1
|
Bomfim LEDLM, Nascimento KDS, Calaça AMDM, Silva LDOM, Arnhold E, Couto VRM, Barreto YM, Mari LJ, Santos MC, Marine G, Chevaux E, Fernandes JJDR. Supplementation with live Saccharomyces cerevisiae boulardii during the initial 42 days of the feedlot phase in Nellore beef cattle. Transl Anim Sci 2024; 8:txae097. [PMID: 39070985 PMCID: PMC11282956 DOI: 10.1093/tas/txae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
This study aimed to assess the effect of Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation during the initial feeding period on the performance of Nellore bulls in a feedlot system. One hundred ninety-eight Nellore bulls were used in a completely randomized block design, with blocking based on weight within each treatment group: light (331.4 kg; 4 pens), medium (349.7 kg; 4 pens), and heavy (362.5 kg; 3 pens). The treatments included CON-a basal diet, and SCB-basal diet plus a probiotic (Saccharomyces cerevisiae boulardii CNCM I-1079; 1.0 × 1010 CFU/head/d). Experimental diets were administered for the first 42 d (21 d in the step-up phase and 21 d in the finishing diet -870 g concentrate/kg dry matter [DM]). Subsequently, both treatment groups were transitioned to the same basal diet for an additional 76 d, completing 118 d on feed. Linear regression analysis was conducted for dry matter intake (DMI) data. During the initial 42 d, DMI tended to be higher for SCB (P = 0.09); also bulls fed SCB reached the plateau of the curve at 9.17 kg DMI/d earlier (39 d, R2 = 0.97) than those fed CON (43 d; R2 = 0.96) diets. For the first 42 d, the SCB treatment exhibited higher final weight (393.0 vs. 401.4 kg, P = 0.02), total gain (49.3 vs. 53.5 kg, P = 0.02), daily weight gain (1.124 vs. 1.274 kg, P = 0.02), and G:F (0.174 vs. 0.188, P = 0.04). Over the entire 118-d period, SCB-fed bulls had greater final body weight (509.5 vs. 518.0 kg, P = 0.02), total body weight gain (163.7 vs. 170.3 kg, P = 0.01), and average daily gain (1.366 vs. 1.420 kg, P = 0.01). The feed efficiency of SCB-supplemented bulls was 8.05% higher than CON (P = 0.04), and the final carcass weight was 1.69% greater for animals fed SCB (283.8 vs. 288.6 kg, P = 0.04). Total carcass weight gain (110.9 vs. 114.7 kg) and daily carcass weight gain (0.924 vs. 0.956 kg) tended (P = 0.06) to increase by 3.46% in SCB-fed animals compared with those fed CON. Gain yield, carcass conversion, and carcass yield did not differ between treatments. There were no significant differences in the apparent digestibility of DM, crude protein, neutral detergent fiber, and ether extract between treatments. However, starch digestibility (92.7% vs. 88%) was greater for the control treatment (P < 0.001). Including live Saccharomyces cerevisiae boulardii yeast as a probiotic supplement during the initial 42 d in the feedlot enhanced early-stage growth performance in Nellore bulls. Notably, this supplementation carried over carcass gain over the entire feedlot period.
Collapse
Affiliation(s)
| | | | - Alana M de M Calaça
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luan de O M Silva
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Emmanuel Arnhold
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Victor R M Couto
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Yasmin M Barreto
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lucas J Mari
- Lallemand Brasil Ltda., Aparecida de Goiânia, Brazil
| | | | | | | | | |
Collapse
|
2
|
Yadav M, Kumar S, Parsana Y, Chauhan N, Tyagi N, Mondal G, Samanta AK. Non-encapsulated, encapsulated, and lyophilized probiotic Limosilactobacillus reuteri SW23 influenced the growth and gut health in calves. Sci Rep 2024; 14:7657. [PMID: 38561353 PMCID: PMC10984972 DOI: 10.1038/s41598-024-57353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The present study was conducted to assess the impact of non-encapsulated, air-dried microencapsulated, and lyophilized microencapsulated probiotics in indigenous cattle calves (Bos indicus). Twenty-four (5-7 days old) indigenous cattle calves were selected and assigned into four groups, with six calves in each as follows: control (CON), fed milk and basal diet alone, and treatment groups supplemented with non-encapsulated (NEC), air-dried microencapsulated (AEC) and lyophilized microencapsulated (LEC) probiotic L. reuteri SW23 at 108 CFU/head/day in skim milk as a carrier provided for 60 days. The animals were divided into four groups, adopting a complete randomized design, and the effects were considered significant at p ≤ 0.05. Probiotics supplementation increased (p < 0.05) body weight gain (kg), average daily gain, and structural growth measurements in calves of all treatment groups. Dry matter intake (g/d), feed conversion efficiency, and fecal counts of Lactobacilli and Bifidobacteria were also increased in the treatment groups compared to CON. The fecal consistency index was highest in CON (0.70 ± 0.03), followed by NEC (0.68 ± 0.01), AEC (0.66 ± 0.02), and LEC (0.65 ± 0.02). Fecal pH and ammonia levels were reduced (p < 0.05) in the probiotic-fed groups compared to CON, with a concomitant increase in fecal lactate, acetate, and propionate levels. In addition, cell-mediated and humoral immunity were significantly increased in supplemented groups as compared to CON. Thus, it can be concluded that supplementation of the probiotics in microencapsulated/non-encapsulated forms to neonatal calves had a variety of positive effects on their health, including better performance, improved gut health, and a lower fecal consistency index. Moreover, among all supplemented groups, the lyophilized microencapsulated group outperformed air-dried microencapsulated and non-microencapsulated groups in terms of ADG, DMI, and gut health.
Collapse
Affiliation(s)
- Manish Yadav
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachin Kumar
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Yash Parsana
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nutan Chauhan
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nitin Tyagi
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashis Kumar Samanta
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
4
|
Salah N, Legendre H, Nenov V, Briche M, Serieys F, Grossi S, Sgoifo Rossi CA. Does micro-granulated yeast probiotic ( Saccharomyces cerevisiae) supplementation in milk replacer affect health, growth, feed efficiency and economic gain of calves? Vet Anim Sci 2024; 23:100329. [PMID: 38222799 PMCID: PMC10787290 DOI: 10.1016/j.vas.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The goal of calf feeding systems is to provide calves with optimum nutrition to promote growth, health, and future milk production and to reduce antibiotic use which leads to a need for alternatives that reduce illness and promote growth in dairy calves. We hypothesized that feeding live yeast would improve gastrointestinal health and growth performance of calves. The aim of this study was then to evaluate the effects of supplementing a yeast probiotic Saccharomyces cerevisiae (CNCM I-4407, 1010 CFU/g, Actisaf® Sc47 powder; Phileo by Lesaffre, France) in milk replacers (MR), on health and growth of pre-weaned calves. Forty Holstein female calves were used during this trial. Each calf was weighed at 3 days of age and then introduced in the trial. Calves were randomly assigned to 2 groups (n = 20/group) and were fed MR without (control; CON) or with yeast probiotic at 1 g/calf/d (experimental; EXP). Milk replacer (12.5 % solids) was offered twice a day until 66 days of age (DOA). Body Weight (BW), wither height, hip width, body length and chest girth were collected in day 3 and day 66. Compared to CON, calves supplemented with yeast probiotic had better average daily gain (ADG, 0.456 ± 0.1 vs. 0.556 ± 0.09 kg/d, p < 0.05). There was no difference (p > 0.05) in both starter and MR intake between the two groups. Feed efficiency was better (p < 0.05) in the EXP group (2.18 ± 0.53) compared to CON (2.63 ± 0.78). No statistical differences were found between groups even if the lower total morbidity (40.91 % in the CON vs. 19.05 % in EXP) and incidence of gastrointestinal disorders (36.36 % in the CON vs. 14.29 % in EXP) were observed in calves supplemented with yeast probiotic. The severity of diarrhea was numerically lower in calves supplemented with yeast probiotic. No severe cases of respiratory disorders were highlighted in the present trial. The cost/kg of gain was higher (p < 0.05) in CON compared to EXP group. Total expenses linked to feeds and veterinary treatments were higher in CON compared to EXP group. During the study, the use 1 g/d of yeast probiotic allows to save 32.86 €/calf. It could be concluded that supplementing Actisaf® powder (Actisaf® SC 47 PWD) in MR improved health, growth performance, feed efficiency, and reduced the expenses linked to feeds and veterinary treatments.
Collapse
Affiliation(s)
- Nizar Salah
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Héloïse Legendre
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Valentin Nenov
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Maxime Briche
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Flore Serieys
- l'INP ENSAT Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France
| | - Silvia Grossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| | - Carlo Angelo Sgoifo Rossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| |
Collapse
|
5
|
Ma L, Wang L, Zhang Z, Xiao D. Research Progress of Biological Feed in Beef Cattle. Animals (Basel) 2023; 13:2662. [PMID: 37627453 PMCID: PMC10451282 DOI: 10.3390/ani13162662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Biological feed is a feed product developed through bioengineering technologies such as fermentation engineering, enzyme engineering, protein engineering, and genetic engineering. It possesses functional characteristics of high nutritional value and good palatability that can improve feed utilization, replace antibiotics, enhance the health level of livestock and poultry, improve the quality of livestock products, and promote a better breeding environment. A comprehensive review is provided on the types of biological feed, their mechanism of action, fermenting strains, fermenting raw material resources, and their current status in animal production to facilitate in-depth research and development of applications.
Collapse
Affiliation(s)
| | | | | | - Dingfu Xiao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.M.); (L.W.); (Z.Z.)
| |
Collapse
|
6
|
Katsumata S, Hayashi Y, Oishi K, Tsukahara T, Inoue R, Obata A, Hirooka H, Kumagai H. Effects of liquefied sake lees on growth performance and faecal and blood characteristics in Japanese Black calves. Animal 2023; 17:100873. [PMID: 37399705 DOI: 10.1016/j.animal.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
Collapse
Affiliation(s)
- S Katsumata
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| | - Y Hayashi
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - K Oishi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - T Tsukahara
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Kyoto 610-0231, Japan
| | - R Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - A Obata
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - H Hirooka
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - H Kumagai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
8
|
Zábranský L, Poborská A, Gálik B, Šoch M, Brož P, Kantor M, Kernerová N, Řezáč I, Rolinec M, Hanušovský O, Strnad L, Havrdová N. Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091273. [PMID: 36140051 PMCID: PMC9495979 DOI: 10.3390/antibiotics11091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to monitor the effect of Bifidobacterium bifidum (BB) and the combination of Lactobacillus sporogenes, Enterococcus faecium, and Bifidobacterium bifidum (LEB) on the health status and weight gain of calves, and the utilisation of nitrogenous substances. The experiment was performed in the period from April 2020 to September 2020. A total of 90 Holstein heifers, which were one to 56 days old, were used as experimental animals. Differences in live weight gain were significant if we compared the LEB vs. BB group and the LEB vs. C, the control group (86.23 ± 5.49 kg vs. 84.72 ± 6.22 kg, p < 0.05; 86.23 ± 5.49 kg vs. 82.86 ± 5.35 kg, p < 0.01). Considering the live weight gain, group BB was heavier than group C only (84.72 ± 6.22 kg vs. 82.86 ± 5.35 kg, p < 0.05). An effect on reducing the incidence and duration of diarrheal diseases was not demonstrated in this study (p = 0.1957). The administration of feed additives had no statistically significant effect on the amount of N excreted in the feces. The values of hematological and biochemical parameters were unaffected except for the first sampling of urea. Other blood parameters were not affected by the addition of probiotic feed additives. The bacterial populations in the feces 5 days and 56 days after birth were not affected by the inclusion of feed additives.
Collapse
Affiliation(s)
- Luboš Zábranský
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
- Correspondence: ; Tel.: +42-03-8777-2568
| | - Anna Poborská
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Branislav Gálik
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Miloslav Šoch
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Petr Brož
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Martin Kantor
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Naděžda Kernerová
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Ivan Řezáč
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Michal Rolinec
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ondrej Hanušovský
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ladislav Strnad
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| | - Nikola Havrdová
- Department of Zootechnical Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Zhang C, Zhang J, Yu Z, Zhou G, Yao J. Effects of supplementation with Saccharomyces cerevisiae products on dairy calves: A meta-analysis. J Dairy Sci 2022; 105:7386-7398. [PMID: 35879169 DOI: 10.3168/jds.2021-21519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Saccharomyces cerevisiae products (SCP) have the potential to promote the growth and development of the gastrointestinal tract and immunity in young livestock animals. However, the effects of SCP supplementation on calves are inconsistent among the reported studies in the literature. Hence, we performed a meta-analysis to comprehensively assess the effects of SCP on the growth performance, ruminal fermentation parameters, nutrients digestibility, ruminal histological morphology, serum immune response, and fecal pathogen colony counts in calves. We searched the Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure for relevant studies published up to October 1, 2021. After screening against a set of criteria, the data of 36 studies were included in our meta-analysis (2,126 calves in total). We evaluated the quality of the data using sensitivity analysis and assessed publication bias. Our meta-analysis revealed several important findings. First, SCP supplementation increased the ruminal short-chain fatty acid concentration, ruminal papilla height, and fiber digestibility, pointing toward stimulation of the development of the rumen in calves. Second, SCP supplementation increased the serum concentrations of total protein, IgA, and IgG but decreased fecal pathogen colony counts, suggesting that SCP could help calves to promote immunity (especially maintaining circulating concentrations of immunoglobulins in preweaning calves) and resistance to pathogens. Third, a subgroup analysis between preweaning and postweaning calves showed that SCP increased average daily gain and dry matter intake preweaning but not postweaning, suggesting that SCP is better supplemented to preweaning calves to achieve the best results. Forth, based on the dose-response curve, 24 to 25 g/d might be the optimal dose range of SCP supplementation (into starter feed) preweaning to achieve the best overall effect, meanwhile, we need more studies to improve the consistency and accuracy of the dose-response curve prediction. Overall, SCP supplementation improved growth performance, rumen development, and immunocompetence in calves, particularly in preweaning calves.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Guilian Zhou
- New Hope Liuhe Company Limited/Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, Chengdu, 610023, Sichuan, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Khademi AR, Hashemzadeh F, Khorvash M, Mahdavi AH, Pazoki A, Ghaffari MH. Use of exogenous fibrolytic enzymes and probiotic in finely ground starters to improve calf performance. Sci Rep 2022; 12:11942. [PMID: 35831399 PMCID: PMC9279382 DOI: 10.1038/s41598-022-16070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
The present study investigated the effects of adding wheat straw treated with exogenous fibrolytic enzymes (EFE) and a probiotic supplement to finely ground starters on growth performance, rumen fermentation, behavior, digestibility, and health of dairy calves. A total of 48 Holstein dairy calves (39.8 ± 1.67 kg body weight) were randomly assigned to one of 4 nutritional treatments (n = 12 calves per treatment). The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two diets with or without EFE-treated wheat straw (2 g/day/calf) and diets with or without probiotics (2 g/day/calf). All calves were weaned on day 63 and remained in the study until day 84. The addition of EFE to wheat straw had no effect on starter feed intake, increased neutral detergent fiber (NDF) digestibility and recumbency, but decreased average daily gain (ADG) after weaning (240 g/d). The addition of probiotics to the diet had no effect on starter feed intake, improved feed efficiency, ADG (150 g/d), final weight (11.3 kg), and NDF digestibility, and decreased the ratio of acetate to propionate in the rumen. The addition of probiotics to starter feed for calves could improve their growth.
Collapse
Affiliation(s)
- A R Khademi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - F Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Khorvash
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - A H Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - A Pazoki
- Ghiam Agriculture and Animal Husbandry, Isfahan, 83145-46600, Iran
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111, Bonn, Germany.
| |
Collapse
|
11
|
Shams M, Hashemzadeh F, Khorvash M, Pazoki A, Beiranvand H, Mousavi F, Rafiee H. Interaction of colostrum pasteurization with probiotics supplementation on health and performance of Holstein calves. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Lu Q, Niu J, Wu Y, Zhang W. Effects of Saccharomyces cerevisiae var. boulardii on growth, incidence of diarrhea, serum immunoglobulins, and rectal microbiota of suckling dairy calves. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ban Y, Guan LL. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J Anim Sci Biotechnol 2021; 12:109. [PMID: 34635155 PMCID: PMC8507308 DOI: 10.1186/s40104-021-00630-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Direct-fed microbials (DFMs) are feed additives containing live naturally existing microbes that can benefit animals' health and production performance. Due to the banned or strictly limited prophylactic and growth promoting usage of antibiotics, DFMs have been considered as one of antimicrobial alternatives in livestock industry. Microorganisms used as DFMs for ruminants usually consist of bacteria including lactic acid producing bacteria, lactic acid utilizing bacteria and other bacterial groups, and fungi containing Saccharomyces and Aspergillus. To date, the available DFMs for ruminants have been largely based on their effects on improving the feed efficiency and ruminant productivity through enhancing the rumen function such as stabilizing ruminal pH, promoting ruminal fermentation and feed digestion. Recent research has shown emerging evidence that the DFMs may improve performance and health in young ruminants, however, these positive outcomes were not consistent among studies and the modes of action have not been clearly defined. This review summarizes the DFM studies conducted in ruminants in the last decade, aiming to provide the new knowledge on DFM supplementation strategies for various ruminant production stages, and to identify what are the potential barriers and challenges for current ruminant industry to adopt the DFMs. Overall literature research indicates that DFMs have the potential to mitigate ruminal acidosis, improve immune response and gut health, increase productivity (growth and milk production), and reduce methane emissions or fecal shedding of pathogens. More research is needed to explore the mode of action of specific DFMs in the gut of ruminants, and the optimal supplementation strategies to promote the development and efficiency of DFM products for ruminants.
Collapse
Affiliation(s)
- Yajing Ban
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
14
|
Fernández-Ciganda S, Fraga M, Zunino P. Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves. Probiotics Antimicrob Proteins 2021; 14:804-815. [PMID: 34390476 DOI: 10.1007/s12602-021-09834-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/06/2023]
Abstract
Early microbial colonization is a determinant factor in animal health, and probiotic administration has been demonstrated to modulate intestinal microbiota and promote health in dairy calves. The objective of this study was to evaluate changes in calves' fecal microbiota after the administration of two probiotic lactobacilli strains that had previously exhibited beneficial effects in calves' health in relation to neonatal calf diarrhea. An in vivo assay was performed with 30 newborn male Holstein calves that were divided into three groups. Two groups were orally administered with two different lactobacilli strains (Lactobacillus johnsonii TP1.6 or Limosilactobacillus reuteri TP1.3B), and the third was the control group. Calves (5 to 9 days old) were administered with freeze-dried bacteria once a day for 10 consecutive days. Feces samples were taken before the first administration (day 0) and then again on days 10 and 21, and the V4 region of the bacterial 16S ribosomal gene was sequenced with an Illumina MiSeq 250 paired-end platform. The administration of both strains significantly affected the total bacterial community composition, and the effect lasted for 11 days after the last dose. In particular, amplicon sequence variants related to Bifidobacterium and Akkermansia genera were significantly higher in both treated groups. Therefore, modulation of the intestinal microbiota is a potential mechanism of action behind the beneficial effects of these probiotic strains.
Collapse
Affiliation(s)
- Sofía Fernández-Ciganda
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay. .,Unidad de Investigación de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA-LE), Colonia, Uruguay.
| | - Martín Fraga
- Unidad de Investigación de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA-LE), Colonia, Uruguay
| | - Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
15
|
Effect of probiotic and nucleotide supplementation in milk replacer on growth performance and fecal bacteria in calves. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Burdick Sanchez NC, Broadway PR, Carroll JA. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals (Basel) 2021; 11:ani11020371. [PMID: 33540746 PMCID: PMC7913008 DOI: 10.3390/ani11020371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Nutritional supplementation has been used by livestock producers for many years in order to increase animal performance, improve animal health, and reduce negative effects associated with enteric and/or respiratory pathogens. Supplements such as yeast and yeast-based products have broad applications across many livestock production systems, including poultry, aquaculture, cattle, and swine and have been shown to benefit animal production at various stages. These benefits include improvement in milk production, weight gain and feed conversion, as well as immune function. Initial research into the mode of action for these effects has focused on stimulation of the immune system by the β-glucan fractions of yeast. However, emerging studies have revealed that some of the beneficial effects of yeast products may stem from altering metabolism, including the availability of glucose and fatty acids. These changes in metabolism, and potentially energy availability, may partially explain differences in immune function observed in yeast-supplemented livestock, as the energy demands of an activated immune system are extremely high. Thus, this paper explores the influence of yeast products on metabolism in cattle and swine, and how changes in metabolism and energy availability may contribute to improvements in immune function in supplemented animals.
Collapse
|
18
|
Yao J, Wang L, Zhang W, Liu M, Niu J. Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Open Life Sci 2020; 15:1033-1041. [PMID: 33817289 PMCID: PMC7874550 DOI: 10.1515/biol-2020-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022] Open
Abstract
Background This study was conducted to investigate the effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Methods In total, 20 1-day-old Holstein calves with similar body weight (BW) and good health condition were randomly assigned into two groups with ten replicates per group and one calf per replicate. The control group (CON group) was fed a basal diet, whereas the B. megaterium group (BM group) was fed the basal diet supplemented with 500 mg/day/head of B. megaterium (1010 CFU/g) for 28 days. Results The results revealed that the BM group showed an increase in final BW, daily weight gain, and feed-to-gain ratio (p < 0.05) and a decrease in diarrhea rate. Moreover, the concentrations of serum cholesterol and high-density lipoprotein decreased (p < 0.05) in the BM group compared with the CON group at 28 days. The level of serum glutathione was higher (p < 0.05) in the BM group than that of the CON group at 14 days, whereas the level of serum malondialdehyde decreased (p < 0.01) in the BM group compared with the CON group at 28 days. In addition, compared with the CON group (p < 0.05), the concentrations of serum IgA, IgM, IgG, and IL-4 were higher, whereas the concentration of serum TNF-α decreased in the BM group at 28 days. Conclusion B. megaterium had beneficial effects on the improvement of growth performance, immune function, and intestinal oxidative status of suckling calves.
Collapse
Affiliation(s)
- Jun Yao
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116000, China
| | - Wenju Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Mengjian Liu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| | - Junli Niu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
19
|
Takemura K, Shingu H, Ikuta K, Sato S, Kushibiki S. Effects of Saccharomyces cerevisiae supplementation on growth performance, plasma metabolites and hormones, and rumen fermentation in Holstein calves during pre- and post-weaning periods. Anim Sci J 2020; 91:e13402. [PMID: 32512645 DOI: 10.1111/asj.13402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the effects of supplementing Saccharomyces cerevisiae (SC) during the pre- and post-weaning periods on growth, metabolic and hormonal responses, and rumen fermentation in calves. Three-week-old Holstein calves were assigned to either control (n = 12) or SC group (n = 12), the latter of which received 2 × 109 cfu/day of SC. The experiment was conducted over a period of 7 weeks around weaning. Daily gain (DG) in the SC group was higher (p < .05) than that in the control group. In the SC group, plasma glucose, insulin, and growth hormone (GH) concentrations were higher (p < .05) and concentrations of glucagon and insulin-like growth factor 1 (IGF-1) tended to be higher (p < .1) than in the control group. Proportion of rumen propionate and concentration of rumen ammonia nitrogen at 10 weeks of age were greater (p < .05) in the SC group than that in the control group. Supplementation of SC around weaning may improve dietary nutrient and energy availability and increase plasma GH and IGF-1 concentrations. These changes observed in SC-supplemented calves could be closely related to the improvement of DG.
Collapse
Affiliation(s)
- Kei Takemura
- Yamagata Prefectural Syonai Livestock Hygiene Division, Yamagata, Mikawa, Japan.,Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Shingu
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minamiawaji, Hyogo, Japan
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shiro Kushibiki
- Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan.,Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Alawneh JI, Barreto MO, Moore RJ, Soust M, Al-Harbi H, James AS, Krishnan D, Olchowy TWJ. Systematic review of an intervention: the use of probiotics to improve health and productivity of calves. Prev Vet Med 2020; 183:105147. [PMID: 32977172 DOI: 10.1016/j.prevetmed.2020.105147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
The aims of this study were to undertake a systematic review and meta-analysis of the types of probiotic formulations that are commercially available and to critically appraise the available evidence for the effectiveness of probiotics in improving the health and productivity of calves. Relevant papers were identified to answer the question: 'In calves aged between birth to one year, is the use of probiotics associated with changes in haematological or biochemical parameters, faecal bacteria counts, average daily live weight gain, dry matter intake, or feed conversion ratio?' The search of the literature yielded 67 studies that fit the primary screening criteria. Included studies were assessed for bias and confounding using a predefined risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials and GRADE guidelines. Meta-analysis was performed using Review Manager and R. Random sequence generation was low in more than 59 % of studies. Risk of allocation concealment and performance bias were largely unclear in over 68 % of studies. Calves fed probiotics had increased average daily live weight gains (ADG) from birth to weaning (mean difference [MD] = 83.14 g/d 95 % CI = 58.36-107.91, P < 0.001) compared with calves on a control diet. Calf age reduced the level of heterogeneity of the effect of probiotics on ADG for calves between one to three weeks of age (τ2 = 73.15; I2 = 4%; P = 0.40) but not for calves older than three weeks of age (τ2 = 2892.91; I2 = 73 %; P < 0.001). Feed conversion ratio (FCR) was lower for calves on probiotics (MD = -0.13 kg of dry matter intake (DMI) to kg of live weight (LW) gain, 95 % CI = -0.17 to -0.09, P < 0.001), and the heterogeneity of effect was large in younger aged calves (τ2 = 0.05; I2 = 78 %; P = 0.03). The risk of bias regarding the methodology in the included studies was high. The quality of evidence for each outcome was categorised as moderate. There is sufficient data to support the effectiveness of probiotic use in some applications such as for the improvement of performance and productivity parameters of calves. However, the evidence is weak for other potential probiotic uses in calves such as improved health and reduced risk of disease. Therefore, the existing data are inconclusive and do not support the use of probiotics as an alternative to antimicrobials to improve calf health and productivity.
Collapse
Affiliation(s)
- John I Alawneh
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia.
| | - Michelle O Barreto
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Ameh S James
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Divya Krishnan
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Timothy W J Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| |
Collapse
|
21
|
Villot C, Ma T, Renaud DL, Ghaffari MH, Gibson DJ, Skidmore A, Chevaux E, Guan LL, Steele MA. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J Dairy Sci 2019; 102:7011-7025. [PMID: 31155261 DOI: 10.3168/jds.2018-16149] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate the effect of one specific strain of yeast, Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB), on the growth performance, health, and fecal bacterial profile of veal calves. A total of 84 animals were enrolled in an experiment at a commercial veal farm for a total of 7 wk. Calves were fed twice a day with a milk replacer meal during the entire experiment and were randomly assigned to receive daily either SCB supplementation (10 × 109 cfu/d) or a placebo (CON). Individual feed intake and body weight were monitored on a daily and weekly basis, respectively. Fecal samples were collected at arrival to the veal facility (wk 0) and additional samples were taken on d 14 (wk 2) and d 49 (wk 7). These samples were subjected to 16S rRNA gene amplicon sequencing using Illumina MiSeq (Illumina Inc., San Diego, CA) to examine the bacterial profiles and real-time quantitative PCR to quantify Saccharomyces cerevisiae and specific bacterial groups. The significant increase of S. cerevisiae in the feces of SCB calves at wk 2 and 7 compared with wk 0 (respectively 1.7 × 107, 1.2 × 107, and 2.2 × 105 copy number of S. cerevisiae/g of feces) indicates a good survival of that yeast strain along the gastrointestinal tract. Supplementation of SCB did not improve overall growth performance with regard to average daily gain (ADG), final body weight, and feed intake. Nevertheless, a total of 69.1% of nonsupplemented calves had diarrhea and 28.6% experienced severe diarrhea, whereas 50.0% of the calves supplemented with SCB had diarrhea and 9.5% experienced severe diarrhea. With respect to antibiotic use, 89.7% of the diarrheic calves recorded in the CON group were treated, whereas only 66.7% of the SCB diarrheic calves received an antibiotic. In addition, diarrheic calves supplemented with SCB maintained an ADG similar to nondiarrheic animals, whereas the CON diarrheic calves had a significantly lower ADG in comparison with nondiarrheic CON calves. Fecalibacterium was the most predominant bacterial genus in fecal samples of nondiarrheic and diarrheic calves supplemented with SCB, whereas fecal microbiota was predominated by Collinsella in diarrheic calves from the CON group. Live yeast supplementation in milk replacer led to a decrease of diarrhea in milk-fed veal calves and the fecal microbiota of diarrheic calves maintained a healthy community similar to nondiarrheic animals, with Fecalibacterium being the predominant genus.
Collapse
Affiliation(s)
- C Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - T Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada; Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing, 100081, China
| | - D L Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M H Ghaffari
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - D J Gibson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - A Skidmore
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - E Chevaux
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - M A Steele
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada; Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
PAWAR MM, KAMRA DN, CHAUDHARY LC, AGARWAL N, CHATURVEDI VB. Nutrients utilization, methane emission, immune function, blood metabolites and performance of buffalo calves fed Trachyspermum copticum seed oil. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i1.86385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of ajwain seed oil (Trachyspermum copticum, AjO) on nutrient digestibility, methane emission, immune status, blood metabolites and growth performance was studied on 15 growing male buffalo calves. The animals were divided into three groups in completely randomized design and assigned to three dietary treatments, viz. control without additive (T1), AjO at the rate of 1 ml/calf/day (T2) and AjO at the rate of 2 ml/calf/day (T3). Feeding was continued for 120 days. The dry matter intake (kg/d) was higher by 3 and 8% and average daily weight gain by 10 and 16% in T2 and T3 groups as compared to control (T1) group, but differences were not significant. There was no effect on apparent digestibility of dry matter, organic matter, ether extract, neutral detergent fibre and acid detergent fibre except crude protein digestibility which was higher in T3 group as compared to control. The methane production and energy metabolism were not changed by feeding of AjO. The animals of T3 group were in higher nitrogen balance accompanied with low blood urea level. The blood metabolites and immune status (cell mediated and humoral immune response) reflecting health of the animals, were similar and within normal range in all the groups. Though AjO feeding could not affect the overall performance of the animals but was able to modulate protein etabolism resulting in improvement in protein utilization efficiency.
Collapse
|
23
|
Ma T, Suzuki Y, Guan LL. Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Vet Immunol Immunopathol 2018; 205:35-48. [PMID: 30459000 DOI: 10.1016/j.vetimm.2018.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Prophylactic antimicrobials have been widely used in food animal production with the aim to prevent infectious diseases, enhance feed efficiency, and promote growth. However, the extensive use of antimicrobials in food animal production systems has led to the emergence of antimicrobial resistant pathogens, which are potential threats to human and animal health. Probiotics have been proposed to be a promising alternative of prophylactic antimicrobials, with potential beneficial effects on the host animal by improving the balance of intestinal microbiota and host immunity. Although an increasing body of evidence shows that probiotics could directly or indirectly affect gut microbiota and host immune functions, the lack of the understanding of how probiotics influence host-microbial interaction and immunity is one of the reasons for controversial findings from many animal trials, especially in food production animals. Therefore, in this review we focused on the most recent (last ten years) studies on how gut microbiota and host immune function changes in response to probiotics in food production animals (swine, poultry, and ruminant). In addition, the relationship between microbial changes and host immune function was illustrated, and how such relationship differs among animal species was further compared. Moreover, the future directions concerning the mechanisms of how probiotics modulate host-microbial interactions and host immunity were highlighted, which may assist in the optimal supplementation strategy to maximize the efficacy of probiotics to improve animal gut health and productivity.
Collapse
Affiliation(s)
- Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Feed Research Institute, Chinese Academy of Agricultural Sciences, Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing, China
| | - Yutaka Suzuki
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Laboratory of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes. Int J Biol Macromol 2018; 116:599-606. [PMID: 29763702 DOI: 10.1016/j.ijbiomac.2018.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
Abstract
Debaryomyces hansenii has been described to be effective probiotic and immunostimulatory marine yeast in fish. Nonetheless, to the best of our knowledge, it has been not assayed in ruminants. This study attempts to describe the immunostimulatory effects of its β-glucan content through in vitro assays using goat peripheral blood leukocytes at 24 h of stimulation. The structural characterization of yeast glucans by proton nuclear magnetic resonance indicated structures containing (1-6)-branched (1-3)-β-D-glucan. In vitro assays using peripheral blood leukocytes stimulated with β-glucans derived from three D. hansenii strains and zymosan revealed that β-glucans significantly increased cell immune parameters, such as phagocytic ability, reactive oxygen species production (respiratory burst), peroxidase activity and nitric oxide production. Antioxidant enzymes revealed an increase in superoxide dismutase and catalase activities in leukocytes stimulated with yeast β-glucans. This study revealed that yeast β-glucans were able to activate dectin-1 mRNA gene expression in leukocytes. The TLR4 gene expression was up-regulated in leukocytes after stimulation with yeast β-glucans. In conclusion, β-glucans were able to modulate the immune system by promoting cell viability, phagocytic activity, antioxidant immune response and immune-related gene expression in leukocytes. Therefore, β-glucans derived from Debaryomyces hansenii should be considered a potential immunostimulant for goat production systems.
Collapse
|
25
|
Sharma AN, Kumar S, Tyagi AK. Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. J Anim Physiol Anim Nutr (Berl) 2018; 102:679-689. [PMID: 29493022 DOI: 10.1111/jpn.12878] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
Abstract
A study of 120 days was undertaken to ascertain the effect of mannan-oligosaccharides (MOS) and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. Twenty Murrah buffalo calves of 5-7 days old and 31 ± 2.0 kg of body weight (BW) were randomly assigned into four groups. Group I served as the control (CON) in which only basal diet (concentrate mixture and green fodder) was provided, without any supplementation. Mannan-oligosaccharides at 4 g/calf/day were supplemented as prebiotic to Group II (PRE), whereas Group III (PRO) received Lactobacillus acidophilus in the form of fermented milk as probiotic at 200 ml/calf/day having 108 CFU/ml and Group IV (SYN) was supplemented with both MOS and Lactobacillus acidophilus as synbiotic at similar dose. Final BW (kg), dry matter intake, average daily gain, feed conversion efficiency and structural growth measurements were improved (p < .05) in the treatment groups compared to control. Digestibility of neutral detergent fibre was higher (p < .05) in SYN followed by PRE and PRO than control. The faecal lactobacilli and bifidobacterium population was higher (p < .05) in all the supplemented groups with a concomitant reduction in faecal coliform count as compared to control. Faecal ammonia, lactate and pH were also altered favourably (p < .05) in all the supplemented groups as compared to CON. The faecal volatile fatty acids were higher (p < .05) in PRE, PRO and SYN group than CON. The incorporation of MOS and Lactobacillus acidophilus in diet either individually or in combination as synbiotic has the potential to improve the performance and faecal characteristics in Murrah buffalo calves; however, the observed responses among the treatment groups were more evident in the synbiotic fed group compared to individual supplementation of MOS and Lactobacillus acidophilus.
Collapse
Affiliation(s)
- A N Sharma
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Kumar
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Tyagi
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|