1
|
Picone M, Del Vecchio S, Pirvu M, Vecchiato M, Volpi Ghirardini A. Effects of ultra-violet filters oxybenzone (benzophenone-3) and 4-methylbenzylidene camphor on different life-history traits of the copepod Acartia tonsa Dana. MARINE POLLUTION BULLETIN 2025; 216:117952. [PMID: 40215953 DOI: 10.1016/j.marpolbul.2025.117952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025]
Abstract
The UV filters 2-hydroxy-4-methoxybenzophenone, or benzophenone-3 (BP3), and 4-methylbenzylidene camphor, or enzacamene (4-MBC), are recognised as toxicants that might impair different life-history traits in marine invertebrates and threaten the resilience of critical ecosystems such as coral reefs. Their effects on different life-traits of the calanoid copepod Acartia tonsa were tested, including (i) hatching, early-life stages mortality and larval development from the egg to the copepodite-I stage, (ii) the attainment of sexual maturity and reproduction in young adult copepods, (iii) the reproduction of mature copepods (F0 generation) and hatching, larval mortality and larval development in their offspring (F1 generation). The chemicals exerted effects on different life traits of the copepods, with BP3 displaying clearer and more consistent impacts than 4-MBC. BP3 did not affect larval survival and development of the parental generation and reproduction and feeding up to 500-600 μg L-1. At the same time, it severely delays the larval development of the offspring at a concentration as low as 7.4 μg L-1, showing a transgenerational effect at concentrations frequently measured in surface waters. Conversely, 4-MBC severely affected larval survival and development at a concentration of 46 μg L-1, caused mortality in the parent generation at 9.3 μg L-1, but did not inhibit larval survival and development of the offspring up to a concentration of 2.1 μg L-1. At the same time, it exerts a significant stimulatory effect on egg production by generation F0 and larval development of generation F1 compared to the control, suggesting a probable toxicant-mediated endocrine disruption.
Collapse
Affiliation(s)
- Marco Picone
- Ca' Foscari University Venice, Department of Environmental Sciences, Informatics, and Statistics, Campus Scientifico, via Torino 155, 30172 Mestre, Italy.
| | - Silvia Del Vecchio
- Biome Lab, Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Maria Pirvu
- Ca' Foscari University Venice, Department of Environmental Sciences, Informatics, and Statistics, Campus Scientifico, via Torino 155, 30172 Mestre, Italy
| | - Marco Vecchiato
- Ca' Foscari University Venice, Department of Environmental Sciences, Informatics, and Statistics, Campus Scientifico, via Torino 155, 30172 Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Ca' Foscari University Venice, Department of Environmental Sciences, Informatics, and Statistics, Campus Scientifico, via Torino 155, 30172 Mestre, Italy
| |
Collapse
|
2
|
Riaz M, Abdullah S, Jamil M, Rasheed A, Sheikh U, Fatima M, Umer N, Aslam K. Evaluation of toxic effects of benzophenone on histopathology of Labeo rohita. Toxicol Rep 2025; 14:101914. [PMID: 39897405 PMCID: PMC11787587 DOI: 10.1016/j.toxrep.2025.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Benzophenone (BP) is an organic ultraviolet (UV) filter widely used in sunscreens and personal care products. This compound enters aquatic ecosystems due to industrialization, wastewater treatment plants (WWTPs), and domestic effluents, poses serious threats to aquatic organisms, and is considered an emerging pollutant. This laboratory-based study assessed the 96-hour (h) median lethal concentrations (LC50) and sub-lethal effects of BP on the histology of the gills and muscles of Labeo rohita. Fish fingerlings of the same weight (48 ± 2 g) and length (5 ± 2 in.) were exposed to gradually increasing concentrations of BP (100 µg/L to 1000 µg/L) and their 96-h LC50 was determined as 612.822 ± 37.38 µg/L. To determine the sub-lethal effects, the fish were exposed to 1/5th of the 96-h LC50 of BP for 35 days (d) to investigate organ-specific responses. The results indicated significant damage to the exposed organs and showed damage in pillar cells and intraluminal debris in gill mucous cells. Moreover, fragmentation of intact muscle structures, intraluminal debris, and vascular necrosis were observed in exposed muscles. In conclusion, these results confirmed the histopathological changes in the gills and muscles of L. rohita caused by BP exposure, thereby confirming its risk to aquatic life.
Collapse
|
3
|
Lindley AK, Arrant E, Costello ML, Hantz RK, Kelly AM, Mangiamele LA, Thompson RR. Acute effects of estradiol on shoaling in male and female zebrafish (Danio rerio). Horm Behav 2025; 168:105691. [PMID: 39904285 DOI: 10.1016/j.yhbeh.2025.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The role that estrogens play in the dynamic modulation of social behaviors related to reproduction has been well established, yet whether they can acutely modulate social responses outside of reproductive contexts remains less clear. Further, while estrogens typically promote aggressive responses in competitive contexts, especially in territorial species, it is possible they enhance non-sexual, prosocial interactions in other contexts, especially in species that live in groups. We therefore tested the acute effects of two doses of estradiol (E2) and of an aromatase inhibitor, Fadrozole, on social approach/preference responses for same-sex shoals in male and female zebrafish, as well as the effects of an agonist for the membrane G-protein coupled estrogen receptor (GPER). Estradiol, added to the water at a dose of 10-6 M, was able to significantly increase approach/preference responses in both sexes in multiple experiments in <1 h, whereas Fadrozole inhibited social approach responses 1 h and 17 h after exposure in females, but not in males. A GPER agonist did not enhance social preference responses like E2 did. Neither the effects of E2 nor FAD were paralleled by influences on measures of stress/anxiety, indicating E2 rapidly increases tendencies to approach and maintain proximity to groups in this highly social species through direct actions on social brain circuits.
Collapse
Affiliation(s)
- Abel K Lindley
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Ella Arrant
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Maya L Costello
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Rachel K Hantz
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Richmond R Thompson
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America; Department of Psychology, Oxford College of Emory University, Oxford, GA, United States of America.
| |
Collapse
|
4
|
Vignet C, Frank RA, Yang C, Shires K, Bree M, Sullivan C, Norwood WP, Hewitt LM, McMaster ME, Parrott JL. Long-term effects of an early-life exposure of fathead minnows to sediments containing bitumen. Part II: Behaviour, reproduction, and gonad histopathology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124840. [PMID: 39241948 DOI: 10.1016/j.envpol.2024.124840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The oil sands area of northern Alberta has river sediments that contain natural bitumen. Eggs and fish in these rivers may be exposed to bitumen-related chemicals early in life. This paper assesses a short embryo-larval fish exposure to oil sands sediment and follows the fish behaviour as they mature in clean water and examines their breeding success as adults (5 months afterwards). The three different oil sands river sediments tested were: a sediment collected outside of the bitumen deposit (tested at 3 g/L, Reference sediment from upstream Steepbank River site), and two sediments collected within the deposit (each tested at low (1 g/L) and high (3 g/L) concentrations). The sediments within the bitumen deposit were from the Ells and Steepbank (Stp) Rivers, and both contained significant total PAHs (>170 ng/g wet weight sediment) and alkylated PAHs (>4480 ng/g). Fish were exposed to these sediments for 21 days (as eggs and larval fish), and then transferred permanently to clean water to mature and breed. There was a significant decrease in the number of egg clutches produced by fish exposed early in life to Stp downstream high sediment (compared to Reference sediment). There was also a decrease in overall cumulative egg production, with fish from Stp downstream high sediment producing just over 1000 eggs in total while fish exposed to Ref sediment produced nearly 6900 eggs. The fish with reduced egg production were also less social than expected as they matured, and they had a lower % of early vitellogenic eggs in their ovaries. Overall, the exposure shows that a single, brief exposure during early life stages to natural bitumen can affect fish in adulthood. Naturally occurring bitumen-derived PAHs can reduce fish reproductive output by complex mechanisms, measurable as lower ovary maturity and changes in social behaviour.
Collapse
Affiliation(s)
- C Vignet
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada; Current Address C Vignet: Biochemistry and Toxicology of Bioactives Compounds (BTSB), University of Toulouse, INU Champollion, Albi, 81000, France
| | - R A Frank
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - C Yang
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON, Canada
| | - K Shires
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - M Bree
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - C Sullivan
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - W P Norwood
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - L M Hewitt
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - M E McMaster
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada
| | - J L Parrott
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
5
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Pomianowski A, Könyves L, Rytel L. Biomonitoring of benzophenones in guano samples of wild bats in Poland. PLoS One 2024; 19:e0301727. [PMID: 38593171 PMCID: PMC11003676 DOI: 10.1371/journal.pone.0301727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Benzophenones (BPs) are substances used in the production of sunscreens, cosmetics, and personal care products. However, there is a lack of knowledge of BPs in wild animals. Therefore, the study aimed to assess the concentration of selected BPs commonly used in the cosmetic industry in guano samples collected from 4 colonies of greater mouse-eared bats (Myotis myotis). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine guano concentrations of benzophenone 1 (BP-1), benzophenone 2 (BP-2), benzophenone 3 (BP-3) and benzophenone 8 (BP-8). BP-1 levels above the method quantification limit (MQL) were noted in 97.5% of samples and fluctuated from <0.1 ng/g to 259 ng/g (mean 41.50 ng/g, median 34.8). The second most common was BP-3, which fluctuated from <0.1 ng/g to 19 ng/g (mean 6.67 ng/g, median 5.05), and its levels higher than MQL were observed in 40% of samples. BP-2 and BP-8 concentrations did not exceed the method detection limit (0.04 ng/g) in any analyzed sample. There were visible differences in the BP-1 and BP-3 levels among the studied bat colonies. Mean BP-1 concentration fluctuated from 11.23±13.13 ng/g to 76.71±65.51 ng/g and differed significantly between the colonies. Mean BP-3 concentration fluctuated from 5.03±6.03 ng/g to 9.18±7.65 mg/g, but it did not differ significantly between the colonies. The results show that guano is a suitable matrix for the assessment of wildlife exposure to BPs. This could be particularly advantageous in protected species, where not disturbing and stressing the animals are crucial.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, Sevilla, Spain
| | - Andrzej Pomianowski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Yao YN, Wang Y, Zhang H, Gao Y, Zhang T, Kannan K. A review of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet light filters. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:30-44. [PMID: 38162868 PMCID: PMC10757257 DOI: 10.1016/j.eehl.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Benzophenone ultraviolet light filters (BPs) are high-production-volume chemicals extensively used in personal care products, leading to widespread human exposure. Given their estrogenic properties, the potential health risks associated with exposure to BPs have become a public health concern. This review aims to summarize sources and pathways of exposure to BPs and associated health risks. Dermal exposure, primarily through the use of sunscreens, constitutes a major pathway for BP exposure. At a recommended application rate, dermal exposure of BP-3 via the application of sunscreens may reach or exceed the suggested reference dose. Other exposure pathways to BPs, such as drinking water, seafood, and packaged foods, contribute minimal to the overall dose. Inhalation is a minor pathway of exposure; however, its contribution cannot be ignored. Human exposure to BPs is an order of magnitude higher in North America than in Asia and Europe. Studies conducted on laboratory animals and cells have consistently demonstrated the toxic effects of BP exposure. BPs are estrogenic and elicit reproductive and developmental toxicities. Furthermore, neurotoxicity, hepatotoxicity, nephrotoxicity, and carcinogenicity have been reported from chronic BP exposure. In addition to animal and cell studies, epidemiological investigations have identified associations between BPs and couples' fecundity and other reproductive disorders, as well as adverse birth outcomes. Further studies are urgently needed to understand the risks posed by BPs on human health.
Collapse
Affiliation(s)
- Ya-Nan Yao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hengling Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY 12237, USA
| |
Collapse
|
7
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
9
|
Guo X, Zhang R, Jin Q, Cao N, Shi J, Zong X, Chen X, Wang C, Li X, Pang S, Li L. The kisspeptin-GnIH signaling pathway in the role of zebrafish courtship and aggressive behavior induced by azoxystrobin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121461. [PMID: 36934963 DOI: 10.1016/j.envpol.2023.121461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Azoxystrobin, a strobilurin widely used to control rice diseases, has raised concerns about possible adverse effects on aquatic ecosystems. At present, very little is known about the effects of azoxystrobin on courtship and aggressive behavior and the potential underlying mechanisms. In the present study, after exposing adult male and female zebrafish to worst-case scenario concentrations of azoxystrobin (0, 2 μg/L, 20 μg/L, and 200 μg/L) for 42 d, we observed a decrease in courtship behavior and an increase in aggressive behavior in both male and female zebrafish. In addition, to elucidate the molecular mechanism of the behavioral effects of azoxystrobin, we quantified the changes in the concentrations of kisspeptin, 5-HT, GnIH, and their corresponding receptor mRNA expression in the brain. The results showed that 200 μg/L azoxystrobin decreased the concentrations of kisspeptin and increased the concentration of GnIH in both male and female zebrafish brain. In addition, azoxystrobin also significantly reduced 5-HT concentration in female zebrafish brain. Further investigation revealed that altered courtship and aggressive behavior were associated with the expression levels of genes (kiss1, kiss2, gnrh3, gnrhr3, 5ht1a, and 5ht2a) involved in kisspeptin-GnIH signaling pathway. In conclusion, our study suggested that azoxystrobin may impair courtship and aggressive behavior in zebrafish by interfering with the kisspeptin-GnIH signaling pathway, which may have more profound effects on natural zebrafish populations.
Collapse
Affiliation(s)
- Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
10
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Michelangeli M, Martin JM, Pinter-Wollman N, Ioannou CC, McCallum ES, Bertram MG, Brodin T. Predicting the impacts of chemical pollutants on animal groups. Trends Ecol Evol 2022; 37:789-802. [PMID: 35718586 DOI: 10.1016/j.tree.2022.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
Chemical pollution is among the fastest-growing agents of global change. Synthetic chemicals with diverse modes-of-action are being detected in the tissues of wildlife and pervade entire food webs. Although such pollutants can elicit a range of sublethal effects on individual organisms, research on how chemical pollutants affect animal groups is severely lacking. Here we synthesise research from two related, but largely segregated fields - ecotoxicology and behavioural ecology - to examine pathways by which chemical contaminants could disrupt processes that govern the emergence, self-organisation, and collective function of animal groups. Our review provides a roadmap for prioritising the study of chemical pollutants within the context of sociality and highlights important methodological advancements for future research.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden; School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7246, USA
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
12
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
13
|
Xiao J, Li Y. Screening of benzophenone ultraviolet absorbers with high-efficiency light absorption capacity, low-permeability and low-toxicity by 3D-QSAR model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Carve M, Nugegoda D, Allinson G, Shimeta J. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115894. [PMID: 33120145 DOI: 10.1016/j.envpol.2020.115894] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet filters (OUVFs) are used in a wide range of manufactured products including personal care (e.g. sunscreens) and plastic items. This review summarizes the available data regarding the toxic effects of OUVFs on marine and freshwater organisms and generates the predicted no-effect concentration (PNEC) values necessary for assessing ecological risk. Through a systematic search of the literature, 89 studies were identified and ecotoxicological data extracted. Collectively, these studies described toxicity testing with 39 OUVF from 10 structural classes, with derivatives of benzophenones (49%) and camphors (16%) most studied. There was a bias towards selecting freshwater species (61%), and evaluating single OUVF effects (87%) rather than OUVF mixtures. Short-term (acute) experimentation (58%) was marginally more common than long-term (chronic) testing (42%). Reproductive, developmental, genetic, and neurological toxicity were the most commonly identified effects in aquatic organism, and were associated with molecular interactions with steroid receptors, DNA, or the production of reactive oxygen species. Species sensitivity distribution and/or assessment factors were used to calculate PNECs for 22 OUVFs and the risk quotients for 12 OUVFs. When using maximum concentrations, high risk was observed for six OUVFs in marine environments (4-methylbenzylidene-camphor, octocrylene, padimate-O, benzophenone-1, and oxybenzone, ethylhexyl-4-methoxycinnamate), and for four OUVFs in freshwater environments (ethylhexyl-4-methoxycinnamate, octocrylene, avobenzone and oxybenzone). When using median concentrations, a risk to marine environments was observed for oxybenzone. The results of this review underline that there is limited knowledge of the pathological effects of OUVFs and their metabolites in aquatic environments, and this inhibits the development of informed water-quality guidelines.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|