1
|
Xie G, Huang D, Duan X, Liu J, Yuan S, Tao Y. Mechanisms for the Enhancement of Caproic Acid and H 2 Production in Ruminococcaceae Bacterium CPB6 by Fe(II) and Mg(II): Growth and Gene Transcription Analyses. Appl Biochem Biotechnol 2024; 196:8156-8167. [PMID: 38696095 DOI: 10.1007/s12010-024-04920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
The production of caproic acid (CA) and hydrogen gas (H2) from organic wastewater is economically attractive. The Ruminococcaceae bacterium CPB6 has demonstrated potential for CA production from lactate-containing wastewater. However, our understanding of the effects of Fe2+ and Mg2+ on the growth and metabolism of strain CPB6 remains limited. Therefore, this study aims to investigate the impact of Fe2+ and Mg2+ on CA and H2 production, as well as on the expression of key genes involved in CA and H2 biosynthesis pathway. The results indicate that Fe2+ positively affects cell proliferation and H2 production while minimally impacting CA production. The highest levels of H2 production were achieved with the addition of 200 mg/L Fe2+. Conversely, Mg2+ significantly enhances CA and H2 production, with the optimal yield observed in a medium enriched with 300 mg/L Mg2+. Reverse transcription quantitative PCR (RT-qPCR) analysis reveals that Fe2+ promotes the expression of the hydrogenase gene, whereas Mg2+ has a negligible effect on hydrogenase expression. Notably, Fe2+ and Mg2+ inhibit the expression of key genes involved in CA synthesis. These findings suggest that Fe2+ enhances H2 production by boosting cell biomass and the expression of the hydrogenase gene, whereas Mg2+ improves CA and H2 production primarily by increasing cell biomass rather than influencing the expression of functional genes involved in CA biosynthesis.
Collapse
Affiliation(s)
- Guihong Xie
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Duo Huang
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Xuemei Duan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Liu
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Siqi Yuan
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.
| | - Yong Tao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Jiannanchun Group Co. Ltd, Mianzhu, 618200, China.
| |
Collapse
|
2
|
Liu H, Lu H, Wang Y, Yu C, He Z, Dong H. Unlocking the power of short-chain fatty acids in ameliorating intestinal mucosal immunity: a new porcine nutritional approach. Front Cell Infect Microbiol 2024; 14:1449030. [PMID: 39286812 PMCID: PMC11402818 DOI: 10.3389/fcimb.2024.1449030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains ranging from one to six atoms in length, encompass acetate, propionate, and butyrate. These compounds are the endproducts of dietary fiber fermentation, primarily catalyzed by the glycolysis and pentose phosphate pathways within the gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in the realm of animal nutrition, exerting a profound influence on the intestinal, immune system, and intestinal barrier functions. Specifically, they contibute to 60-70% of the total energy requirements in ruminants and 10-25% in monogastric animals. SCFAs have demonstrated the capability to effectively modulate intestinal pH, optimize the absorption of mineral elements, and impede pathogen invasion. Moreover, they enhance the expression of proteins associated with intestinal tight junctions and stimulate mucus production, thereby refining intestinal tissue morphology and preserving the integrity of the intestinal structure. Notably, SCFAs also exert anti-inflammatory properties, mitigating inflammation within the intestinal epithelium and strengthening the intestinal barrier's defensive capabilities. The present review endeavors to synthesize recent findings regarding the role of SCFAs as crucial signaling intermediaries between the metabolic activities of gut microbiota and the status of porcine cells. It also provides a comprehensive overview of the current literature on SCFAs' impact on immune responses within the porcine intestinal mucosa.
Collapse
Affiliation(s)
- Haoyang Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hongde Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yuxuan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Chenyun Yu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Zhiyuan He
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Zhou X, Li C, He Z, Liu H, Wang M, He J. Metabolomics Profiling of Serum and Urine from Chuanzang Black Pigs with Different Residual Feed Intake. Animals (Basel) 2024; 14:2323. [PMID: 39199856 PMCID: PMC11350911 DOI: 10.3390/ani14162323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
This study was conducted to evaluate associations of blood variables and urine variables with different residual feed intakes (RFIs) in growing Chuanzang black (CB) pigs. A total of 228 growing CB boars from 99 days were used. The same basal diet was offered ad libitum and individual feed intake and body weight were measured over a period of 181 d. The CB pigs were categorized based on their residual feed intake values, with six individuals each from the high and low ends selected and divided into two groups: the low residual feed intake group (LS) and the high residual feed intake group (HS). Serum and urine samples were collected at the end of the experiment for determination of metabolomics profiling. Results showed that there were significantly different metabolites in serum and urine of different RFI groups (fold-change, FC > 2.0 or FC < 0.5, and p < 0.05), and 21 metabolites were identified in serum and 61 in urine. Cluster analysis showed that 20 metabolites were up-regulated and one metabolite was down-regulated in serum; 44 metabolites were up-regulated and 17 metabolites were down-regulated in urine. Kyoto Encyclopedia of Genes and Genomes analysis showed that the differential metabolites of serum were enriched in linoleic acid metabolism, and the differential metabolites of urine were enriched in steroid hormone biosynthesis, taurine and hypotaurine metabolism, and primary bile acid biosynthesis. The correlations between serum metabolites and urine metabolites indicated a significant positive correlation between all fatty acyls in serum metabolites and L-glutamate in urine. However, no compelling genetic or blood biomarkers have been found to explain the differences in RFI, suggesting multiple approaches to effective feed use in pigs. This study provides new insights into the subsequent assessment of RFI by metabolomics profiling, as well as the development of novel feed additives for the factors that will facilitate future research directions in CB pigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (X.Z.); (C.L.); (Z.H.); (H.L.); (M.W.)
| |
Collapse
|
4
|
Botelho-Fontela S, Ferreira S, Paixão G, Pereira-Pinto R, Vaz-Velho M, Pires MDA, Payan-Carreira R, Patarata L, Lorenzo JM, Silva JA, Esteves A. Seasonal Variations on Testicular Morphology, Boar Taint, and Meat Quality Traits in Traditional Outdoor Pig Farming. Animals (Basel) 2023; 14:102. [PMID: 38200834 PMCID: PMC10778027 DOI: 10.3390/ani14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Traditional outdoor pig farming is renowned for its emphasis on animal welfare and the production of highly valued, quality meat. While seasonality is known to impact certain animals, particularly those raised outdoors, there is a lack of research on Bísaro boars, a native Portuguese breed. This research study was conducted on a total of 20 male entire Bísaro pigs, reared in outdoor pens from 4 to 13 months old, and subsequently slaughtered. The animals were divided into two groups: one slaughtered in winter (Wi, n = 9), and the other in summer (Su, n = 11). The objective was to evaluate testicular morphometry, boar taint compounds, and meat quality traits, including sensory analysis and fatty acid profile. Testicles from the Su group exhibited reduced volume, indicating diminished functionality during that season. While no significant differences were observed in the boar taint compound analysis, panelists could discern a more intense aroma and flavor of boar taint in the Su meat. Other meat quality traits showed no significant variations, but the fatty acid profile displayed higher values in the Wi group. This study reveals that Bísaro boars experience reproductive seasonality, leading to variations in boar taint compounds across the seasons. This information is crucial for farm planning.
Collapse
Affiliation(s)
- Sofia Botelho-Fontela
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| | - Sílvia Ferreira
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| | - Gustavo Paixão
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; (R.P.-P.); (M.V.-V.)
| | - Ricardo Pereira-Pinto
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; (R.P.-P.); (M.V.-V.)
| | - Manuela Vaz-Velho
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; (R.P.-P.); (M.V.-V.)
| | - Maria dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| | - Rita Payan-Carreira
- CHRC—Comprehensive Health Research Centre, Department of Veterinary Medicine, University of Évora, Pole at Mitra, 7002-554 Évora, Portugal;
| | - Luís Patarata
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia 4, 32900 San Cibrao das Viñas, Spain;
| | - José A. Silva
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| | - Alexandra Esteves
- Animal and Veterinary Research Centre (CECAV), AL4AnimalS, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (S.F.); (G.P.); (M.d.A.P.); (L.P.); (J.A.S.); (A.E.)
| |
Collapse
|
5
|
Bruun TS, Madsen AH, Handberg ER, Dall J, Jensen SK, Østrup E, Strathe AV. The effect of dietary omega-3 fatty acid supplementation on fetal growth, piglet birth weight and plasma fatty acid concentrations, using docosahexaenoic acid in early gestation in sows. Anim Reprod Sci 2023; 259:107380. [PMID: 38006638 DOI: 10.1016/j.anireprosci.2023.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The objective of the study was to test the effect of the omega-3 fatty acid docosahexaenoic acid (DHA) on fetal and placental development as well as the birth weight of piglets. A total of 238 multiparous sows were allocated to either a control diet group or a DHA diet group with an omega-6 to omega-3 ratio of 9.8 and 2.4, respectively, from mating to day 43 of gestation. A blood sample was collected and back fat thickness was measured prior to mating, on days 14, 42 and 112 of gestation. On day 43 of gestation, 14 sows were slaughtered and measurements of fetuses and placentas were taken. Piglets in some litters were weighed individually at farrowing. Dietary treatment did not affect fetal characteristics and back fat thickness (P > 0.05). Dietary treatment increased the plasma concentrations of total omega-3 fatty acids in sows (P < 0.05). Sows fed the DHA diet had a shorter gestation length compared to the control sows (P < 0.05), but the number of born piglets was not affected (P > 0.05). The average piglet birth weight and the within-litter variation in birthweight were unaffected by dietary DHA (P > 0.05), however, sows fed DHA diet had fewer piglets under 800 g at birth compared to control sows (P < 0.05). In conclusion, addition of DHA decreased the dietary ratio of omega-6 to omega-3 fatty acids, increased plasma n-3 fatty acid concentrations in sows and decreased the number of piglets weighing under 800 g at birth.
Collapse
Affiliation(s)
- Thomas S Bruun
- SEGES Innovation, Agro Food Park 15, 8200 Aarhus N, Denmark
| | - Anja H Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg, Denmark
| | - Emilie R Handberg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg, Denmark
| | - Jacob Dall
- Vilofoss, Ballesvej 2, 7000 Fredericia, Denmark
| | - Søren K Jensen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Esben Østrup
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg, Denmark
| | - Anja V Strathe
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
6
|
An W, Huang Z, Mao Z, Qiao T, Jia G, Zhao H, Liu G, Chen X. Dietary Taurine Supplementation Improves the Meat Quality, Muscle Fiber Type, and Mitochondrial Function of Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15331-15340. [PMID: 37801406 DOI: 10.1021/acs.jafc.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of dietary supplementation with taurine (TAU) on the meat quality, muscle fiber type, and mitochondrial function of finishing pigs. The results demonstrated that TAU significantly increased the a* value while decreasing b*45 min, L*24 h, and drip loss24 h and drip loss48 h in the longissimus dorsi (LD) muscle. Dietary supplemented with TAU reduced the content of lactate and the glycolytic potential (GP) in the LD muscle. Dietary supplemented with TAU enhanced the oxidative fiber-related gene expression as well as increased succinic dehydrogenase and malate dehydrogenase activities while reducing lactate dehydrogenase activity. Furthermore, dietary supplementation with TAU increased the contents of mtDNA and ATP and mitochondrial function-related gene expression. Moreover, TAU enhanced the mRNA expressions of calcineurin (CaN) and nuclear factor of activated T cells c1 (NFATc1) and protein expressions of CNA and NFATc1. The results indicate that dietary TAU supplementation improves meat quality and mitochondrial biogenesis and function and promotes muscle fiber-type conversion from the glycolytic fiber to the oxidative fiber via the CaN/NFATc1 pathway.
Collapse
Affiliation(s)
- Wenting An
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Tianlei Qiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
7
|
Yang W, Jiang F, Yu B, Huang Z, Luo Y, Wu A, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of Different Dietary Lipid Sources on Growth Performance, Nutrient Digestibility, and Intestinal Health in Weaned Pigs. Animals (Basel) 2023; 13:3006. [PMID: 37835612 PMCID: PMC10571906 DOI: 10.3390/ani13193006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
To investigate the effects of lipid sources on growth performance and intestinal health, 72 weaned pigs were randomly allocated to three treatments. Pigs were fed with a corn-soybean meal diet containing 2% soybean oil (SO), or fish-palm-rice oil mixture (FPRO), or coconut-palm-rice oil mixture (CPRO). The trial lasted for 28 days; blood and intestinal tissue samples were collected. The results showed that the crude fat digestibility of the FPRO group was higher than that of the SO and CPRO groups (p < 0.05). The FPRO group also had higher digestibility of dry matter, ash, and gross energy than the SO group (p < 0.05); compared to the SO group, the serum interlukin-6 (IL-6) concentration was decreased. Interestingly, the FPRO and CPRO groups had higher villus height than the SO group in the jejunum and ileum, respectively (p < 0.05). Moreover, the FPRO group had higher Lactobacillus abundance than the SO group in the colon and cecum (p < 0.05). Importantly, the expression levels of tight junction protein ZO-1, Claudin-1, and Occludin in the duodenal and ileal mucosa were higher in the FPRO group than in the SO and CPRO groups (p < 0.05). The expression levels of nutrient transporters such as the CAT-1, PepT1, FATP1, and SGLT1 were higher in the FPRO group than in the SO group (p < 0.05). The improved digestibility and intestinal epithelium functions, as well as the reduced inflammatory cytokines, in the FPRO and CPRO group suggest that a mixed lipid source such as the FPRO deserves further attention.
Collapse
Affiliation(s)
- Wenjuan Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Fei Jiang
- Singao Agribusiness Development Co., Ltd., Longyan 361000, China;
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (B.Y.); (Z.H.); (Y.L.); (A.W.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
8
|
Belhadj Slimen I, Yerou H, Ben Larbi M, M’Hamdi N, Najar T. Insects as an alternative protein source for poultry nutrition: a review. Front Vet Sci 2023; 10:1200031. [PMID: 37662983 PMCID: PMC10470001 DOI: 10.3389/fvets.2023.1200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
This review summarizes the most relevant scientific literature related to the use of insects as alternative protein sources in poultry diets. The black soldier fly, the housefly, the beetle, mealworms, silkworms, earthworms, crickets, and grasshoppers are in the spotlight because they have been identified as an important future source of sustainable animal proteins for poultry feeding. Insect meals meet poultry requirements in terms of nutritional value, essential amino acid composition, nutrient digestibility, and feed acceptance. Furthermore, they are enriched with antimicrobial peptides and bioactive molecules that can improve global health. Results from poultry studies suggest equivalent or enhanced growth performances and quality of end-products as compared to fish meal and soybean meal. To outline this body of knowledge, this article states established threads of research about the nutrient profiles and the digestibility of insect meals, their subsequent effects on the growth and laying performances of poultry as well as the quality of meat, carcass, and eggs. To fully exploit insect-derived products, the effects of insect bioactive molecules (antimicrobial peptides, fatty acids, and polysaccharides) were addressed. Furthermore, as edible insects are likely to take a meaningful position in the feed and food chain, the safety of their derived products needs to be ensured. Some insights into the current knowledge on the prevalence of pathogens and contaminants in edible insects were highlighted. Finally, the effect of insect farming and processing treatment on the nutritive value of insect larvae was discussed. Our overview reveals that using insects can potentially solve problems related to reliance on other food sources, without altering the growth performances and the quality of meat and eggs.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Houari Yerou
- Department of Agronomic Sciences, SNV Institute, Mustapha Stambouli University, Mascara, Algeria
- Laboratory of Geo Environment and Development of Spaces, Mascara University, Mascara, Algeria
| | - Manel Ben Larbi
- Higher School of Agriculture, University of Carthage, Mateur, Tunisia
| | - Naceur M’Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Taha Najar
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
9
|
Sarmiento-García A, Vieira-Aller C. Improving Fatty Acid Profile in Native Breed Pigs Using Dietary Strategies: A Review. Animals (Basel) 2023; 13:ani13101696. [PMID: 37238126 DOI: 10.3390/ani13101696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Meat from native-bred animals is growing in popularity worldwide due to consumers' perception of its higher quality than meat from industrial farms. The improvement in indigenous pork has been related to increased intramuscular and unsaturated fat and a reduced saturated fat content resulting in a healthy product with enhanced sensorial attributes. This manuscript aims to provide an overview offering useful information about the fat content and the fatty acid profile of different autochthonous pork. Fat content and fatty acid profile are greater in native than in industrial pig breeds, even though certain factors, such as genetics, nutrition, farming system, age, or slaughter weight, may influence these variations. Among that, studies on dietary strategies to improve these parameters have been evaluated. According to the results obtained, many natural ingredients could have a positive effect on the lipid profile when added to indigenous pigs' diets. This fact may promote autochthonous pork intake. Nevertheless, there is a wide range of potential natural ingredients to be added to the indigenous pig diet that needs to be evaluated.
Collapse
Affiliation(s)
- Ainhoa Sarmiento-García
- Área de Producción Animal, Departamento de Construcción y Agronomía, Facultad de Agricultura y Ciencias Ambientales, Universidad de Salamanca, Av. de Filiberto Villalobos 119, 37007 Salamanca, Spain
- Estación Tecnológica de la Carne, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Calle Filiberto Villalobos 5, 37770 Guijuelo, Spain
| | - Ceferina Vieira-Aller
- Estación Tecnológica de la Carne, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Calle Filiberto Villalobos 5, 37770 Guijuelo, Spain
| |
Collapse
|
10
|
Ibarz A, Sanahuja I, Nuez-Ortín WG, Martínez-Rubio L, Fernández-Alacid L. Physiological Benefits of Dietary Lysophospholipid Supplementation in a Marine Fish Model: Deep Analyses of Modes of Action. Animals (Basel) 2023; 13:ani13081381. [PMID: 37106944 PMCID: PMC10135010 DOI: 10.3390/ani13081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Given the hydrophilic structure of lysophospholipids (LPLs), their dietary inclusion translates into a better emulsifying capacity of the dietary components. The present study aimed to understand the mechanisms underlying the growth-promoting effect of LPL supplementation by undertaking deep analyses of the proximal intestine and liver interactomes. The Atlantic salmon (Salmo salar) was selected as the main aquaculture species model. The animals were divided into two groups: one was fed a control diet (C-diet) and the other a feed (LPL-diet) supplemented with an LPL-based digestive enhancer (0.1% AQUALYSO®, Adisseo). The LPL-diet had a positive effect on the fish by increasing the final weight by 5% and reducing total serum lipids, mainly due to a decrease in the plasma phospholipid (p < 0.05). In the intestine, the upregulated interactome suggests a more robust digestive capacity, improving vesicle-trafficking-related proteins, complex sugar hydrolysis, and lipid metabolism. In the liver, the LPL-diet promotes better nutrients, increasing several metabolic pathways. The downregulation of the responses to stress and stimuli could be related to a reduced proinflammatory state. This study on the benefits and modes of action of dietary LPLs opens a new window into fish nutrition and could be extended to other productive species.
Collapse
Affiliation(s)
- Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- IRTA, Centre de La Ràpita, Aquaculture Program, 43540 La Ràpita, Spain
| | - Waldo G Nuez-Ortín
- Adisseo, Polígono Industrial, Valle del Cinca, 8A, 22300 Barbastro, Spain
| | | | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Belanche A, Diago S, Fondevila M. Inclusion of a fish oil processing fraction as additive in diets for weaning piglets. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Dietary Betaine Interacts with Very Long Chain n-3 Polyunsaturated Fatty Acids to Influence Fat Metabolism and Circulating Single Carbon Status in the Cat. Animals (Basel) 2022; 12:ani12202837. [PMID: 36290222 PMCID: PMC9597741 DOI: 10.3390/ani12202837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The domestic cat can metabolize and thrive on a range of intakes of different dietary polyunsaturated fatty acids (PUFA). However, changes in the intake of PUFA have relatively unknown effects on concentrations of other fatty acids and metabolites. Similarly, the effect of increasing dietary betaine (which is a single carbon donor) on circulating concentrations of metabolites and fatty acids is relatively unreported. As might be expected, increasing intake of specific dietary fatty acids resulted in an increased concentration of that fatty acid and moieties containing that fatty acid. Dietary betaine increased concentration of many compounds associated with single carbon metabolism (e.g., dimethyl glycine, sarcosine, methionine) and many PUFA such as the n-6 PUFA linoleic acid (LA) and arachidonic acid (ARA) and the n-3 fatty acids α-linolenic acid (αLA), and docosahexaenoic acid (DHA). Dietary betaine interacted with the addition of dietary fish oil to dampen diet-induced increase of ARA while potentiating the increase of circulating DHA occurring with increased DHA dietary intake. Dietary betaine and fish oil also combined to reduce the circulating concentration of the renal toxin 3-indoxyl sulfate, suggesting a positive effect on the gut microbiota. These data suggest a positive effect of a daily betaine intake which exceeds 60 mg per kg body weight. The data also support an added benefit of a combined EPA+DHA daily intake of greater than 26 mg/kg body weight as well as a daily intake of 75 mg/kg body weight of alpha linolenic acid. Abstract Six foods were used to evaluate the interaction of dietary betaine and n-3 PUFA in the cat. There was no ingredient added to the control food to specifically increase betaine or n-3 fatty acids. The experimental design was a 3 × 2 factorial (fatty acids were varied from the control food which had no added source of n-3 fatty acids, flax was included as a source of 18 carbon n-3, or menhaden fish oil as a source of EPA and DHA). Foods were then formulated using these three foods as a base with added betaine or without added betaine. Forty eight cats were used in this study. Equal numbers of cats were allotted by age and gender to each of the six dietary treatments. The cats were offered food amounts to maintain weight and consumed the food to which they were assigned for the length of the study (60 days). Metabolomics, selected circulating analytes and fatty acids were analyzed at the beginning and end of the feeding period. There was an increase in single carbon metabolites (betaine, dimethyl glycine, and methionine) with the consumption of dietary betaine. Betaine also increased the concentration of specific PUFA (ARA, αLA, DHA, and the sum of all circulating PUFA). The combination of dietary betaine and fish oil resulted in a reduction of circulating 3-indoxyl sulfate which suggests a renal benefit from their combined dietary presence.
Collapse
|
13
|
Effects of Dietary Lysophospholipid Inclusion on the Growth Performance, Nutrient Digestibility, Nitrogen Utilization, and Blood Metabolites of Finishing Beef Cattle. Antioxidants (Basel) 2022; 11:antiox11081486. [PMID: 36009204 PMCID: PMC9404894 DOI: 10.3390/antiox11081486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
This study was conducted to evaluate the effect of dietary supplementation with lysophospholipids (LPLs) on the growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites of finishing beef cattle. In total, 40 Angus beef bulls were blocked for body weight (447 ± 9.64 kg) and age (420 ± 6.1 days) and randomly assigned to one of four treatments (10 beef cattle per treatment): (1) control (CON; basal diet); (2) LLPL (CON supplemented with 0.012% dietary LPL, dry matter (DM) basis); (3) MLPL (CON supplemented with 0.024% dietary LPL, DM basis); and (4) HLPL (CON supplemented with 0.048% dietary LPLs, DM basis). The results showed that dietary supplementation with LPLs linearly increased the average daily gain (p < 0.01), digestibility of DM (p < 0.01), crude protein (p < 0.01), and ether extract (p < 0.01) and decreased the feed conversion ratio (p < 0.01). A linear increase in N retention (p = 0.01) and a decrease in urinary (p = 0.04) and fecal N (p = 0.02) levels were observed with increasing the supplemental doses of LPLs. Bulls fed LPLs showed a linear increase in glutathione peroxidase (p = 0.04) and hepatic lipase (p < 0.01) activity and a decrease in cholesterol (p < 0.01), triglyceride (p < 0.01), and malondialdehyde (p < 0.01) levels. In conclusion, supplementation with LPLs has the potential to improve the growth performance, nutrient digestibility, and antioxidant status of beef cattle.
Collapse
|
14
|
Zhang M, Bai H, Zhao Y, Wang R, Li G, Zhang Y, Jiao P. Effects of supplementation with lysophospholipids on performance, nutrient digestibility, and bacterial communities of beef cattle. Front Vet Sci 2022; 9:927369. [PMID: 35942114 PMCID: PMC9356077 DOI: 10.3389/fvets.2022.927369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
An experiment was conducted to investigate the influences of supplemental lysophospholipids (LPL) on the growth performance, nutrient digestibility, and fecal bacterial profile, and short-chain fatty acids (SCFAs) of beef cattle. Thirty-six Angus beef cattle [565 ± 10.25 kg body weight (BW)] were grouped by BW and age, and randomly allocated to 1 of 3 treatment groups: (1) control (CON, basal diet); (2) LLPL [CON supplemented with 0.5 g/kg LPL, dry matter (DM) basis]; and (3) HLPL (CON supplemented with 0.75 g/kg, DM basis). The Angus cattle were fed a total mixed ration that consisted of 25% roughage and 75% concentrate (dry matter [DM] basis). The results reveal that LPL inclusion linearly increased the average daily gain (P = 0.02) and the feed efficiency (ADG/feed intake, P = 0.02), while quadratically increasing the final weight (P = 0.02) of the beef cattle. Compared with CON, the total tract digestibilities of DM (P < 0.01), ether extract (P = 0.04) and crude protein (P < 0.01) were increased with LPL supplementation. At the phylum-level, the relative abundance of Firmicutes (P = 0.05) and ratio of Firmicutes: Bacteroidetes (P = 0.04) were linearly increased, while the relative abundances of Bacteroidetes (P = 0.04) and Proteobacteria (P < 0.01) were linearly decreased with increasing LPL inclusion. At the genus-level, the relative abundances of Clostridium (P < 0.01) and Roseburia (P < 0.01) were quadratically increased, and the relative abundances of Ruminococcus was linearly increased (P < 0.01) with LPL supplementation. Additionally, increasing the dose of LPL in diets linearly increased the molar proportion of butyrate (P < 0.01) and total SCFAs (P = 0.01) concentrations. A conclusion was drawn that, as a promising feed additive, LPL promoted growth performance and nutrient digestibility, which may be associated with the change of fecal microbiome and SCFAs.
Collapse
|
15
|
Hăbeanu M, Lefter NA, Gheorghe A, Ropota M, Toma SM, Pistol GC, Surdu I, Dumitru M. Alterations in Essential Fatty Acids, Immunoglobulins (IgA, IgG, and IgM), and Enteric Methane Emission in Primiparous Sows Fed Hemp Seed Oil and Their Offspring Response. Vet Sci 2022; 9:vetsci9070352. [PMID: 35878369 PMCID: PMC9319154 DOI: 10.3390/vetsci9070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
This study shows the effects of dietary hemp seed oil on the milk composition, blood immunoglobulins (Ig), and enteric methane (E-CH4) production of primiparous sows, and their offspring’s response at three time points. A bifactorial experiment was conducted for 21 days (d) on 18 primiparous sows (195 ± 3 days old). The sows were fed two diets: (i) a control diet (SO) based on soybean oil (1.6%), with an 18.82 n-6:n-3 polyunsaturated fatty acids (PUFA) ratio; (ii) an experimental diet (HO) based on hemp seed oil (1.6%), with a 9.14 n-6:n-3 PUFA ratio. The milk contained an elevated level of linoleic acids (LA), n-3 FA, and especially alpha-linolenic acids (ALA), while the n-6:n-3 ratio declined using hemp oil. The Ig concentration was higher in colostrum than in milk. In the first few hours, the IgG in the plasma of piglets was more than double that of maternal plasma IgG (+2.39 times). A period effect (p < 0.0001) for IgG concentration in the plasma of piglets was recorded (40% at 10 d, respectively 73% lower at 21 d than 12 h after parturition). However, the sow diet did not affect Ig (p > 0.05). The frequency of diarrhoea declined after about 7 d. The value of the rate of diarrhoea was 6.2% lower in the PHO group. We found a 4.5% decline in E-CH4 in the HO group. Applying multiple linear regression, feed intake, n-6:n-3 ratio, ALA, and lean meat were potential indicators in estimating E-CH4. In conclusion, sow dietary hemp seed oil increased lean meat %, milk EFA, and milk IgM. Significant changes in the other dependent variables of interest (body weight, plasma Igs in sows and offspring, E-CH4 production) were not recorded. There was reduced diarrhoea which shows that EFA could play a therapeutic role in the incidence of diarrhoea and in lowering of E-CH4 emission in sows and progeny. All dependent variables were significantly altered at different time points, except for fat concentration in milk and sow plasma IgG.
Collapse
Affiliation(s)
- Mihaela Hăbeanu
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
- Correspondence:
| | - Nicoleta Aurelia Lefter
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Anca Gheorghe
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Mariana Ropota
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Smaranda Mariana Toma
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Gina Cecilia Pistol
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Ioan Surdu
- Mountain Economy Centre (CE-MONT), Romanian Academy “Costin C. Kiritescu” National Institute of Economic Researches, 050711 Bucharest, Romania; or
| | - Mihaela Dumitru
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| |
Collapse
|
16
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
17
|
Saleri R, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, Andrani M, Martelli P. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porcine Health Manag 2022; 8:21. [PMID: 35590351 PMCID: PMC9118747 DOI: 10.1186/s40813-022-00264-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (β-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). Results The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through β-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced β-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). Conclusions The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.
Collapse
Affiliation(s)
- Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
18
|
Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis. Genes (Basel) 2022; 13:genes13050790. [PMID: 35627174 PMCID: PMC9140874 DOI: 10.3390/genes13050790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023] Open
Abstract
Residents on the Tibetan Plateau intake a lot of yak subcutaneous fat by diet. Modern healthy diet ideas demand higher unsaturated fatty acids (UFAs), especially polyunsaturated fatty acid (PUFA) content in meat. Here, the gas chromatography (GC) and tandem mass tag (TMT) proteomic approaches were applied to explore the relationship between the proteomic differences and UFA and PUFA content in the subcutaneous fat of yaks with different sex. Compared with male yaks (MYs), the absolute contents of UFAs, monounsaturated fatty acids (MUFAs) and PUFAs in the subcutaneous fat of female yaks (FYs) were all higher (p < 0.01); the relative content of MUFAs and PUFAs in MY subcutaneous fat was higher, and the value of PUFAs/SFAs was above 0.4, so the MY subcutaneous fat is more healthy for consumers. Further studies showed the transcriptional regulation by peroxisome proliferator-activated receptor delta (PPARD) played a key role in the regulation of UFAs, especially PUFA content in yaks of different sex. In FY subcutaneous fat, the higher abundance of the downstream effector proteins in PPAR signal, including acyl-CoA desaturase (SCD), elongation of very-long-chain fatty acids protein 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid-binding protein (FABP1), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3), long-chain fatty acid CoA ligase 5 (ACSL5) and acyl-CoA-binding protein 2 (ACBP2), promoted the UFAs’ transport and synthesis. The final result was the higher absolute content of c9-C14:1, c9-C18:1, c9,c12-C18:2n-6, c9, c12, c15-C18:3n-3, c5, c8, c11, c14, c17-C20:5n-3, c4, c7, c10, c13, -c16, c19-C22:6n-3, UFAs, MUFAs and PUFAs in FY subcutaneous fat. Further, LPL, FABP1, HACD3, ACSL1 and ACBP2 were the potential biomarkers for PUFA contents in yak subcutaneous fat. This study provides new insights into the molecular mechanisms associated with UFA contents in yak subcutaneous fat.
Collapse
|
19
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
20
|
Dietary Betaine and Fatty Acids Change Circulating Single-Carbon Metabolites and Fatty Acids in the Dog. Animals (Basel) 2022; 12:ani12060768. [PMID: 35327165 PMCID: PMC8944756 DOI: 10.3390/ani12060768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
In order to evaluate the interaction of betaine and n-3 PUFA in foods consumed by the dog, six extruded dry foods were formulated. The control food had no specific source of added betaine or n-3 fatty acids, while the test foods were supplemented with betaine, flax or fish oil in a 2 × 3 factorial design (no added n-3 source, added flax, added menhaden fish oil, and all with or without added betaine). Forty eight adult dogs were used in this study. All dogs were assigned to one of the six dietary treatments and consumed that food for the length of the 60-day study. Blood was analyzed for metabolomics (plasma), fatty acids and selected health-related analytes (serum) at the beginning and the end of the study. Added dietary betaine increased single-carbon metabolites (betaine, dimethyl glycine, methionine and N-methylalanine), decreased xenobiotics (stachydrine, N-acetyl-S-allyl-L-cysteine, 4-vinylguaiacol sulfate, pyrraline, 3-indoleglyoxylic acid, N-methylpipecolate and ectoine) and enhanced the production of eicosapentaenoic acid (EPA). Dietary betaine also decreased the concentration of circulating carnitine and a number of carnitine-containing moieties. The addition of the n-3 fatty acids alpha-linolenic, EPA and docosahexaenoic acid (DHA) increased their respective circulating concentrations as well as those of many subsequent moieties containing these fatty acids. The addition of alpha-linolenic acid increased the concentration of EPA when expressed as a ratio of EPA consumed.
Collapse
|
21
|
Xia JQ, He X, Wang L, Wang L, Zhang DJ, Wang JF, Liu D. Evaluation of dietary Perilla frutescens seed on performance and carcass quality in finishing castrated male Songliao black pigs. Vet Med Sci 2022; 8:598-606. [PMID: 35014197 PMCID: PMC8959298 DOI: 10.1002/vms3.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES This study was conducted to investigate the effects of dietary supplementation of Perilla frutescens seed (PFS) on growth performance, blood profiles, meat quality and meat nutrient characteristics in finishing castrated male Songliao black pigs. METHODS A total of 80 castrated male Songliao black pigs with an average initial body weight (BW) of 84.1 ± 2.1 kg were used in a 75 days feeding trial. All pigs were randomly assigned into four dietary treatments: CON, basal diet; PFS3.0, basal diet + 3.0% of PFS; PFS6.0, basal diet + 6.0% of PFS and PFS9.0, basal diet + 9.0% of PFS. RESULTS As a result of this experiment, dietary supplementation of PFS improved the growth performance parameters, blood albumin and blood lipid parameters. Whereas, on FBW, average daily feed intake and average daily gain there showed a non-dose-dependent manner that pigs in PFS9.0 had lowest performance compared with other two PFS treatments. Furthermore, meat colour of yellowness, pH, cook meat rate, moisture, crude protein and crude fat were increased by PFS addition. However, lower growth performance was observed in PFS9.0 group. As well as, dietary inclusion of PFS also alters the meat amino acid composition and meat fatty acids composition. Particularly, umami amino acid contents and polyunsaturated fatty acid were all enhanced by PFS addition. CONCLUSIONS In summary, dietary supplementation of PFS have beneficial effects on the performance and meat quality and nutritional values in Songliao black pigs.
Collapse
Affiliation(s)
- Ji Qiao Xia
- College of Animal Science and TechnologyInstitute of Animal NutritionNortheast Agricultural UniversityHarbinChina
- Laboratory of Animal Husbandry and VeterinaryDaxing'anling Academy of Agriculture and Forestry SciencesDaxing'anlingHeilongjiangChina
| | - XinMiao He
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHeilongjiang Academy of Agricultural SciencesAnimal Husbandry Research InstituteHarbinChina
| | - Lan Wang
- Laboratory of Animal Husbandry and VeterinaryDaxing'anling Academy of Agriculture and Forestry SciencesDaxing'anlingHeilongjiangChina
| | - Liang Wang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHeilongjiang Academy of Agricultural SciencesAnimal Husbandry Research InstituteHarbinChina
| | - Dong Ji Zhang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHeilongjiang Academy of Agricultural SciencesAnimal Husbandry Research InstituteHarbinChina
| | - Ji Feng Wang
- Laboratory of Animal Husbandry and VeterinaryDaxing'anling Academy of Agriculture and Forestry SciencesDaxing'anlingHeilongjiangChina
| | - Di Liu
- College of Animal Science and TechnologyInstitute of Animal NutritionNortheast Agricultural UniversityHarbinChina
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureHeilongjiang Academy of Agricultural SciencesAnimal Husbandry Research InstituteHarbinChina
| |
Collapse
|
22
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
23
|
Arjin C, Souphannavong C, Norkeaw R, Chaiwang N, Mekchay S, Sartsook A, Thongkham M, Yosen T, Ruksiriwanich W, Sommano SR, Sringarm K. Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles. Animals (Basel) 2021; 11:ani11113213. [PMID: 34827945 PMCID: PMC8614306 DOI: 10.3390/ani11113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to determine the effect of perilla cake (PC) supplementation in a growing pig diet on overall growing performance, meat quality, and fatty acid profile. A total of 24 barrow grower crossbred pigs (Large White × Landrace) × Duroc with an initial average body weight of 26.33 kg were fed with a basal diet supplemented with PC at 0%, 5%, and 10% in (PC0, PC5, and PC10, respectively) for 12 weeks. At the end of the experimental period, pigs were slaughtered to determine carcass traits and meat quality. Back fat, abdominal fat, and longissimus dorsi (LD) muscle were collected to investigate fatty acid composition. The results show that the average daily gain (ADG) in the PC10 significantly increased. However, PC supplementation did not influence carcass traits and meat quality except the color as described by lightness (L*). Dietary PC supplementation significantly increased the α-linolenic acid (ALA, C18:3 cis-9, 12, 15), whereas n6/n3 ratio decreased significantly in all tissues investigated. Thus, it can be concluded that the supplementation of PC in growing pig diet is a potential way to increase the fatty acid composition to that required for healthier meat.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
| | - Chanmany Souphannavong
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
| | - Rakkiat Norkeaw
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
| | - Niraporn Chaiwang
- Department of Agricultural Technology and Development, Faculty of Agricultural Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand;
| | - Supamit Mekchay
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (W.R.); (S.R.S.)
| | - Apinya Sartsook
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
| | - Maninphan Thongkham
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
| | - Thanchanok Yosen
- Central Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warintorn Ruksiriwanich
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (W.R.); (S.R.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (W.R.); (S.R.S.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (C.S.); (R.N.); (S.M.); (A.S.); (M.T.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (W.R.); (S.R.S.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
24
|
Kim K, He Y, Jinno C, Kovanda L, Li X, Song M, Liu Y. Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. J Anim Sci 2021; 99:6159787. [PMID: 33693730 DOI: 10.1093/jas/skab073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
The experiment was conducted to investigate the effects of trace amounts of antibiotic on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli. Weaned pigs (n = 34, 6.88 ± 1.03 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of the three dietary treatments: nursery basal diet (CON) and two additional diets supplemented with 0.5 or 50 mg/kg carbadox to the nursery basal diet (TRA or REC), respectively. The experiment lasted 18 d with 7 d before and 11 d after the first E. coli inoculation. The E. coli F18 inoculum was orally provided to all pigs with a dose of 1010 colony-forming unit (CFU)/3 mL for three consecutive days. Fecal and blood samples were collected on day 0 before inoculation and days 2, 5, 8, and 11 postinoculation (PI) to test the percentage of β-hemolytic coliforms in total coliforms and complete blood cell count, respectively. Sixteen pigs were euthanized on day 5 PI, whereas the remaining pigs were euthanized at the end of the experiment to collect the jejunal and ileal mucosa and mesenteric lymph node for gene expression and bacterial translocation, respectively. Pigs in REC had greater (P < 0.05) final BW and lower (P < 0.05) overall frequency of diarrhea compared with pigs in the CON and TRA groups. Pigs in TRA had the lowest (P < 0.05) average daily gain and feed efficiency from day 0 to 5 PI, highest (P < 0.05) percentage of β-hemolytic coliforms in fecal samples on days 2 and 5 PI, and greatest (P < 0.05) bacterial colonies in mesenteric lymph nodes on day 11 PI compared with pigs in the CON and REC groups. Pigs in TRA had the greatest (P < 0.05) neutrophils on day 5 PI and higher (P < 0.05) white blood cell counts and lymphocytes than other groups on day 11 PI. Pigs in TRA had the greatest (P < 0.05) serum C-reactive protein on days 2 and 5 PI and serum tumor necrosis factor-α on day 5 PI, compared with pigs in the CON and REC groups. Pigs fed REC had increased (P < 0.05) mRNA expression of zona occludens-1 (ZO-1) and occludin (OCDN) and reduced (P < 0.05) interleukin-1 beta (IL1B), interleukin-6 (IL6), and tumor necrosis factor-alpha (TNFA) in ileal mucosa on day 5 PI, compared with the CON, whereas TRA upregulated (P < 0.05) mRNA expression of IL1B, IL6, and cyclooxygenase-2 (COX2) in the ileal mucosa on day 11 PI, compared with the REC. In conclusion, trace amounts of antibiotic may exacerbate the detrimental effects of E. coli infection on pig performance by increasing diarrhea and systemic inflammation of weanling pigs.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Yijie He
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
Direct Conversion of Food Waste Extract into Caproate: Metagenomics Assessment of Chain Elongation Process. Microorganisms 2021; 9:microorganisms9020327. [PMID: 33562834 PMCID: PMC7915914 DOI: 10.3390/microorganisms9020327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
In a circular economy strategy, waste resources can be used for the biological production of high added-value substances, such as medium chain fatty acids (MCFAs), thus minimising waste and favouring a sustainable process. This study investigates single-stage fermentation processes for the production of MCFAs in a semi-continuous reactor treating the extract of real food waste (FW), without the addition of external electron donors. Two sequential acidogenic fermentation tests were carried out at an organic loading rate (OLR) of 5 and 15 gCOD L−1d−1 with a hydraulic retention time of 4 days and pH controlled at 6 ± 0.2. The highest level of caproate (4.8 g L−1) was observed at OLR of 15 gCOD L−1d−1 with a microbiome mainly composed by lactate-producing Actinomyces, Atopobium, and Olsenella species and caproate-producing Pseudoramibacter. Metagenomic analysis revealed the presence of key enzymes for the production of lactate, such as lactate dehydrogenase and pyruvate ferredoxin oxidoreductase, as well as several enzymes involved in the reverse β-oxidation pathway, thus suggesting the occurrence of a lactate-based chain elongation process.
Collapse
|
26
|
Effect of Dietary Medium-Chain α-Monoglycerides on the Growth Performance, Intestinal Histomorphology, Amino Acid Digestibility, and Broiler Chickens' Blood Biochemical Parameters. Animals (Basel) 2020; 11:ani11010057. [PMID: 33396850 PMCID: PMC7823994 DOI: 10.3390/ani11010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The addition of biologically active materials to animal feed is a very recent topic regarding antibiotic alternatives. This study inspected the influence of graded levels of medium-chain α-monoglycerides, glycerol monolaurate (GML) on the growth performance, apparent ileal digestibility coefficient (AID%) of amino acids, and intestinal histomorphology of broiler chickens. Broiler chickens (76.82 g ± 0.40, n = 200) were fed on four experimental diets that were complemented with 0; 1; 3; or 5 g kg−1 glycerol monolaurate (GML0; GML1; GML3; and GML5). The findings suggested that glycerol monolaurate supplementation can improve the immune status and intestinal histomorphology of broiler chickens with no improving effect on the growth performance. Abstract This trial was conducted to assess the impact of medium-chain α-monoglycerides, glycerol monolaurate (GML) supplementation on the growth performance, apparent ileal digestibility coefficient (AID%) of amino acids, intestinal histomorphology, and blood biochemical parameters of broiler chickens. Three-day-old chicks (76.82 g ± 0.40, n = 200) were haphazardly allocated to four experimental groups with five replicates for each (10 chicks/replicate). The treatments consisted of basal diets supplemented with four glycerol monolaurate levels; 0, 1, 3, or 5 g kg−1 (GML0, GML1, GML3, and GML5, respectively). Growth performance was determined at three periods (starter, grower, and finisher). Dietary GML had no significant effect on the growth performance parameters (body weight, weight gain, and feed conversion ratio) through all the experimental periods. GML1 diet increased the AID% of leucine and decreased the AID% of arginine. GML1 diet increased the duodenal and jejunal villous height and the jejunal muscle thickness. GML3 and GML5 diets increased the goblet cell count in the duodenum. GML supplementation increased the serum level of high density lipoprotein (HDL)-cholesterol. GML5 diet increased the serum levels of IgM and interleukin 10 compared to the control group. We could conclude that dietary supplementation of glycerol monolaurate can supplement broiler chicken diets up to 5 g kg−1 to enhance the immune status and intestinal histomorphology of birds with no improving effect on growth performance.
Collapse
|
27
|
Coated omega-3 fatty acid from linseed oil positively affect sow immunoglobulin G concentration and pre-weaning performance of piglet. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Dietary Supplementation of Inorganic, Organic, and Fatty Acids in Pig: A Review. Animals (Basel) 2020; 10:ani10101740. [PMID: 32992813 PMCID: PMC7600838 DOI: 10.3390/ani10101740] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The role of acids in pig feed strategies has changed from feed acidifier and preservative to growth promoter and antibiotics substitute. Since the 2006 European banning of growth promoters in the livestock sector, several feed additives have been tested with the goal of identifying molecules with the greatest beneficial antimicrobial, growth-enhancing, or disease-preventing abilities. These properties have been identified among various acids, ranging from inexpensive inorganic acids to organic and fatty acids, and these have been widely used in pig production. Acids are mainly used during the weaning period, which is considered one of the most critical phases in pig farming, as well as during gestation, lactation, and fattening. Such supplementation generally yields improved growth performance and increased feed efficiency; these effects are the consequences of different modes of action acting on the microbiome composition, gut mucosa morphology, enzyme activity, and animal energy metabolism. Abstract Reduction of antibiotic use has been a hot topic of research over the past decades. The European ban on growth-promoter use has increased the use of feed additivities that can enhance animal growth performance and health status, particularly during critical and stressful phases of life. Pig farming is characterized by several stressful periods, such as the weaning phase, and studies have suggested that the proper use of feed additives during stress could prevent disease and enhance performance through modulation of the gastrointestinal tract mucosa and microbiome. The types of feed additive include acids, minerals, prebiotics, probiotics, yeast, nucleotides, and phytoproducts. This review focuses on commonly used acids, classified as inorganic, organic, and fatty acids, and their beneficial and potential effects, which are widely reported in the bibliography. Acids have long been used as feed acidifiers and preservatives, and were more recently introduced into feed formulated for young pigs with the goal of stabilizing the stomach pH to offset their reduced digestive capacity. In addition, some organic acids represent intermediary products of the tricarboxylic acid cycle (TCA), and thus could be considered an energy source. Moreover, antimicrobial properties have been exploited to modulate microbiota populations and reduce pathogenic bacteria. Given these potential benefits, organic acids are no longer seen as simple acidifiers, but rather as growth promoters and potential antibiotic substitutes owing to their beneficial action on the gastrointestinal tract (GIT).
Collapse
|
29
|
Sarjit A, Ravensdale JT, Coorey R, Fegan N, Dykes GA. Salmonella survival after exposure to heat in a model meat juice system. Food Microbiol 2020; 94:103628. [PMID: 33279093 DOI: 10.1016/j.fm.2020.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
The effect of heat against eleven Salmonella strains in model meat juices was examined. Juices from beef, lamb and goat were made from either the fatty layer (FL), muscle (M) or a mixture of both (FLM). The pH of each FLM sample was altered to match the pH of PBS and vice versa to determine the pH effect on the survival of Salmonella against the effect of heat. Salmonella were exposed to either gradual heating to 70 °C in FLM, M and FL or heat shock at 70 °C for 5 min in FLM. Fat, fatty acid profile and iron content of the juices were determined. Gradual heat treatment significantly (p ≤ 0.05) reduced Salmonella as compared to the untreated controls (~1.92-7.61 log CFU ml-1) while heat shock significantly (p ≤ 0.05) reduced Salmonella as compared to the untreated controls (~5.80-7.36 log CFU ml-1). Survival of Salmonella was higher in lamb juices than other juices. The fat content in lamb FL (3.25%) was significantly higher (p ≤ 0.05) than beef (1.30%) and goat FL (1.42%). Iron content in lamb FLM (~127 mg kg-1) was significantly (p ≤ 0.05) lower than beef (~233 mg kg-1) and goat FLM (~210 mg kg-1). The omega 6 and linoleic acid content in goat FLM (~36.0% and ~34.4%) was significantly higher (p ≤ 0.05) than beef (~29.1% and ~27.1%). Fat, fatty acids and iron may differentially protect Salmonella against the effect of heat in these juices.
Collapse
Affiliation(s)
- Amreeta Sarjit
- School of Public Health, Curtin University, Bentley, Western Australia, Australia; CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | - Joshua T Ravensdale
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
30
|
Roszkos R, Tóth T, Mézes M. Review: Practical Use of n-3 Fatty Acids to Improve Reproduction Parameters in the Context of Modern Sow Nutrition. Animals (Basel) 2020; 10:ani10071141. [PMID: 32640618 PMCID: PMC7401659 DOI: 10.3390/ani10071141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary The use of n-3 fatty acids could have many favourable aspects considering the nutrition of mammals, as can be seen from studies carried out on humans or livestock animals. Concerning large-scale pig farms, the reproduction performance could be made more balanced at a high level by enhancing efficacy and decreasing the ecological footprint of pork production. In this review, we attempt to identify specific periods in the sow production cycle in which the feeding of n-3 fatty acids returns an investment, in addition to demonstrating the importance of the dosage and proportion of n-6 and n-3 fatty acids, originating from different nutritional sources. Abstract The effects of long-chain polyunsaturated fatty acids (LC PUFAs) have been frequently investigated in sows because the profitability of pig production depends mainly on reproduction performance. In feeding trials, different sources and doses of n-3 PUFAs-rich feeds were used with various breeds and stages of production; however, a discrepancy in the response of n-3 PUFAs on sow reproduction has been observed. According to the results of the previous studies, n-3 fatty acids can postpone the time of parturition, decreasing the synthesis of prostaglandins, which are necessary for uterus contraction during labour. These effects could also be useful during the post-weaning period when low prostaglandin levels are indispensable for embryo survival. The n-3 fatty acids fed during the lactation period secreted in milk, may improve piglet performance. In this review, we will focus on the contradictory results of previous studies concerning practical swine nutrition. The main purpose of the review is to highlight those periods of swine breeding when the use of n-3 fatty acids may be advantageous in case of the deficiency of these essential nutrients. In finding the appropriate dose of n-3 PUFAs in terms of sow nutrition, the n-6 PUFAs levels in the given feeds must be taken into account to ensure that there are no significant reductions in the final n-6/n-3 ratio. Despite the numerous previous field trials, there are no current feeding recommendations available for PUFAs in swine nutrition. Hence, more research is required in different practical feeding situations to certify the assumptions and conclusions of this review.
Collapse
Affiliation(s)
- Róbert Roszkos
- Department of Nutrition, Szent István University, 2103 Gödöllő, Hungary;
- ADEXGO Ltd., 8230 Balatonfüred, Hungary;
- Correspondence:
| | - Tamás Tóth
- ADEXGO Ltd., 8230 Balatonfüred, Hungary;
| | - Miklós Mézes
- Department of Nutrition, Szent István University, 2103 Gödöllő, Hungary;
| |
Collapse
|
31
|
Cutler R, Gleeson B, Page S, Norris J, Browning G. Antimicrobial prescribing guidelines for pigs. Aust Vet J 2020; 98:105-134. [PMID: 32281105 DOI: 10.1111/avj.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 01/16/2023]
|
32
|
Sun HY, Yun HM, Kim IH. Effects of dietary n-6/n-3 polyunsaturated fatty acids ratio on growth performance, apparent digestibility, blood lipid profiles, fecal microbiota, and meat quality in finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of dietary omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid (PUFA) ratios on growth performance, digestibility, blood lipid profiles, fecal microbial counts, and meat quality in finishing pigs were examined by using linseed and fish oil. A total of 140 crossbred finishing pigs [(Landrace × Yorkshire) × Duroc] were used in a 10 wk trial. Pigs were blocked based on body weight (BW) and sex and randomly allotted to four dietary treatments formulated to have n-6/n-3 ratios of 5/1, 10/1, 15/1, and 17/1 (control). Throughout the experiment, BW, average daily gain, and average daily feed intake were significantly (P < 0.05) increased with a decreased ratio of n-6/n-3 PUFA. Energy digestibility and fecal Lactobacillus count showed a linear (P < 0.05) increase in week 10. The high-density lipoprotein cholesterol and blood triglyceride concentrations increased (P < 0.1) during week 10. However, low-density lipoprotein cholesterol was reduced (P < 0.05) linearly during week 5 and week 10 with a reduction in dietary n-6/n-3 ratio. This study provides a basis for future research on altering n-6/n-3 ratio by using linseed oil and refined fish oil in finishing pigs.
Collapse
Affiliation(s)
- Hao Yang Sun
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| |
Collapse
|
33
|
Sundaram TS, Giromini C, Rebucci R, Baldi A. Omega-3 Polyunsaturated Fatty Acids Counteract Inflammatory and Oxidative Damage of Non-Transformed Porcine Enterocytes. Animals (Basel) 2020; 10:ani10060956. [PMID: 32486441 PMCID: PMC7341267 DOI: 10.3390/ani10060956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Farm animals frequently suffer from chronic inflammatory diseases due to certain physiological or pathophysiological conditions such as weaning, the periparturient period and infections. Traditionally, antibiotics were added to animal diets to counteract inflammation and enhance growth. However, this leads to the emergence of antibiotic-resistant bacterial species which causes potential health hazards. Over several decades, omega-3 polyunsaturated fatty acids have been known to exhibit a multitude of beneficial effects in animal health and are regarded as a functional food with therapeutic potential. We accessed the bioactivity of omega-3 polyunsaturated fatty acids as eicosapentaenoic acid and docosahexaenoic acid in pig intestinal epithelium under different stress conditions in an in vitro set-up. Our results demonstrated the proliferative and cytoprotective properties of the two fatty acids, which are fundamental to determining the cellular mechanism for efficient utilization in pig diets. Abstract Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25–50 μM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134 Milan, Italy; (C.G.); (R.R.); (A.B.)
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181 Košice, Slovakia
- Correspondence: ; Tel.: +421-951335387
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134 Milan, Italy; (C.G.); (R.R.); (A.B.)
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134 Milan, Italy; (C.G.); (R.R.); (A.B.)
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134 Milan, Italy; (C.G.); (R.R.); (A.B.)
| |
Collapse
|
34
|
Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020; 11:44. [PMID: 32337029 PMCID: PMC7178611 DOI: 10.1186/s40104-020-00446-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ongoing challenges in the swine industry, such as reduced access to antibiotics and virus outbreaks (e.g., porcine epidemic diarrhea virus, African swine fever virus), have prompted calls for innovative feed additives to support pig production. Medium-chain fatty acids (MCFAs) and monoglycerides have emerged as a potential option due to key molecular features and versatile functions, including inhibitory activity against viral and bacterial pathogens. In this review, we summarize recent studies examining the potential of MCFAs and monoglycerides as feed additives to improve pig gut health and to mitigate feed pathogens. The molecular properties and biological functions of MCFAs and monoglycerides are first introduced along with an overview of intervention needs at different stages of pig production. The latest progress in testing MCFAs and monoglycerides as feed additives in pig diets is then presented, and their effects on a wide range of production issues, such as growth performance, pathogenic infections, and gut health, are covered. The utilization of MCFAs and monoglycerides together with other feed additives such as organic acids and probiotics is also described, along with advances in molecular encapsulation and delivery strategies. Finally, we discuss how MCFAs and monoglycerides demonstrate potential for feed pathogen mitigation to curb disease transmission. Looking forward, we envision that MCFAs and monoglycerides may become an important class of feed additives in pig production for gut health improvement and feed pathogen mitigation.
Collapse
Affiliation(s)
- Joshua A Jackman
- 1School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - R Dean Boyd
- Hanor Company, Franklin, KY 42134 USA.,3North Carolina State University, Raleigh, NC 27695 USA
| | - Charles C Elrod
- Natural Biologics Inc., Newfield, NY 14867 USA.,5Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
35
|
Ren C, Wang Y, Lin X, Song H, Zhou Q, Xu W, Shi K, Chen J, Song J, Chen F, Zhang S, Guan W. A Combination of Formic Acid and Monolaurin Attenuates Enterotoxigenic Escherichia coli Induced Intestinal Inflammation in Piglets by Inhibiting the NF-κB/MAPK Pathways with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4155-4165. [PMID: 32202779 DOI: 10.1021/acs.jafc.0c01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study determined the potential of formic acid plus monolaurin (FA + ML) as an alternative to antibiotics in diet when piglets are challenged with ETEC. Piglets fed the FA + ML diet had lower fecal score and rectal temperature after the ETEC challenge. In addition, FA + ML supplementation induced lower plasma TNF-α, IL-6, and IL-1β concentration postchallenge, downregulated the mRNA expression of TNF-α, IL-1β, IL-6, and TLR4 in the ileum and TLR4 and CFTR in the jejunum. Phosphorylation levels of NF-κB p65 and MAPK p38 were reduced in the ileum of piglets fed FA + ML diet. Supplementation of FA + ML increased the relative abundance of genera Lactobacillus especially Lactobacillus amylovorus species and decreased the genus abundances of Actinobacillus, unidentified Enterobacteriaceae, Moraxella. Collectively, the combination of formic acid and monolaurin in diets have the potential to be an antibiotic alternative to mitigate inflammatory response in piglets challenged with ETEC.
Collapse
Affiliation(s)
- Chunxiao Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yijiang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanqing Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wan Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kui Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junshuai Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Thomas LL, Woodworth JC, Tokach MD, Dritz SS, DeRouchey JM, Goodband RD, Williams HE, Hartman AR, Mellick DJ, McKilligan DM, Jones AM. Evaluation of different blends of medium-chain fatty acids, lactic acid, and monolaurin on nursery pig growth performance . Transl Anim Sci 2020; 4:txaa024. [PMID: 32705023 DOI: 10.1093/tas/txaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
A total of 710 pigs (Line 400 × 200, DNA, Columbus, net energy (NE)) were used in two experiments (Exp. 1: initially, 6.3 ± 0.05 kg; Exp. 2: initially, 6.8 ± 0.05 kg) to evaluate the effects of two medium-chain fatty acid (MCFA) based products on nursery pig growth performance. Following their arrival at the nursery facility, pigs were randomized to pens (five pigs per pen) and allowed a 4-d acclimation period. Thereafter, pens of pigs were blocked by initial weight and randomized to dietary treatment. In Exp. 1, the dietary treatments were a dose titration of: 0%, 0.5%, 1.0%, or 2.0% MCFA-based additive, as well as a diet including 1.0% MCFA from a 1:1:1 blend of C6:0, C8:0, and C10:0. In Exp.2, dietary treatments consisted of a basal diet containing no MCFA (control), the control diet with a 1.0% inclusion of four different blends of MCFA, lactic acid, and monolaurin or a diet with 1.0% added MCFA (a 1:1:1 blend of C6:0, C8:0, and C10:0). The four blends consisted of 50% C6:0, 20% lactic acid, and increasing levels of monolaurin (0%, 10%, 20%, and 30%) at the expense of C12:0 (30%, 20%, 10%, and 0%). Treatment diets were formulated and manufactured in two dietary phases. Data were analyzed as a randomized complete block design with pen as the experimental unit. In Exp. 1, overall (days 0-34), increasing CaptiSURE increased (linear, P ≤ 0.014) average daily gain (ADG) and average daily feed intake (ADFI). Feed efficiency improved (quadratic, P = 0.002) with increasing CaptiSURE up to 1.0% of the diet with no benefit thereafter. There was no evidence for differences between pigs fed 1.0% CaptiSURE and pigs fed the 1.0% MCFA blend of C6:0, C8:0, and C10:0. In Exp. 2, overall (days 0-35), pigs fed the 1.0% 1:1:1 MCFA blend had increased (P < 0.034) ADFI and ADG resulting in 0.9 kg greater final weight (P = 0.014) compared with the control group. There was no evidence that the mean performance of pigs fed the four blends of MCFA, lactic acid, and monolaurin were different from the pigs fed the control diet. In summary, the addition of a 1.0% 1:1:1 blend of C6:0, C8:0, and C10:0 in nursery pig diets improved ADG, ADFI, and gain to feed ratio (G:F) compared with pigs fed the control diet. In addition, providing nursery pigs with the MCFA product CaptiSURE, up to 2% of the diet, resulted in linear improvements in ADG and ADFI. Altering the C12:0 to monolaurin ratio and adding lactic acid did not improve growth performance compared with pigs fed the control diet.
Collapse
Affiliation(s)
- Lori L Thomas
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Hayden E Williams
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Ashley R Hartman
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | | | | | |
Collapse
|
37
|
Long S, He T, Liu L, Piao X. Dietary mixed plant oils supplementation improves performance, serum antioxidant status, immunoglobulin and intestinal morphology in weanling piglets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Huang J, Zhang W, Fan R, Liu Z, Huang T, Li J, Du T, Xiong T. Composition and functional diversity of fecal bacterial community of wild boar, commercial pig and domestic native pig as revealed by 16S rRNA gene sequencing. Arch Microbiol 2020; 202:843-857. [PMID: 31894392 DOI: 10.1007/s00203-019-01787-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
The bacterial community in mammalian gastrointestinal tract is abundant and complex. To date, little is known about the gut microbiota of wild boar. This study aimed to investigate the fecal bacterial diversity of wild boar and compare with commercial pig and domestic native pig. The diet composition showed that the diets of wild boar, commercial pig and domestic native pig were different from each other. More than 1,760,000 quality-filtered sequences were obtained, and the results revealed distinct compositions and diversity of fecal microbiota in three groups. PCoA and NMDS analyses showed that fecal bacterial communities of wild boar, commercial pig and domestic native pig formed distinctly different clusters. Although the three groups shared a large size of OTUs comprising a core microbiota community, a strong distinction existed at family and genus levels. Ruminococcaceae, Prevotellaceae and Christensenellaceae were more abundant in the feces of wild boar than in domestic native pig and commercial pig. At the genus level, the proportion of unidentified Christensenellaceae was remarkably higher in wild boar group, while commercial pig and domestic native pig group had a higher abundance of Streptococcus and Lactobacillus. Tax4Fun predictions of metagenome function showed statistically significant differences in the functions of fecal microbiota in three groups. There were more bacteria genes with amino acid metabolism, cell growth and death, cell motility, energy metabolism, immune system and environmental adaptation observed in wild boar feces, while commercial pig feces contained more bacteria genes with carbohydrate metabolism, drug resistance, aging, infectious diseases, lipid metabolism, endocrine and metabolic diseases. These results indicated that the fecal microbial ecosystem of the wild boar is significantly different from that of domestic native pig and commercial pig, suggesting that diet is an important factor leading to differences in bacterial abundance and diversity in feces.
Collapse
Affiliation(s)
- Jinqing Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Wenjuan Zhang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Rong Fan
- Institute of Bioprocess and Pharmaceutical Technology, University of Applied Sciences, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Zhanggen Liu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Junyi Li
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Tonghao Du
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China. .,School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.
| |
Collapse
|
39
|
Corino C, Modina SC, Di Giancamillo A, Chiapparini S, Rossi R. Seaweeds in Pig Nutrition. Animals (Basel) 2019; 9:E1126. [PMID: 31842324 PMCID: PMC6940929 DOI: 10.3390/ani9121126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/23/2023] Open
Abstract
Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown algae, red algae and green algae, which all have a different chemical composition and bioactive molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans. These bioactive compounds may have several positive effects on health in livestock. In order to reduce the antimicrobials used in livestock, research has recently focused on finding natural and sustainable molecules that boost animal performance and health. The present study thus summarizes research on the dietary integration of seaweeds in swine. In particular the influence on growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities were considered. The review highlights that brown seaweeds seem to be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit further investigation.
Collapse
Affiliation(s)
- Carlo Corino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Silvia Clotilde Modina
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Alessia Di Giancamillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Sara Chiapparini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| |
Collapse
|
40
|
The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning. Animals (Basel) 2019; 9:ani9121092. [PMID: 31817675 PMCID: PMC6940877 DOI: 10.3390/ani9121092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
This study investigated the effect of salmon oil in lactating sow diets and offering these diets in a phased dietary regimen to increase the energy density of the diet in late lactation. Sow and piglet productivity to weaning, the fatty acid profile of milk, piglet blood and tissues at weaning were the main parameters measured. Multiparous sows (n = 100) (Landrace × Large White) were offered dietary treatments from day 105 of gestation until weaning. Dietary treatments (2 × 2 factorial) included oil type (soya or salmon oil) and dietary regimen (Flat 14.5 MJ/kg DE diet offered until weaning or Phased 14.5 MJ/kg DE diet offered to day 14 of lactation then a second diet containing 15.5 MJ/kg DE offered from day 15 until weaning). Salmon oil inclusion increased the total proportion of n-3 fatty acids in colostrum (p < 0.001), milk (p < 0.001), piglet plasma (p < 0.01), adipose (p < 0.001), liver (p < 0.001) and muscle (p < 0.001). Increasing sow dietary energy level in late lactation increased the total n-3 fatty acids in milk (p < 0.001), piglet adipose (p < 0.01) and piglet muscle (p < 0.05). However, piglet growth to weaning did not improve.
Collapse
|
41
|
Han W, He P, Shao L, Lü F. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. J Environ Sci (China) 2019; 86:50-64. [PMID: 31787190 DOI: 10.1016/j.jes.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.
Collapse
Affiliation(s)
- Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Liming Shao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
42
|
Abdel Maksoud Hussein, Mahfouz Khaid Mohamed, Afaf Abd Elmagid Desoky, Yomna Hegazy. Biochemical evaluation of antibacterial activity of short and medium chain fatty acids in broiler. GSC ADVANCED RESEARCH AND REVIEWS 2019; 1:010-016. [DOI: 10.30574/gscarr.2019.1.1.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The objective of the present study was to evaluate the antimicrobial effect of short and medium fatty acid chain. Total number of 2000 Cobb broiler chicks (mixed sexes) were commercially purchased from EL Dakahlia poultry company that were 1d old were reared up to 40d of age. Corn and soybean meal based starter and grower diet were supplemented. Chicken were randomly divided in to two main group, 1st group act as normal control, 2nd group was add C12( mixed short and medium fatty acid) in drinking water for 3 day each 8 day at 11, 22 and 33 days age. Blood sample were collected before and after taking C12 treatment for biochemical examination. Supplementation of C12 caused decrease in serum level of AST, ALT, glucose, cholesterol, triglyceride, and pro-inflammatory cytokines as IL-6, increase HDL and total protein. Evaluation of antimicrobial activity of C12.
Collapse
Affiliation(s)
| | | | | | - Yomna Hegazy
- Biochemistry and Clinical Biochemistry Department, Benha University, Egypt
| |
Collapse
|
43
|
Sun HY, Kim IH. Evaluation of an emulsifier blend on growth performance, nutrient digestibility, blood lipid profiles, and fecal microbial in growing pigs fed low energy density diet. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Liu H, Cao X, Wang H, Zhao J, Wang X, Wang Y. Antimicrobial peptide KR-32 alleviates Escherichia coli K88-induced fatty acid malabsorption by improving expression of fatty acid transporter protein 4 (FATP4)1. J Anim Sci 2019; 97:2342-2356. [PMID: 30958881 DOI: 10.1093/jas/skz110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
Bacterial infection causes nutrient malabsorption in small intestine. KR-32, a kind of synthetic antimicrobial peptide, has the bacteriostatic effect. In the present study, 2 experiments were designed to analyze the effects of KR-32 on fat absorption of piglets with or without Escherichia coli infection. In Exp. 1, 12 weaning piglets (21 d old) were allocated to 2 groups: piglets with an intraperitoneal (i.p.) injection of antimicrobial peptide KR-32 (APK) and piglets with an i.p. injection of an equivalent volume (1 mL) of phosphate-buffered saline (PBS) (CON-1). Results showed that after 7 d of growth, KR-32 did not significantly change growth performance and apparent total tract digestibility (ATTD) of feed nutrients of normal pigs. To confirm whether KR-32 affects those of enterotoxigenic Escherichia coli (ETEC) K88-challenged pigs, we performed Exp. 2, in which 18 piglets (28 d old) were divided into the following 3 groups: 1) piglets orally challenged with 1 × 1010 cfu ETEC K88 on day 1 followed by an i.p. injection of 0.6 mg/kg KR-32 (K88 + APK); 2) piglets orally challenged with 1 × 1010 cfu ETEC K88 on day 1 followed by an i.p. injection of an equivalent volume (1 mL) of PBS (K88); and 3) piglets with an oral administration of fresh Luria-Bertani broth (50 mL) followed by an i.p. injection of an equivalent volume of PBS (CON-2). Results showed that ETEC K88 challenge led to poor ADFI, ADG, and G:F in piglets; decreased ATTD of feed nutrients, especially CP and ether extract (EE); and intestinal morphology disorder. After i.p. injection of KR-32, ADG and ATTD of CP and EE were greatly increased, G:F was significantly reduced (P < 0.05), and, especially, ATTD of EE returned to a normal level compared with group CON-2. Fatty acid absorption also highly increased after KR-32 injection. Then we focused on fat digestion and fatty acid uptake. The pH in the intestine and pancreas lipase showed no difference among the 3 treatment groups, whereas fatty acid transporter protein 4 (FATP4) expression was remarkably improved (P < 0.05) and the epithelial barrier was recovered after i.p. injection of KR-32. In conclusion, KR-32, given to ETEC K88-challenged piglets, improved growth performance, ATTD of EE, fatty acid absorption, and intestinal morphology, which indicated that KR-32 was likely to improve the expression of FATP4 and by repairing the epithelial barrier, thereby alleviating fatty acid malabsorption.
Collapse
Affiliation(s)
- Heyuan Liu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaoxuan Cao
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hong Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jian Zhao
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xinxia Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
45
|
Abd El-Naby AS, Khattaby AERA, Samir F, Awad SM, Abdel-Tawwab M. Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Ros-Santaella JL, Kotrba R, Pintus E. High-energy diet enhances spermatogenic function and increases sperm midpiece length in fallow deer ( Dama dama) yearlings. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181972. [PMID: 31312478 PMCID: PMC6599764 DOI: 10.1098/rsos.181972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Nutrition is a major factor involved in the sexual development of livestock ruminants. In the male, a high-energy diet enhances the reproductive function, but its effects on the underlying processes such as spermatogenic efficiency are not yet defined. Moreover, the possible changes in sperm size due to a supplemented diet remain poorly investigated. The main goal of this study was to evaluate whether a high-energy diet affects the spermatogenic activity, epididymal sperm parameters (concentration, morphology, morphometry and acrosome integrity) and blood testosterone levels in fallow deer yearlings. For this purpose, 32 fallow deer were allocated into two groups according to their diet: control (pasture) and experimental (pasture and barley grain) groups. Fallow deer from the experimental group showed a significant increase in the Sertoli cell function and sperm midpiece length, together with a higher testicular mass, sperm concentration and percentage of normal spermatozoa than the control group (p < 0.05). We also found a tendency for higher blood testosterone levels in the animals fed with barley grain (p = 0.116). The better sperm quality found in the experimental group may be related to their higher efficiency of Sertoli cells and to an earlier onset of puberty. The results of the present work elucidate the mechanisms by which dietary supplementation enhances the male sexual development and might be useful for better practices of livestock management in seasonal breeders.
Collapse
Affiliation(s)
- José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Radim Kotrba
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
- Department of Ethology, Institute of Animal Science, Přátelství 815, 10400 Prague 10-Uhříněves, Czech Republic
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
47
|
Hoyos-Marulanda V, Alves BS, Rosa PRA, Vieira AD, Gasperin BG, Mondadori RG, Lucia T. Effects of polyunsaturated fatty acids on the development of pig oocytes in vitro following parthenogenetic activation and on the lipid content of oocytes and embryos. Anim Reprod Sci 2019; 205:150-155. [PMID: 31076217 DOI: 10.1016/j.anireprosci.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 02/04/2023]
Abstract
As oocytes and embryos of pigs have greater lipid content in the cytoplasm than those of other species, supplementation of the medium for in vitro maturation (IVM) of oocytes with omega-3 polyunsaturated fatty acids (PUFA) may help to improve embryo development. This study was conducted to evaluate effects of the inclusion of the docosaexaenoic (DHA) and of the eicosapentaenoic acids (EPA) in the IVM medium on the development of pig oocytes and on the lipid content of oocytes and embryos. In all experiments, control media consisted of porcine follicular fluid and oocytes were activated through parthenogenesis. In Experiment 1, there were four treatments for each PUFA: one control; and three treatments including EPA or DHA in the IVM medium at 12.5 μM, 25.0 μM and 50.0 μM). In Experiment 2, inclusion of 50 μM DHA was compared against the control. Cleavage rates in the IVM medium including 12.5 μM EPA and blastocyst development rates in media at any EPA concentration were less than for the control in Experiment 1 (P < 0.05). Compared to the control, inclusion of 50 μM DHA in the IVM medium was related to greater cleavage rates and greater number of embryo cells, in Experiment 1, and lesser lipid content in oocytes after 22 and 44 h and in embryos after 7 days, in Experiment 2 (both P < 0.05). Addition of DHA in the IVM medium may benefit the development of pig oocytes, but EPA appears to be cytotoxic.
Collapse
Affiliation(s)
- V Hoyos-Marulanda
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - B S Alves
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - P R A Rosa
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - A D Vieira
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - B G Gasperin
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - R G Mondadori
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Instituto de Biologia, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - T Lucia
- ReproPel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil; Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
48
|
Effect of Dietary Hemp Seed on Oxidative Status in Sows during Late Gestation and Lactation and Their Offspring. Animals (Basel) 2019; 9:ani9040194. [PMID: 31027169 PMCID: PMC6523475 DOI: 10.3390/ani9040194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hemp seeds are rich in polyunsaturated fatty acids as well as other bioactive compounds. Using dietary hemp seeds as late gestation and lactation supplementation for sows and early life supplementation for piglets, we found that the indicators of oxidative status were improved in both sows and offspring. Besides the significant improvement in the antioxidant defense system of the sows, our assessment of dietary intervention resulted in an array of increased antioxidative status markers for their progeny. In addition, this could be translated into increased adaptability to the upcoming weaning stage. Abstract This study shows the antioxidant effect of a dietary hemp seed diet rich in ω-6 polyunsaturated fatty acid (PUFA) on oxidative status in sows during late gestation and lactation and their offspring. Ten pregnant sows were divided into two groups and fed either a control diet (CD) or a hemp diet (HD) containing 2% hemp seed meal for a period of 10 days before farrowing and 5% throughout the lactation period (21 d). After farrowing, 16 of their resulting piglets were divided into two groups: control group CD (eight piglets derived from control sows) and HD group (eight piglets derived from HD sows), respectively. Blood collected from sows and piglets at day 1, 7 and 21 was used for the measurement of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione (GPx)), nitric oxide production (NO), lipid peroxidation (thiobarbituric acid reactive substances—TBARS), reactive oxygen species (ROS) generation and total antioxidant capacity (TAC) in plasma. The results showed a significant improvement in the oxidative status of sows fed HD throughout lactation compared with CD. Similarly, in piglets, HD positively influenced the activities of antioxidant enzymes, TAC and NO levels and significantly decreased lipid peroxidation in plasma until weaning, in comparison with the CD group. This study suggests the potential of hemp seed diet to improve the overall antioxidant status of the lactating sows and their progeny.
Collapse
|
49
|
Yang Y, Hu B. Investigation on the Cultivation Conditions of a Newly Isolated Fusarium Fungal Strain for Enhanced Lipid Production. Appl Biochem Biotechnol 2019; 187:1220-1237. [PMID: 30203159 DOI: 10.1007/s12010-018-2870-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Fusarium equiseti UMN-1 fungal strain isolated from soybean is selected as a potential oleaginous fungal strain for biodiesel generation. It possesses desirable features, such as high lipid content (up to 56%) and high fatty acid methyl ester (FAME) content (more than 98%) in total lipids, and also has the capability to produce cellulase. This research focused on the investigation of the characteristics of this strain and optimization of culture conditions to enhance lipid production. Impact of temperature, agitation, C/N ratio, medium composition, and carbon and nitrogen sources has been observed, and central composite design (CCD) has been applied to improve the lipid accumulation. The optimum range for temperature, agitation, C/N ratio, and carbon and nitrogen concentrations was discovered, and the CCD model with the optimized growth medium and growth conditions achieved a maximum lipid production of 3.89 g/L. This research on F. equiseti UMN-1 fungal strain is expected to improve the feasibility of using microbial lipids of F. equiseti UMN-1 strains as the source of biofuels.
Collapse
Affiliation(s)
- Yan Yang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN, 55108-6005, USA
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN, 55108-6005, USA.
| |
Collapse
|
50
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|