1
|
Marcon C, Nora L, Deolindo GL, Signor MH, Brunetto ALR, Benedeti PDB, Cucco DDC, Lobo LE, Wagner R, Klein B, Bajay MM, Bissacotti BF, Silveira MV, Paula EM, Santos VL, da Silva JB, da Silva AS. Inclusion of yeast and saccharides based-product to replace monensin in the diet of confined steers: performance, rumen environment, metabolism, animal health, and meat quality. Trop Anim Health Prod 2025; 57:120. [PMID: 40088304 DOI: 10.1007/s11250-025-04353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The present study aimed to evaluate a blend of yeast and saccharides based-product fed via diet to feedlot cattle on performance, health, meat quality, and rumen metabolism when compared to monensin. Twenty-four non-castrated crossbred male steers (Charolais x Nellore) were divided into control (n = 12), receiving the basal diet with monensin (215 mg/animal/day) and treatment (n = 12) receiving the basal diet with the blend of yeast and saccharides based-product (17.2 g/animal/day). Animals were weighed on days 1, 20, and 113, and on days 20, 70, and 113, blood and rumen fluid were collected, which was also used to determine the genera of bacteria present in the rumen and to quantify protozoa. Total feces were collected to determine apparent total tract digestibility from days 108 to 112 of the experiment. There was no treatment effect for weight gain, feed intake, or feed efficiency. There was a gain in the loin eye area in the control group (P = 0.05) and greater subcutaneous fat thickness in the loin and rump cap control group (P = 0.01). In the ruminal fluid, there was higher protozoa count in the treatment group on day 113 (P = 0.03) and a higher proportion of propionic acid in the treatment group on day 70 (P = 0.03). Total short-chain fatty acids were lower in steers in the treatment group. There was no treatment effect on the ruminal microbiota. There were lower counts of lymphocytes and granulocytes in the blood of steer in the treatment group (P < 0,05). A significant increase in the concentrations of immunoglobin A (IgA) and others heavy-chain immunoglobulins (IgM, IgG, IgM and IgE) were observed in the treatment group. There was an effect of treatment on glutathione S-transferase (GST) activity on days 70 and 113 (P = 0.02). Likewise, high GST activity in the liver was identified in the treatment group (P = 0.01). For fatty acid profile in meat, oleic acid presented higher proportion in the treatment group (P = 0.04), in contrast to docis-5,8,11,14,17-eicosapentaenoic acid, which was lower in the same group (P = 0.05). It is concluded that the blend of yeast and saccharides based-product played a role similar to monensin's in productive performance, demonstrating a potential to substitute monensin. Furthermore, the inclusion of yeast and saccharides in the diet stimulated the humoral immune response and antioxidant action without affecting meat quality.
Collapse
Affiliation(s)
- Charles Marcon
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Luisa Nora
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology, Universidade Do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | - Guilherme L Deolindo
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology, Universidade Do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | - Mateus H Signor
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Andrei L R Brunetto
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | | | | | - Luiz E Lobo
- Department of Food Sciences, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roger Wagner
- Department of Food Sciences, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bruna Klein
- Department of Animal Science, UDESC, Chapecó, Brazil
| | - Miklos M Bajay
- Higher Education Center of the Southern Region, UDESC, Laguna, Brazil
| | | | | | - Eduardo M Paula
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | - Verônica Lisboa Santos
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | - Juliana Bueno da Silva
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | | |
Collapse
|
2
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025; 16:1016-1031. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
3
|
Huang Q, Ma F, Jin Y, Gao D, Chang M, Sun P. The dynamic distribution of the rectal microbiota in Holstein dairy calves provides a framework for understanding early-life gut health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:301-312. [PMID: 39640550 PMCID: PMC11617247 DOI: 10.1016/j.aninu.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 12/07/2024]
Abstract
The posterior intestinal microbiota plays a vital role in the growth and health of Holstein dairy calves. However, its establishment and dynamic changes during early development remain unclear. The aim of this study was to investigate microbial colonization and development in the rectum of calves within the first 70 d after birth. Here, 96 rectal content samples were collected from 8 Holstein dairy calves at 12 time points and analyzed using 16S rRNA gene sequencing. The microbial alpha diversity increased with age. The bacterial community displayed a distinct dynamic distribution. The phylum Proteobacteria was replaced by Firmicutes and Bacteroidetes after d 3. The colonization process of bacterial genera in the rectum of neonatal calves can be divided into 2 periods: the colonization period (stage 1: d 1 and stage 2: d 3) and the stable period (stage 3: d 7-14, stage 4: d 21-42, and stage 5: d 49-70). The fermentation pattern and metabolic function changed from propionate fermentation dominated by Shigella to lactic acid fermentation dominated by Lactobacillus, Blautia, and Oscillospira. The stable period was more comprehensive and complete than the colonization period. This study revealed the dynamic changes in the posterior intestinal microbiota of Holstein dairy calves during early development. The transition period (d 7-14) was identified as a key stage for early nutritional intervention, as the abundance of Lactobacillus increased and the abundance of harmful bacteria (such as Proteobacteria and Shigella) decreased. This study provides a framework for understanding early-life gut health and offers theoretical guidance for future research on host-microbe interactions and early nutritional interventions. It is suggested that nutritional interventions based on microbial characteristics at different stages be implemented to improve calf growth performance and immune function, which may contribute to the reduction of diarrhea and other gastrointestinal disorders during dairy production.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meinan Chang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Hu QY, Man JJ, Luo J, Cheng F, Yang M, Lin G, Wang P. Early-life supplementation with mannan-rich fraction to regulate rumen microbiota, gut health, immunity, and growth performance in dairy goat kids. J Dairy Sci 2024; 107:9322-9333. [PMID: 39004122 DOI: 10.3168/jds.2024-24903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024]
Abstract
Enhancing gastrointestinal health, immunity, and digestion are key factors to support dairy goat kid performance. Several additives have been studied in relation to these actions. This study investigated the impact of mannan-rich fraction (MRF) inclusion in goat milk on the growth performance, gut health, rumen fermentation, and microbial profiles of Xinong Saanen dairy goat kids. A total of 80 kids aged 14 d and 4.72 ± 0.33 kg BW were randomly assigned into 2 groups: control and MRF (1 g/d MRF mixed into milk). Each group consisted of 40 kids with 10 kids per pen. All kids were given milk individually and fed a starter diet by pen, with the trial lasting 10 wk. Body weight and blood samples were collected on the seventh day at 2, 6, 10 and 12 wk of age, and feed intake was determined daily. From the first to seventh day at 12 wk of age, fecal samples were collected from 4 kids in each group to analyze nutrient digestibility. On the seventh day of 12 wk of age, 4 kids from each group were slaughtered for evaluation of rumen fermentation, rumen microbiota, and gut morphology. The results indicated that MRF supplementation led to greater overall BW, overall starter DMI, and overall ADG, along with a lower overall diarrhea rate. However, no difference in overall feed efficiency and apparent digestibility of nutrients was observed. Furthermore, MRF supplementation resulted in increased ileal villus height; higher RNA expression of claudin-1 and occludin in the duodenum; higher expression of ZO-1, JAM-2, and occludin in the jejunum; and higher expression of claudin-1, JAM-2, and occludin in the ileum. Additionally, the concentrations of overall IgA, overall IgM, and overall IgG were higher in the MRF group. The concentrations of ruminal acetate and total volatile fatty acid were higher with MRF supplementation (P < 0.05). Meanwhile, supplementation with MRF resulted in higher abundance of Bacteroidetes and Succinivibrio and lower abundance of Firmicutes and Succiniclasticum in the rumen. Overall, the growth performance, gut health, immunity, and ruminal microbial structure of dairy goat kids benefited from MRF supplementation.
Collapse
Affiliation(s)
- Q Y Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - J J Man
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - J Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| | - F Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - M Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - G Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - P Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
5
|
Yang L, Zhang PT, Li MM, Wang XY, Zhao QQ, Lin JJ, Zhao JQ, Liu BS, Li S, Ji R, Fang JC, Sun Y. ( E)-β-Farnesene Protects Rice from Rice Striped Stem Borer Attack by Inhibiting Its Beneficial Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23716-23726. [PMID: 39417995 DOI: 10.1021/acs.jafc.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herbivores harbor gut microbes that affect their development and contribute to their nutrition, reproduction, and survival. Plant defenses could target the herbivore's beneficial gut microbes, but this has not been well studied in rice. In this context, we identified a rice terpene synthase gene, Os04g0341500. It was strongly induced after feeding by rice striped stem borers (SSB, Chilo suppressalis), and it can catalyze the (E)-β-farnesene (Eβf) synthesis. When added to artificial diets, Eβf impaired the development and survival of SSB larvae. High-throughput amplicon sequencing revealed that SSB fed on Eβf were decreased in beneficial gut microbes, compared to those feeding on the corresponding control feed. In vitro feeding of Eβf suggested that this antimicrobial sesquiterpene directly inhibited the growth of SSB gut microbes. The present study suggested that the Eβf-induced decrease of relative abundance of gut microbes potentially impairs larval development and survival in SSB.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pei-Tao Zhang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Miao-Miao Li
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin-Yu Wang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Qing-Qing Zhao
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Jun-Jie Lin
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Jia-Qi Zhao
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yang Sun
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
6
|
Zhang J, Zhang C, Yang X, Li L, Cao Y, Zhang X, Zhou S, Ma J, Li M, Hou X, Zhang Z, Yao J. Short- and long-term effects of different forage types supplemented in preweaning dairy calves on performance and milk production into first lactation. J Dairy Sci 2024; 107:7405-7422. [PMID: 38754819 DOI: 10.3168/jds.2023-24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
We investigated the short- and long-term effects of different forage types supplemented in preweaning dairy calves on growth performance, blood metabolites, rumen fermentation, bacterial community, and milk production during first lactation. A total of 60 healthy 30-d-old female Holstein calves were blocked by birth date and body weight and randomly assigned to 1 of 3 groups (n = 20): normal milk and pelleted starter feeding (CON), supplemented with chopped oat hay (OAH; 75.0 g/d per calf [DM basis]), or alfalfa hay (ALF; 75.0 g/d per calf [DM basis]). The forage supplementation started when calves were 30 d old (d 1 of the experimental period) and ended when they were 73 d old (d 44 of the experimental period, when calves were weaned). Milk and feed intakes and fecal consistency scores were recorded daily. Growth performance, rumen fluid, and blood samples were collected biweekly. After weaning, all the calves were integrated with the same barn and diets. After calving, the milk production was recorded daily. During the experimental period, the OAH group had greater solid feed and total DM intakes and greater rumen pH than the CON group (P ≤ 0.04), but had lower forage intake and CP digestibility than the ALF group (P ≤ 0.04). The ALF group had higher rumen pH and blood BHB concentration (P ≤ 0.04), lower fecal score (P = 0.02), and greater ether extract digestibility (P = 0.02) than the CON group. The ALF and OAH groups had lower concentrations of ruminal total VFA (P = 0.01). Still, the ALF group had a greater proportion of acetate and a relative abundance of cellulose degradation-related bacteria (Lachnoclostridium_1 and Oribacterium) and a lower relative abundance of inflammation-related bacteria (Erysipelotrichaceae_UCG-009) in the rumen compared with CON. Interestingly, the average milk production from 6 to 200 DIM was greater in the ALF group (P < 0.01), even though no significant effects were found on the rumen fermentation parameters and blood metabolites at 200 DIM. Generally, alfalfa hay supplementation in preweaning dairy calves had positive effects in the short- and long-term for rumen development, health status, and future milk production.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuexin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xia Zhang
- Modern Farming (Group) Co. Ltd., Maanshan 243121, China
| | - Shuai Zhou
- Ningxia Xingyuanda Agriculture and Animal Husbandry Co. Ltd., Lingwu 750406, China
| | - Jiajun Ma
- Ningxia Xingyuanda Agriculture and Animal Husbandry Co. Ltd., Lingwu 750406, China
| | - Mengmeng Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinfeng Hou
- Hebei Leyuan Animal Husbandry Co. Ltd., Shijiazhuang 050000, China
| | - Zhihong Zhang
- Hebei Leyuan Animal Husbandry Co. Ltd., Shijiazhuang 050000, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Ike KA, Casper DP, Hansen WP, Scott M, Anele UY. Milk replacer galacto-oligosaccharide (GOS) inclusion rates for neonatal calves. J Dairy Sci 2024:S0022-0302(24)01075-0. [PMID: 39154729 DOI: 10.3168/jds.2024-25262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Galacto-oligosaccharide (GOS) is a prebiotic isolated from whey. This study evaluated the optimal inclusion rate for improving growth and health performance of neonatal calves. Eighty-eight 2-5-d old Holstein bull calves were blocked by initial BW and randomly allocated to 1 of 4 treatments using a RCBD. Treatments comprised a 22:20 (CP: fat) amino acid balanced milk replacer (MR) with GOS added at the rate of 0 g/d (Control or GOS0), 2 g/d (GOS2), 4 g/d (GOS4), and 8 g/d (GOS8). Calves received 0.283 kg MR in 1.9 L fed 2 x/d for the first 14 d, then increased to 0.42 kg in 2.84 L fed 2x/d through d 35, followed by 0.42 kg MR in 2.84 L fed 1x/d through d 42, followed by weaning. The GOS inclusion rate remained constant as milk volume increased. Calves fed GOS at 2, 4, and 8 g/d demonstrated similar growth performance compared with calves fed GOS0. Calves fed GOS4 demonstrated a carryover effect into post-weaning resulting in a tendency for increased (P < 0.08) BW (82.5, 83.0, 85.3, and 83.1 kg for GOS0, GOS2, GOS4, and GOS8, respectively), BW gains (37.8, 38.2, 41.3 and 38.6 kg), and ADG (687, 696, 751, and 701 g/d). The ADG was increased by 9.3% when feeding calves GOS4 compared with calves fed GOS0. Calf starter DMI was greater at 7 (1.73,1.86, 1.95, and 1.83 kg/d) and 8 (2.34, 2.50, 2.60, 2.49 kg/d) wk of age for calves fed GOS4 compared with calves fed GOS0 with remaining treatments being intermediate and similar. Feed conversion (0.552, 0.529, 0.563, 0.545 kg/kg) was greater for calves fed GOS0 and GOS4 g/d compared with calves fed GOS2 with calves fed GOS8 being intermediate and similar. Body frame gains were similar for calves fed all GOS inclusion rates. A treatment by week interaction at wk 2 indicated that calves fed GOS2 demonstrated greater fecal score = 0 d than calves fed the remaining treatments, indicating less scours. In conclusion, supplementing GOS to a milk replacer at 4 g/d fed to neonatal calves improved growth performance without compromising health conditions.
Collapse
Affiliation(s)
- Kelechi A Ike
- College of Science and Technology, North Carolina Agricultural and Technical State University Greensboro NC 27401, USA
| | - David P Casper
- Casper's Calf Ranch, 4890 West Lily Creek Road, Freeport, IL 61032, USA.; Department of Animal Sciences, North Carolina Agricultural and Technical State University Greensboro NC 27401, USA.
| | - William P Hansen
- Milk Specialties Global, 7500 Flying Cloud Dr Suite 500 Eden Prairie, Minnesota, 55344, USA
| | - Mark Scott
- Milk Specialties Global, 7500 Flying Cloud Dr Suite 500 Eden Prairie, Minnesota, 55344, USA
| | - Uchenna Y Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University Greensboro NC 27401, USA
| |
Collapse
|
8
|
Yu X, Ma F, Dai H, Liu J, Hashem NM, Sun P. Effects of Different Galacto-Oligosaccharide Supplementation on Growth Performance, Immune Function, Serum Nutrients, and Appetite-Related Hormones in Holstein Calves. Animals (Basel) 2023; 13:3366. [PMID: 37958121 PMCID: PMC10649109 DOI: 10.3390/ani13213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Our previous study showed that early supplementation with 10 g/(d·head) of galacto-oligosaccharides (GOS) in newborn Holstein dairy calves reduced the incidence of diarrhea and improved growth performance and mineral absorption. Since the dose of 10 g/(d·head) was the lowest by dose screening in our previous study, the present study was designed to investigate whether a lower amount of GOS has similar effects on growth performance, immune function, serum nutrients in newborn Holstein heifer calves, and to further investigate its effect on appetite-related hormones. Twenty-eight healthy newborn (1 day of age) Holstein heifers with similar average body weight (41.18 ± 1.90 kg) were randomly divided into four groups (n = 7): the control group (CON group), which received heated raw milk, and three experimental groups, which received heated raw milk supplemented with 2.5 (GOS2.5 group), 5 (GOS5 group), and 10 g/(d·head) (GOS10 group) GOS. All heifer calves were fed the same starter for 28 d. Supplementation with GOS linearly increased the final body weight, average daily gain, and feed efficiency in heifer calves (p < 0.01). Compared with the control group, the average daily gain and feed efficiency of heifer calves were significantly higher in the GOS5 and GOS10 groups than in the control group (p < 0.05). Furthermore, supplementation with GOS quadratically enhanced the starter and total average daily feed intake of the heifers (p < 0.01), especially in the GOS2.5 and GOS5 groups, (p < 0.05 vs. CON). The serum concentration of immunoglobulin A was linearly increased by GOS supplementation (p < 0.05), and the levels in the GOS5 and GOS10 groups were significantly higher than those in the CON group. Meanwhile, GOS linearly decreased serum interleukin-1β and interleukin-6 concentrations (p < 0.05). The serum concentration of triglycerides was also linearly decreased (p < 0.05), whereas total protein and blood urea nitrogen were linearly increased (p < 0.05). Supplementation with GOS linearly decreased the serum concentration of leptin (p < 0.05) but increased cholecystokinin and glucagon-like peptide-1 (p < 0.05). Increasing doses of GOS linearly improved serum calcium and copper concentrations (p < 0.01) and quadratically enhanced the concentration of magnesium, which peaked in the GOS5 group (p < 0.05). In conclusion, GOS supplementation reduced the incidence of diarrhea and improved the growth performance and immune function of Holstein heifer calves.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Dai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Ruvalcaba-Gómez JM, Villaseñor-González F, Espinosa-Martínez MA, Gómez-Godínez LJ, Rojas-Anaya E, Villagrán Z, Anaya-Esparza LM, Buendía-Rodríguez G, Arteaga-Garibay RI. Growth Performance and Fecal Microbiota of Dairy Calves Supplemented with Autochthonous Lactic Acid Bacteria as Probiotics in Mexican Western Family Dairy Farming. Animals (Basel) 2023; 13:2841. [PMID: 37760240 PMCID: PMC10525134 DOI: 10.3390/ani13182841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Probiotic supplementation in dairy cattle has achieved several beneficial effects (improved growth rate, immune response, and adequate ruminal microbiota). This study assessed the effects on the growth parameters and gut microbiota of newborn dairy calves supplemented with two Lactobacillus-based probiotics, individually (6BZ or 6BY) or their combination (6BZ + 6BY), administrated with the same concentration (1 × 109 CFU/kg weight) at three times, between days 5 and 19 after birth. The control group consisted of probiotic-unsupplemented calves. Growth parameters were recorded weekly until eight weeks and at the calves' ages of three, four, and five months. Fecal microbiota was described by high-throughput sequencing and bioinformatics. Although no significant effects were observed regarding daily weight and height gain among probiotic-supplemented and non-supplemented calves, correlation analysis showed that growth rate was maintained until month 5 through probiotic supplementation, mainly when the two-strain probiotics were supplied. Modulation effects on microbiota were observed in probiotic-supplemented calves, improving the Bacteroidota: Firmicutes and the Proteobacteria ratios. Functional prediction by PICRUSt also showed an increment in several pathways when the two-strain probiotic was supplemented. Therefore, using the three-administration scheme, the two-strain probiotic improved the growth rate and gut microbiota profile in newborn dairy calves. However, positive effects could be reached by applying more administrations of the probiotic during the first 20 days of a calf's life.
Collapse
Affiliation(s)
- José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Fernando Villaseñor-González
- Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Av. Biodiversidad 2470, Tepatitlán de Morelos 47600, Jalisco, Mexico;
| | - Mario Alfredo Espinosa-Martínez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán Colón 76280, Querétaro, Mexico;
| | - Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Edith Rojas-Anaya
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico; (Z.V.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico; (Z.V.); (L.M.A.-E.)
| | - Germán Buendía-Rodríguez
- Sitio Experimental Hidalgo, Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Pachuca-Tulancingo 104ª, Pachuca de Soto 42090, Hidalgo, Mexico;
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevard de la Biodiversidad 400, Tepatitlán de Morelos 47600, Jalisco, Mexico; (L.J.G.-G.); (E.R.-A.)
| |
Collapse
|
10
|
Sharma AN, Chaudhary P, Kumar S, Grover CR, Mondal G. Effect of synbiotics on growth performance, gut health, and immunity status in pre-ruminant buffalo calves. Sci Rep 2023; 13:10184. [PMID: 37349514 PMCID: PMC10287688 DOI: 10.1038/s41598-023-37002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Synbiotics are employed as feed additives in animal production as an alternate to antibiotics for sustaining the gut microbiota and providing protection against infections. Dairy calves require a healthy diet and management to ensure a better future for the herd of dairy animals. Therefore, the present study was carried out to investigate the effect of synbiotics formulation on growth performance, nutrient digestibility, fecal bacterial count, metabolites, immunoglobulins, blood parameters, antioxidant enzymes and immune response of pre-ruminant Murrah buffalo calves. Twenty-four apparently healthy calves (5 days old) were allotted into four groups of six calves each. Group I (control) calves were fed a basal diet of milk, calf starter and berseem with no supplements. Group II (SYN1) calves were fed with 3 g fructooligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (150 ml). Group III (SYN2) calves were fed with 6 g FOS + L. plantarum CRD-7 (100 ml), whereas calves in group IV (SYN3) received 9 g FOS + L. plantarum CRD-7 (50 ml). The results showed that SYN2 had the highest (P < 0.05) crude protein digestibility and average daily gain compared to the control. Fecal counts of Lactobacilli and Bifidobacterium were also increased (P < 0.05) in supplemented groups as compared to control. Fecal ammonia, diarrhea incidence and fecal scores were reduced in treated groups while lactate, volatile fatty acids and antioxidant enzymes were improved compared to the control. Synbiotic supplementation also improved both cell-mediated and humoral immune responses in buffalo calves. These findings indicated that synbiotics formulation of 6 g FOS + L. plantarum CRD-7 in dairy calves improved digestibility, antioxidant enzymes, and immune status, as well as modulated the fecal microbiota and decreased diarrhea incidence. Therefore, synbiotics formulation can be recommended for commercial use in order to achieve sustainable animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
11
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
12
|
Chen X, Kong Q, Zhao X, Zhao C, Hao P, Irshad I, Lei H, Kulyar MFEA, Bhutta ZA, Ashfaq H, Sha Q, Li K, Wu Y. Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota, inflammatory cytokines, antioxidant levels, and NLRP3/Caspase-1 signaling. Front Microbiol 2022; 13:1036042. [PMID: 36386709 PMCID: PMC9664939 DOI: 10.3389/fmicb.2022.1036042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diarrhea is a word-widely severe disease coupled with gastrointestinal dysfunction, especially in cattle causing huge economic losses. However, the effects of currently implemented measures are still not enough to prevent diarrhea. Previously we found that dropped short-chain fatty acids in diarrhea yaks, and butyrate is commonly known to be related to the epithelial barrier function and intestinal inflammation. However, it is still unknown whether sodium acetate/sodium butyrate could alleviate diarrhea in animals. The present study is carried out to explore the potential effects of sodium acetate/sodium butyrate on lipopolysaccharide-induced diarrhea in mice. Fifty ICR mice were randomly divided into control (C), LPS-induced (L), and sodium acetate/sodium butyrate (D, B, A)-treated groups. Serum and intestine samples were collected to examine inflammatory cytokines, antioxidant levels, relative gene expressions via real-time PCR assay, and gut microbiota changes through high-throughput sequencing. Results indicated that LPS decreased the villus height (p < 0.0001), increased the crypt depth (p < 0.05), and lowered the villus height to crypt depth ratio (p < 0.0001), while sodium acetate/sodium butyrate supplementation caused a significant increase in the villus height (p < 0.001), decrease in the crypt depth (p < 0.01), and increase in the villus height to crypt depth ratio (p < 0.001), especially. In mice treated with LPS, it was found that the serum level of IL-1β, TNF-α (p < 0.001), and MDA (p < 0.01) was significantly higher; however, sodium acetate/sodium butyrate supplementation significantly reduced IL-1β (p < 0.001), TNF-α (p < 0.01), and MDA (p < 0.01), respectively. A total of 19 genera were detected among mouse groups; LPS challenge decreased the abundance of Lactobacillus, unidentified F16, unidentified_S24-7, Adlercreutzia, Ruminococcus, unclassified Pseudomonadales, [Ruminococcus], Acetobacter, cc 1, Rhodococcus, unclassified Comamonadaceae, Faecalibacterium, and Cupriavidus, while increased Shigella, Rhodococcus, unclassified Comamonadaceae, and unclassified Pseudomonadales in group L. Interestingly, sodium acetate/sodium butyrate supplementation increased Lactobacillus, unidentified F16, Adlercreutzia, Ruminococcus, [Ruminococcus], unidentified F16, cc 115, Acetobacter, Faecalibacterium, and Cupriavidus, while decreased Shigella, unclassified Enterobacteriaceae, unclassified Pseudomonadales, Rhodococcus, and unclassified Comamonadaceae. LPS treatment upregulated the expressions of ZO-1 (p < 0.01) and NLRP3 (p < 0.0001) genes in mice; however, sodium acetate/sodium butyrate solution supplementation downregulated the expressions of ZO-1 (p < 0.05) and NLRP3 (p < 0.05) genes in treated mice. Also, the LPS challenge clearly downregulated the expression of Occludin (p < 0.001), Claudin (p < 0.0001), and Caspase-1 (p < 0.0001) genes, while sodium acetate/sodium butyrate solution supplementation upregulated those gene expressions in treated groups. The present study revealed that sodium acetate/sodium butyrate supplementation alleviated LPS-induced diarrhea in mice via enriching beneficial bacterium and decreasing pathogens, which could regulate oxidative damages and inflammatory responses via NLRP3/Caspase-1 signaling. The current results may give insights into the prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Xiaoxiao Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pin Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Irfan Irshad
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Kun Li,
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu,
| |
Collapse
|