarse background pattern over the finer pattern. This suggests that the presence of dark, uniform substrata (e.g., rocks, macrophytes) will favour N. davidi. Nevertheless, the polymorphism of the species has little effect on its total niche breadth, and thus its invasive potential.
Collapse
|
22
|
Tougeron K, van Baaren J, Town J, Nordin D, Dumonceaux T, Wist T. Body-color plasticity of the English grain aphid in response to light in both laboratory and field conditions. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
da Silva CRB, van den Berg CP, Condon ND, Riginos C, Wilson RS, Cheney KL. Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. J Anim Ecol 2020; 89:1735-1746. [PMID: 32227334 DOI: 10.1111/1365-2656.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.
Collapse
Affiliation(s)
- Carmen R B da Silva
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Cedric P van den Berg
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicholas D Condon
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Robbie S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
24
|
Tong H, Li J, Wo Y, Shao G, Zhao W, Aguilar‐Gómez D, Jin Y. Effects of substrate color on intraspecific body color variation in the toad-headed lizard, Phrynocephalus versicolor. Ecol Evol 2019; 9:10253-10262. [PMID: 31624549 PMCID: PMC6787858 DOI: 10.1002/ece3.5545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Diversity in animal coloration is generally associated with adaptation to their living habitats, ranging from territorial display and sexual selection to predation or predation avoidance, and thermoregulation. However, the mechanism underlying color variation in toad-headed Phrynocephalus lizards remains poorly understood. In this study, we investigated the population color variation of Phrynocephalus versicolor. We found that lizards distributed in dark substrate have darker dorsal coloration (melanic lizards) than populations living in light substrates. This characteristic may improve their camouflage effectiveness. A reciprocal substrate translocation experiment was conducted to clarify the potential role of morphological adaptation and physiological plasticity of this variation. Spectrometry technology and digital photography were used to quantify the color variation of the above-mentioned melanic and nonmelanic P. versicolor populations and their native substrate. Additionally, substrate color preference in both populations was investigated with choice experiments. Our results indicate that the melanic and nonmelanic populations with remarkable habitat color difference were significantly different on measured reflectance, luminance, and RGB values. Twenty-four hours, 30 days, and 60 days of substrate translocation treatment had little effects on dorsal color change. We also found that melanic lizards choose to live in dark substrate, while nonmelanic lizards have no preference for substrate color. In conclusion, our results support that the dorsal coloration of P. versicolor, associated with substrate color, is likely a morphological adaptation rather than phenotypic plasticity.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Jiasheng Li
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Yubin Wo
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Gang Shao
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Wei Zhao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | | | - Yuanting Jin
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| |
Collapse
|
25
|
Green SD, Duarte RC, Kellett E, Alagaratnam N, Stevens M. Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds. Commun Biol 2019; 2:230. [PMID: 31263774 PMCID: PMC6588621 DOI: 10.1038/s42003-019-0465-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Camouflage is driven by matching the visual environment, yet natural habitats are rarely uniform and comprise many backgrounds. Therefore, species often exhibit adaptive traits to maintain crypsis, including colour change and behavioural choice of substrates. However, previous work largely considered these solutions in isolation, whereas many species may use a combination of behaviour and appearance to facilitate concealment. Here we show that green and red chameleon prawns (Hippolyte varians) closely resemble their associated seaweed substrates to the vision of predatory fish, and that they can change colour to effectively match new backgrounds. Prawns also select colour-matching substrates when offered a choice. However, colour change occurs over weeks, consistent with seasonal changes in algal cover, whereas behavioural choice of matching substrates occurs in the short-term, facilitating matches within heterogeneous environments. We demonstrate how colour change and behaviour combine to facilitate camouflage against different substrates in environments varying spatially and temporally.
Collapse
Affiliation(s)
- Samuel D. Green
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE UK
| | - Rafael C. Duarte
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, 11612-109 Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, 09606-045 Brazil
| | - Emily Kellett
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE UK
| | - Natasha Alagaratnam
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE UK
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE UK
| |
Collapse
|
26
|
Affiliation(s)
- I. C. Cuthill
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|