1
|
Liu S, Cai P, You W, Yang M, Tu Y, Zhou Y, Valencak TG, Xiao Y, Wang Y, Shan T. Enhancement of gut barrier integrity by a Bacillus subtilis secreted metabolite through the GADD45A-Wnt/β-catenin pathway. IMETA 2025; 4:e70005. [PMID: 40236773 PMCID: PMC11995189 DOI: 10.1002/imt2.70005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 04/17/2025]
Abstract
Inflammatory bowel disease (IBD) represents a significant challenge to global health, characterized by intestinal inflammation, impaired barrier function, and dysbiosis, with limited therapeutic options. In this study, we isolated a novel strain of Bacillus subtilis (B. subtilis) and observed promising effects in protecting against disruption of the gut barrier. Our findings indicate that the enhancement of intestinal barrier function is primarily attributed to its metabolites. We identified a novel metabolite, 2-hydroxy-4-methylpentanoic acid (HMP), derived from B. subtilis, that significantly improved intestinal barrier function. We also show that growth arrest and DNA damage 45A (GADD45A) is a key regulator of mucosal barrier integrity, which is activated by HMP and subsequently activates the downstream Wnt/β-catenin pathway. Our findings potentially contribute to the development of probiotics-derived metabolites or targeted "postbiotics" as novel therapeutics for the treatment or prevention of IBD and other diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Peiran Cai
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Mingshun Yang
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | | | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhouChina
| |
Collapse
|
2
|
Jia Y, Huang Q, Song R, Tang Y, Feng M, Lu J. Effects of fermented bamboo fiber on intestinal health and fecal pollutants in weaned piglets. Front Nutr 2025; 12:1538560. [PMID: 40236635 PMCID: PMC11998670 DOI: 10.3389/fnut.2025.1538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Weaning stress adversely affects piglet growth and development, thereby reducing the economic efficiency of pig farming operations. Furthermore, pig feces are a major source of environmental pollution, underscoring the need for effective strategies to mitigate fecal output at its source. Methods This study investigated the effects of dietary supplementation with fermented bamboo fiber (FBF) on growth performance, intestinal barrier integrity, gut microbiota composition, and fecal pollutant levels in weaned piglets. A total of 144 Duroc × Landrace × Yorkshire piglets, weaned at 21 days of age, were randomly assigned to 4 groups, with six replicates per group and 6 piglets per replicate. The control group (CON) received a basal diet, while the three treatment groups were fed the basal diet supplemented with 1, 1.5, and 2% FBF, respectively. The trial lasted 30 days. Results The findings revealed that FBF supplementation fortified the intestinal barrier, modulated colonic microbial communities, and decreased fecal pollutant levels. Among the treatment groups, supplementation with 1.5% FBF produced the most significant improvements in piglets' growth performance and intestinal barrier function, as well as the strongest microbial interactions and the greatest reduction in fecal pollutants. Discussion These results suggest that FBF supplementation can alleviate weaning stress and mitigate the environmental impact of pig feces, with 1.5% identified as the optimal supplementation level.
Collapse
Affiliation(s)
- Yubiao Jia
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qiuming Huang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Rui Song
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanling Tang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengxin Feng
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjun Lu
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Hu Z, Zuo M, Ding S, Zhong Y, Xue M, Zheng H. Integrating Metabolomics and Genomics to Uncover the Impact of Fermented Total Mixed Ration on Heifer Growth Performance Through Host-Dependent Metabolic Pathways. Animals (Basel) 2025; 15:173. [PMID: 39858173 PMCID: PMC11758300 DOI: 10.3390/ani15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
With the increasing demand for enhancing livestock production performance and optimizing feed efficiency, this study aimed to investigate the effects of fermented total mixed ration (FTMR) containing different proportions of rice straw and sheath and leaves of Zizania latifolia on systemic nutrient metabolism and oxidative metabolism under host genetic regulation and on growth performance of heifers. A total of 157 heifers aged 7-8 months were selected, and their hair was collected for whole-genome sequencing. They were randomly assigned into four groups of 18 to 21 cattle each and fed FTMR containing varying levels of rice straw (21% in LSF, 28% in MSF, 35% in HSF) or 31% sheath and leaves of Zizania latifolia (ZF) for a two-month period. At the end of trial, blood and urine samples were collected to measure biochemical indexes and metabolomics. The results showed that high rice straw content and ZF diets could increase blood glucose and non-protein nitrogen in heifers, that is, blood glucose and urea nitrogen levels in HSF and ZF groups were higher than those in LSF and MSF groups (p < 0.05). Meanwhile, the two diets could improve the antioxidant level of heifers. Urine metabolomics analysis between the groups identified three differential metabolic pathways, including 11 metabolites. Among them, l-homoserine and o-acetylserine had significant SNPs associated with them, which promoted glutathione metabolism. Although there was no significant effect of diet on heifers' average daily gain (ADG) in body weight (p > 0.05), there was substantial inter-individual variation in metabolites among all animals, as further correlation analyses illustrated. Twenty-eight metabolites were significantly associated with ADG (R > 0.3, p < 0.05). Four of them were identified as biomarkers, primarily regulating energy metabolism and oxidative balance. In conclusion, feeding HSF and ZF FTMR enhances glutathione metabolism and antioxidant capacity in heifers, positioning key metabolites as candidates for ADG markers. This integrative omics approach underscores the potential for enhancing livestock productivity and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Minyu Zuo
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Shixuan Ding
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Yifan Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China;
| | - Mingyuan Xue
- Xianghu Laboratory, Hangzhou 311231, China; (Z.H.); (M.Z.); (S.D.)
| | - Huichao Zheng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Jiang H, Azad MAK, Zhu Q, Ni H, Kong X. Fermented Cassava Residue Meal Improves Meat Quality by Regulating Muscle Fiber and Enhancing Lipid Metabolism in Huanjiang Mini-Pigs. Animals (Basel) 2025; 15:177. [PMID: 39858177 PMCID: PMC11758285 DOI: 10.3390/ani15020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This research investigated the effects of cassava residue meal (CRM) and fermented CRM (FCRM) on the growth performance, serum lipid indicators, carcass traits, and meat quality of Huanjiang mini-pigs. One hundred twenty Huanjiang mini-pigs with similar BW (body weight, 8.85 ± 0.64 kg) were divided into three dietary treatment groups: the CON group with a basal diet; the CRM group with a diet containing 5% CRM; and the FCRM group with a diet containing 5% FCRM. The feeding trial was conducted for 30 days. The findings revealed that dietary CRM and FCRM did not influence the growth performance and diarrhea rate of Huanjiang mini-pigs (p > 0.05). Dietary FCRM supplementation increased serum total cholesterol level compared to the CON group while decreasing serum cholinesterase level compared to the CON and CRM groups (p < 0.05). The level of serum low-density lipoprotein-cholesterol was higher (p < 0.05) in the CRM and FCRM groups in regard to the CON group. In addition, CRM and FCRM supplementation reduced (p < 0.05) the backfat thickness and carcass yield of Huanjiang mini-pigs. The meat quality analysis showed that dietary CRM and FCRM improved the meat quality by increasing the intramuscular fat content and redness (a*) value and decreasing the lightness (L*) value. Moreover, the MyHC-IIx expression in the longissimus thoracis (LT) muscle was upregulated (p < 0.05) in the CRM group, while MYHC-IIb expression displayed an increasing trend (p = 0.076) in the FCRM group relative to the CON group. The fatty acid composition in the LT muscle also revealed that the C20:0 level was lower in the CRM and FCRM groups, while the ∑SFA and ∑SFA/∑UFA were reduced (p < 0.05) in the FCRM group relative to the CON group. In summary, dietary CRM and FCRM supplementation improved the meat quality of Huanjiang mini-pigs without affecting growth performance and diarrhea rate. Notably, FCRM exhibited better effects on meat quality than CRM.
Collapse
Affiliation(s)
- Huijiao Jiang
- CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (H.J.); (M.A.K.A.); (Q.Z.); (H.N.)
| | - Md. Abul Kalam Azad
- CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (H.J.); (M.A.K.A.); (Q.Z.); (H.N.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (H.J.); (M.A.K.A.); (Q.Z.); (H.N.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengjia Ni
- CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (H.J.); (M.A.K.A.); (Q.Z.); (H.N.)
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (H.J.); (M.A.K.A.); (Q.Z.); (H.N.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tao X, Zhao P, Li Y, Ao X. Impact of Slaughter Weight on Flavor Metabolites in Longissimus Dorsi Muscle of Tianfu Finishing Pigs. Anim Sci J 2025; 96:e70045. [PMID: 40099363 DOI: 10.1111/asj.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
In order to investigate the flavor compounds in the muscles of Tianfu finishing (TF) pigs with different slaughter weight (SW), 12 TF pigs were selected for the experiment. The volatile metabolic profiles of meat specimens from the longissimus dorsi (LD) muscle of TF pigs with different SW were studied by untargeted liquid chromatography-mass spectrometry. Our data revealed that the three types of TF pork showed significantly different profiles of hydrocarbons, alcohols, esters, heterocyclic compounds, and others, which could underpin the nuances of their flavors. A total of 118 differentially expressed metabolites (DEMs) were identified (2 upregulated DEMs and 116 downregulated DEMs). Among the volatile flavor compounds, hydrocarbons, alcohols, ester, and heterocyclic compound in the three groups accounted for 26.71%, 13.01%, 13.01%, and 13.70%, respectively, and their contents decreased with increasing SW. The contents of alcohols, aldehydes, and hydrocarbons in the 150-kg group was significantly higher than those in the 125-kg and 100-kg groups (p < 0.05). Taken together, raising SW to 125 kg, or more, decreased the flavor of TF pork and had no benefits to pork quality attributes. Our results provided insights into the molecular basis for sensory variations among different SW of TF pork.
Collapse
Affiliation(s)
- Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Pinyao Zhao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
- Sichuan Higher Education Engineering Research Center for Agri-food Standardization and Inspection, Yibin, China
| | - Yuanfeng Li
- School of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
6
|
Liu Y, Tang Y, Mei H, Liu Z, Li Z, Ma X, Luo Z, Huang W, Li Y, Yu M. Feeding citrus pomace fermented with combined probiotics improves growth performance, meat quality, fatty acid profile, and antioxidant capacity in yellow-feathered broilers. Front Vet Sci 2024; 11:1469947. [PMID: 39811146 PMCID: PMC11729385 DOI: 10.3389/fvets.2024.1469947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers. Methods A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP). Results The results showed that dietary FCP significantly increased (p < 0.05) the final-body-weight and average-daily-gain of broilers, and the pH45 min and b*24 h values in breast muscle, while tendentiously lowering the feed-to-gain ratio (p = 0.076). The levels of inosine monophosphate (p < 0.05) and intramuscular fat (p = 0.083) in the FCP group were higher than those in the control group. Remarkably, dietary FCP and UFCP increased the levels of polyunsaturated fatty acids (PUFAs) and n-6 PUFAs (p < 0.05). Moreover, dietary FCP decreased (p < 0.05) the malondialdehyde content and increased (p < 0.05) the glutathione peroxidase content in serum. Ingestion of FCP and UFCP increased the levels of total antioxidant capacity and catalase activity in serum, and concentrations of glutathione peroxidase and catalase in breast muscle (p < 0.05). Additionally, diet containing FCP or UFCP upregulated the expression of SREBP - 1c, FAS, NRF2, GSH-Px, and CAT in breast muscle (p < 0.05). Discussion Overall, dietary supplementation with FCP obviously improved meat quality, enhanced the antioxidant capacity and regulated the lipid metabolism, contributing to the improvement of growth performance of yellow-feathered broilers.
Collapse
Affiliation(s)
- Yanchen Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yantian Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan Branch, Heyuan, China
| | - Huadi Mei
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhichang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhihui Luo
- Longping Huangmang Ecological Agriculture Farm, Qingyuan, China
| | - Weiwen Huang
- Kaiping Xufeng Farming and Husbandry Co., Ltd, Jiangmen, China
| | - Yuanfei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Han R, Yong F, Fang X, Zhang C, Yang H, Che D, Jiang H. Influences of Fermented Corn Straw Fiber on Performance and Nutrient Utilization in Different Breeds of Finishing Pigs. Animals (Basel) 2024; 14:3393. [PMID: 39682358 DOI: 10.3390/ani14233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to explore the effects of dietary fiber level and breed on the growth performance, nutrient utilization, intestinal morphology, slaughter performance, and meat quality of finishing pigs using fermented corn straw (FCS) as the fiber source. The experiment employed a 2 × 4 factorial design, selecting 96 Songliao Black (SLB) and Duroc × Landrace × Yorkshire (DLY) crossbred finishing pigs (a total of 192 pigs, with an initial body weight of 60.52 ± 4.59 kg) randomly assigned by breed to four dietary treatment groups (A: 2.92% crude fiber; B: 4.82% crude fiber; C: 6.86% crude fiber; D: 9.01% crude fiber). The results showed that DLY finishing pigs had higher final weight (FW), average daily gain (ADG), and average daily feed intake (ADFI) in both finishing stages 1 and 2 compared to SLB pigs (p < 0.05), while the ratio of feed to weight gain (F/G) showed no significant differences (p > 0.05). Compared to the basal diet, increasing the dietary fiber level to 4.82% improved FW and ADG in both SLB and DLY finishing pigs (p < 0.05) and reduced F/G (p < 0.05). Additionally, SLB finishing pigs had lower ether extract (EE) digestibility but higher crude fiber (CF) and acid detergent fiber (ADF) digestibility than DLY (p < 0.05). Dietary fiber level and breed exhibited an interaction effect on dry matter (DM) and crude protein (CP) digestibility in finishing pigs (p < 0.05). At a dietary fiber level of 4.82%, villus height, crypt depth in the jejunum, and cecal volatile fatty acid (VFA) concentrations were increased in both SLB and DLY finishing pigs (p < 0.05). Dietary fiber level and breed showed an interaction effect on cecal VFA production in finishing pigs (finishing stage 1; p < 0.05). The dietary fiber level of 4.82% increased loin eye area (LA) (p < 0.05) and decreased backfat thickness (BT) (p < 0.05) in both SLB and DLY finishing pigs. Dietary fiber level and breed had an interaction effect on LA in finishing pigs (p < 0.05). SLB pigs had higher muscle redness (a*), shear force, and contents of crude protein (CP), EE, saturated fatty acid (SFA), and polyunsaturated fatty acids (PUFA) than DLY (p < 0.05). Increasing the dietary fiber level improved pH24h and reduced drip loss and shear force in both SLB and DLY finishing pigs (p < 0.05). Dietary fiber level and breed showed an interaction effect on pig meat color and drip loss (p < 0.05). In conclusion, FCS is a beneficial source of dietary fiber for SLB and DLY pigs. Its proper addition can enhance the growth performance, carcass traits, and meat quality in fattening pigs.
Collapse
Affiliation(s)
- Rui Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| | - Feng Yong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| | - Xin Fang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| | - Chun Zhang
- Assets and Equipment Department, Changchun Sci-Tech University, Changchun 130600, China
| | - Haitian Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
- Jilin Provincial Swine Industry Technical Innovation Center, Changchun 130118, China
| |
Collapse
|
8
|
Cheng Y, He J, Zheng P, Yu J, Pu J, Huang Z, Mao X, Luo Y, Luo J, Yan H, Wu A, Yu B, Chen D. Effects of replacing soybean meal with enzymolysis-fermentation compound protein feed on growth performance, apparent digestibility of nutrients, carcass traits, and meat quality in growing-finishing pigs. J Anim Sci Biotechnol 2024; 15:127. [PMID: 39261875 PMCID: PMC11391718 DOI: 10.1186/s40104-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Addressing the shortage of high-quality protein resources, this study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of enzymolysis-fermentation compound protein feed (EFCP) in the diets of growing-finishing pigs, focusing on growth performance, nutrients digestibility, carcass traits, and meat quality. METHODS Sixty DLY (Duroc × Landrace × Yorkshire) pigs with an initial body weight of 42.76 ± 2.05 kg were assigned to 5 dietary treatments in a 2 × 2 + 1 factorial design. These dietary treatments included a corn-soybean meal diet (CON), untreated compound protein feed (UCP) substitution 50% (U50) and 100% SBM (U100) diets, and EFCP substitution 50% (EF50) and 100% SBM (EF100) diets. Each treatment had 6 pens (replicates) with 2 pigs per pen, and the experiment lasted 58 d, divided into phase I (1-28 d) and phase II (29-58 d). Following phase I, only the CON, U50, and EF50 groups were continued for phase II, each with 5 replicate pens. On d 59, a total of 15 pigs (1 pig/pen, 5 pens/treatment) were euthanized. RESULTS During phase I, the EF50 group had a higher average daily gain (ADG) in pigs (P < 0.05) compared to the CON group, whereas the U50 group did not have a significant difference. As the substitution ratio of UCP and EFCP increased in phase I, there was a noticeable reduction in the final body weight and ADG (P < 0.05), along with an increase in the feed-to-gain ratio (F/G) (P < 0.05). In phase II, there were no significant differences in growth performance among the treatment groups, but EF50 increased the apparent digestibility of several nutrients (including dry matter, crude protein, crude fiber, acid detergent fiber, ash, gross energy) compared to U50. The EF50 group also exhibited significantly higher serum levels of neuropeptide Y and ghrelin compared to the CON and U50 groups (P < 0.05). Moreover, the EF50 group had higher carcass weight and carcass length than those in the CON and U50 groups (P < 0.05), with no significant difference in meat quality. CONCLUSIONS The study findings suggest that replacing 50% SBM with EFCP during the growing-finishing period can improve the growth performance, nutrient digestibility, and carcass traits of pigs without compromising meat quality. This research offers valuable insights into the modification of unconventional plant protein meals and developing alternatives to SBM.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
9
|
Zhang Z, Zhao H, Chen X, Tian G, Liu G, Cai J, Jia G. Enhancing pig growth and gut health with fermented Jatropha curcas cake: Impacts on microbiota, metabolites, and neurotransmitters. J Anim Physiol Anim Nutr (Berl) 2024; 108:1243-1257. [PMID: 38648292 DOI: 10.1111/jpn.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Given the escalating global crisis in feed protein availability, Jatropha curcas L. cake has attracted significant interest as a viable alternative protein source in animal feed. This experiment was conducted to investigate the effects of fermented Jatropha curcas L. cake (FJCC) as a protein feed in the diet of pigs. A total of 96 growing pigs with an average weight of 27.60 ± 1.59 kg were divided into three dietary groups with varying FJCC inclusion levels (0, 2.5, and 5%) for a 28 d trial. Results showed that the diet with 5% FJCC (FJCC5) demonstrated significant improvements in average daily gain (p = 0.009), feed-to-gain ratio (p = 0.036), nutrient digestibility, and intestinal morphology. Furthermore, the FJCC5 diet resulted in a decrease in pH values in different gut sections (jejunum p = 0.045, cecum p = 0.001, colon p = 0.012), and favorably altered the profile of short-chain fatty acids (SCFAs) with increased butyric acid content (p = 0.005) and total SCFAs (p = 0.019). Additionally, this diet notably decreased IL-6 levels in the jejunum (p = 0.008) and colon (=0.047), significantly reduced IL-1 levels in the hypothalamus (p < 0.001), and lowered IL-1, IL-6, and IL-10 levels in plasma (p < 0.05). Microbiota and metabolite profile analysis revealed an elevated abundance of beneficial microbes (p < 0.05) and key metabolites such as 4-aminobutyric acid (GABA) (p = 0.003) and serotonin (5-HT) (p = 0.022), linked to neuroactive ligand-receptor interaction. Moreover, FJCC5 significantly boosted circulating neurotransmitter levels of 5-HT (p = 0.006) and GABA (p = 0.002) in plasma and hypothalamus, with corresponding increases in precursor amino acids (p < 0.05). These findings suggest that FJCC, particularly at a 5% inclusion rate, can be an effective substitute for traditional protein sources like soybean meal, offering benefits beyond growth enhancement to gut health and potentially impacting the gut-brain axis. This research underscores FJCC's potential as a valuable component in sustainable animal nutrition strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
- Agricultural and Rural Bureau of Dongpo District, Meishan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Zhao Z, Wu J, Yao X, Sun H, Wu Y, Zhou H, Wang X, Guo K, Deng B, Tang J. Influence of Fermented Broccoli Residues on Fattening Performance, Nutrient Utilization, and Meat Properties of Finishing Pigs. Animals (Basel) 2024; 14:1987. [PMID: 38998099 PMCID: PMC11240572 DOI: 10.3390/ani14131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The study determined the impacts of dietary fermented residues' (FBR) inclusion on growth, nutrient utilization, carcass characteristics, and meat properties in fattening pigs. Seventy-two robust pigs were randomly assigned to two experimental groups (Duroc × Landrace × Yorkshire, thirty-six pigs each). Each group was subjected to a 52-day trial, during which they received either a corn-soybean meal-based diet or diet enhanced with a 10% addition of FBR. Consequently, adding 10% FBR caused a significant decrease in the digestive utilization of crude dietary components in fattening pigs (p < 0.05) but showed no significant impact on the growth performance. Additionally, FBR inclusion increased the marbling scores (p < 0.05) and total antioxidant functions (p < 0.05) of muscle tissues, indicating improved meat quality. Gender affected backfat depth, with barrows showing thicker backfat depth. In conclusion, dietary supplementation with 10% FBR in finishing pigs influenced the meat quality by improving the marbling score and antioxidant performance while reducing digestibility without compromising growth performance.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie Wu
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kai Guo
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Bo Deng
- Institute of Zootechnics and Veterinary Sciences, Hangzhou 310021, China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Li Y, Tao X, Zhao P, Zhou J, Ao X. Effects of slaughter weight on carcass characteristics, meat quality, and metabolomics profiling in the longissimus dorsi muscle of Tianfu finishing pigs. Front Vet Sci 2024; 11:1420634. [PMID: 39005725 PMCID: PMC11239573 DOI: 10.3389/fvets.2024.1420634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
In order to investigate the effect of slaughter weight (SW) on carcass characteristics and meat quality, we measured the carcass characteristics, meat quality, and amino acid metabolomics characteristics of longissimus dorsi (LD) muscle from Tianfu finishing (TF) pigs. Based on SW, 13 pigs were divided into three groups (100-kg group, 125-kg group, and 150-kg group with 3, 5, 5 pigs in each group, respectively). Raising SW to 125 kg or 150 kg increased average backfat thickness (P < 0.01) and intramuscular fat content (P < 0.01), and decreased shear force (P < 0.01). A total of 231 amino acid metabolome from three amino acid classes identified with metabolomics were analyzed, and 93 differentially expressed metabolites (DEMs) were identified (69 up-regulated DEMs and 24 down-regulated DEMs). The DEMs, including urea, 3-iodo-L-tyrosine, N-glycyl-L-leucine, and N, N-dimethylglycine with amino acid metabolism, were significantly induced (P < 0.01). KEGG pathway analysis showed that these DEMs were significantly enriched (P < 0.01) in 135 metabolism pathways, including pathways related to amino acid metabolism, such as arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, tryptophan metabolism, and beta-alanine metabolism. Our research findings provided new insights into the impact of SW on amino acid distribution and theoretical support for genetic breeding of meat quality of TF pigs. However, raising SW to 125 kg, or more, decreased the carcass leanness of live TF pigs and had no benefits to pork quality attributes.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xuan Tao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Pinyao Zhao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, China
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
- Sichuan Higher Education Engineering Research Center for Agri-Food Standardization and Inspection, Yibin, China
| | - Jianchuan Zhou
- School of Animal Science and Technology, China Agricultural University, Beijing, China
- Sichuan Techlex Industrial Co. Ltd., Mianyang, China
| | - Xiang Ao
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, China
- Sichuan Techlex Industrial Co. Ltd., Mianyang, China
| |
Collapse
|
12
|
Xu C, Xiong P, Song W, Song Q, Hu Y, Song T, Ji H, Chen X, Zou Z. Effects of Fermented Navel Orange Pulp on Growth Performance, Carcass Characteristics, Meat Quality, Meat Nutritional Value, and Serum Biochemical Indicators of Finishing Tibetan Pigs. Foods 2024; 13:1910. [PMID: 38928851 PMCID: PMC11202843 DOI: 10.3390/foods13121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In order to cope with the limited supply of feed for global animal production, there is a pressing need to explore alternative feed resources. Orange pulp, a by-product of agriculture and industry, has shown potential to positively or neutrally impact pig productive performance when included in their diet. However, there is a lack of research on the effects of fermented navel orange pulp (FNOP) on pig growth and productive performance. This study aimed to investigate the effects of FNOP as a dry matter substitute on pig's growth performance, carcass characteristics, meat quality, meat nutritional value, and serum biochemical indicators. The experiment involved 128 finishing Tibetan pigs, divided into four feed treatment groups, with varying levels (0%, 5%, 10% and 15%) of FNOP replacing dry matter in the basal diet. The results indicate that substituting 5% to 15% FNOP had no adverse effects on pig growth performance. However, at a 15% substitution rate, there was a decrease in serum growth hormone and IGF-1 levels, along with an increase in the feed-to-gain ratio. A 10% FNOP replacement notably increased the loin-eye muscle area of pigs. Additionally, 5% and 10% FNOP substitutions reduced the drip loss of pork. The study also found that substituting 5% to 15% FNOP increased unsaturated fatty acids and umami nucleotide contents in pork and raised serum total protein and uric acid (nucleotide-metabolism-related product) levels. These findings suggest that moderate FNOP substitution might improve meat quality, nutritional value, and maintain growth and productive performance in Tibetan pigs by improving protein synthesis and nucleotide metabolism, while also reducing feed costs. The optimal substitution ratio identified was 10%.
Collapse
Affiliation(s)
- Chuanhui Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
- Jiangxi Provincial Key Laboratory of Green and Healthy Breeding of Livestock and Poultry, Nanchang 330200, China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
| | - Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
| | - Yan Hu
- Institute of Animal Science and Fisheries, Gannan Academy of Sciences, Ganzhou 341401, China;
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (P.X.); (W.S.); (Q.S.); (H.J.)
| | - Zhiheng Zou
- Jiangxi Provincial Key Laboratory of Green and Healthy Breeding of Livestock and Poultry, Nanchang 330200, China
| |
Collapse
|
13
|
Liu S, Du M, Sun J, Tu Y, Gu X, Cai P, Lu Z, Wang Y, Shan T. Bacillus subtilis and Enterococcus faecium co-fermented feed alters antioxidant capacity, muscle fibre characteristics and lipid profiles of finishing pigs. Br J Nutr 2024; 131:1298-1307. [PMID: 38098370 DOI: 10.1017/s000711452300291x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Liu H, Wang S, Chen M, Ji H, Zhang D. Effects of Lactobacillus-fermented low-protein diets on the growth performance, nitrogen excretion, fecal microbiota and metabolomic profiles of finishing pigs. Sci Rep 2024; 14:8612. [PMID: 38616198 PMCID: PMC11016537 DOI: 10.1038/s41598-024-58832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
This study investigated the effects of Lactobacillus-fermented low-protein diet on the growth performance, nitrogen balance, fecal microbiota, and metabolomic profiles of finishing pigs. A total of 90 finishing pigs were assigned to one of three dietary treatments including a normal protein diet (CON) as well as two experimental diets in which a low-protein diet supplemented with 0 (LP) or 1% Lactobacillus-fermented low-protein feed (FLP). In comparison with CON, the LP and FLP significantly increased average daily gain (P = 0.044), significantly decreased feed to gain ratio (P = 0.021), fecal nitrogen (P < 0.01), urine nitrogen (P < 0.01), and total nitrogen (P < 0.01), respectively. The LP group exhibited increased abundances of unclassified_f_Selenomonadaceae, Coprococcus, Faecalibacterium, and Butyricicoccus, while the abundances of Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia were enriched in the FLP group. Low-protein diet-induced metabolic changes were enriched in sesquiterpenoid and triterpenoid biosynthesis and Lactobacillus-fermented low-protein feed-induced metabolic changes were enriched in phenylpropanoid biosynthesis and arginine biosynthesis. Overall, low-protein diet and Lactobacillus-fermented low-protein diet improved the growth performance and reduce nitrogen excretion, possibly via altering the fecal microbiota and metabolites in the finishing pigs. The present study provides novel ideas regarding the application of the low-protein diet and Lactobacillus-fermented low-protein diet in swine production.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Meixia Chen
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
15
|
Liu T, Bu Z, Xiang K, Jia Y, Du S. Effects of non-pelleted or pelleted low-native grass and pelleted high-native grass diets on meat quality by regulating the rumen microbiota in lambs. Microbiol Spectr 2024; 12:e0375823. [PMID: 38363135 PMCID: PMC10986533 DOI: 10.1128/spectrum.03758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Diet modulates the rumen microbiota, which in turn can impact the animal performance. The rumen microbiota is increasingly recognized for its crucial role in regulating the growth and meat quality of the host. Nevertheless, the mechanism by which the rumen microbiome influences the fatty acid and amino acid profiles of lambs in the grass feeding system remains unclear. This study aimed to evaluate the effects of different native grass-based diets on animal performance, meat quality, fatty acid compositions, amino acid profiles, and rumen microbiota of lamb. Seventy-two Ujumqin lambs were randomly assigned into three treatments according to the initial body weight (27.39 ± 0.51 kg) and age (6 months ± 6 days). The lambs received three diets: (i) non-pelleted native grass hay with 40% concentrate diet; the native grass and concentrate were fed individually; (ii) pelleted native grass hay with 40% concentrate diet (PHLC); (iii) pelleted native grass hay with 60% concentrate diet (PHHC). The results showed that among the three groups, the PHHC and PHLC diets had markedly (P < 0.05) higher average daily gain and pH45 min, respectively. All amino acid levels were significantly (P < 0.05) decreased in the PHHC diet than in the PHLC diet. The principal coordinate analysis of the ruminal microbiota indicated the markedly distinct separation (P = 0.001) among the three groups. In addition, the correlation analysis showed that the Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Succinivibrio, and Succiniclasticum were significantly (P < 0.05) associated with most of the fatty acid and amino acid profiles. The correlation analysis of the association of microbiome with the meat quality provides us with a comprehensive understanding of the composition and function of the rumen microbial community, and these findings will contribute to the direction of future research in lamb. IMPORTANCE Diet modulates the gut microbiome, which in turn impact the meat quality, yet few studies investigate the correlation between the rumen microbiome and the fatty acid profile of meat. Here, the current study develops an experiment to investigate the correlation of the rumen microbiome and fatty acid profile of meat: rumen microbiome responses to feed type and meat quality. The results indicated a unique microbiota in the rumen of lamb in response to diets and meat quality. Associations between utilization and production were widely identified among the affected microbiome and meat quality, and these findings will contribute to the direction of future research in lamb.
Collapse
Affiliation(s)
- Tingyu Liu
- College of Agriculture, Inner Mongolia University of Nationalities, Tongliao, China
| | - Zhenkun Bu
- Guangdong Laboratory of Lingnan Modern Agriculture, Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaifeng Xiang
- Forest and Grassland Protection and Development Center, Chifeng, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Aktar J, Islam KMS, Chowdhury R, Debi MR, Emon AI. Effect of baker's yeast fermented moist feed on the growth and bone mineralization in broiler. J Adv Vet Anim Res 2024; 11:78-84. [PMID: 38680789 PMCID: PMC11055574 DOI: 10.5455/javar.2024.k750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 05/01/2024] Open
Abstract
Objective The effect of feeding yeast-fermented feed in various forms on broiler growth performance and bone mineralization was studied. Materials and Methods Initially, a corn-soy-based diet was formulated and fermented in anaerobic conditions at 28°C in laboratory space for 48 h with yeast (2.0%) and moisture (50%). Afterward, the 150 newly hatched Arbeor Acres commercial broiler chicks were divided into 5 dietary groups (30 chicks, 6 cages, and 5 birds per cage). Each group received one of the following formulated and fermented diets: dry feed (DF), moist feed (MF), yeast-added dry feed (Y-DF), yeast-added moist feed (Y-MF), or yeast-fermented moist feed (YF-MF). Water and feed were supplied ad libitum. Six birds per group were slaughtered at age 37 for the determination of carcass traits and tibia ash. Results Fermentation improved crude protein from 20.7% to 22.8% but declined crude fiber from 7.9% to 6.3% in the YF-MF group compared to the DF group. High body weight gain was recorded in 771, 830, and 992 gm in the MF, Y-MF, and YF-MF groups, respectively, compared to the DF (762 gm) group (p < 0.01). The feed conversion ratio was better in the Y-MF (1.57) and YF-MF (1.57) groups than in the DF (1.75) group. Feeding a fermented, moist diet resulted in improved carcass yield (69%) in the YF-MF group. Bone mineralization expressed a better tibia ash percentage (35% from 30%) in the YF-MF group compared to the DF group. Conclusion Therefore, YF-MF enhanced the quality of feed and improved growth, carcass weight, and bone mineralization in broiler.
Collapse
Affiliation(s)
- Jesmin Aktar
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Khan Md. Shaiful Islam
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rakhi Chowdhury
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Momota Rani Debi
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ashik Iqbal Emon
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
17
|
Lian X, Shi M, Liang Y, Lin Q, Zhang L. The Effects of Unconventional Feed Fermentation on Intestinal Oxidative Stress in Animals. Antioxidants (Basel) 2024; 13:305. [PMID: 38539839 PMCID: PMC10967513 DOI: 10.3390/antiox13030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 12/10/2024] Open
Abstract
Unconventional feed, which is abundant in China, contains anti-nutritional factors and toxins; however, these can be greatly reduced with microbial fermentation, thus improving the nutrient content of the feed, enhancing animal appetites, and ultimately significantly improving the intestinal health and growth performance of animals. When oxidative stress occurs, fermented feed can effectively reduce the damage caused by stress to the gastrointestinal tract, accelerate the removal of gastrointestinal abnormalities, improve the ability to resist intestinal stress, and ensure the efficient production of animals. This review introduces the application of unconventional fermented feed in animal production, and expounds upon the function of unconventional fermented feed in animals with oxidative stress symptoms, so as to provide a theoretical reference for the development and application of unconventional fermented feed in antioxidative stress reduction.
Collapse
Affiliation(s)
- Xiao Lian
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyu Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Lingyu Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
18
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
Gao C, Qi M, Zhou Y. Chestnut tannin extract modulates growth performance and fatty acid composition in finishing Tan lambs by regulating blood antioxidant capacity, rumen fermentation, and biohydrogenation. BMC Vet Res 2024; 20:23. [PMID: 38200507 PMCID: PMC10782739 DOI: 10.1186/s12917-023-03870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Tannins as plant extracts have emerged as promising and potential alternatives for antibiotics in modern livestock cultivation systems. This study investigates the effect of dietary chestnut tannin extract (CTE) in finishing Tan lambs. Twenty-seven male Tan lambs were randomly divided into three groups: (1) control group (CON; basal diet); (2) low-dose CTE group (LCTE; basal diet + 2 g/kg CTE, dry matter [DM] basis); (3) high-dose CTE group (HCTE; basal diet + 4 g/kg CTE, DM basis). The HCTE group exhibited markedly higher average daily gain (ADG) and DM intake than CON (P < 0.01). The ruminal total volatile fatty acid concentration increased linearly with increasing CTE supplementation (P < 0.01), while the opposite trend was observed for butyrate molar proportion (P < 0.01). Upon increasing CTE dosage, plasma glucose, high-density lipoprotein cholesterol, glutathione peroxidase, and superoxide dismutase content increased linearly (P < 0.05), whereas low-density lipoprotein cholesterol and urea nitrogen decreased linearly or quadratically (P < 0.05), respectively. A linear increase was also observed in ruminal t6 C18:1 and t9, c12 C18:2 proportions (P < 0.01), and plasma C18:2n-6 and n-6 polyunsaturated fatty acids proportions with increased CTE supplementation (P < 0.01). In the longissimus dorsi muscle, the atherogenic index decreased linearly (P < 0.05), while c11 C18:1 and C20:5n-3 increased linearly (P < 0.05). Moreover, c9, t11 conjugated linoleic acids proportion increased in subcutaneous fat with CTE supplementation (P < 0.01). In conclusion, Dietary CTE enhances the ADG of finishing Tan lambs in a dose-dependent manner, modulates plasma metabolites and antioxidant capacity, and improves rumen fermentation and body fatty acid composition. These results provide a reference for the rational application of CTE in ruminant production.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Mingjiang Qi
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan, China.
| |
Collapse
|
20
|
Tian Y, Zhang R, Li G, Zeng T, Chen L, Xu W, Gu T, Tao Z, Du X, Lu L. Microbial fermented feed affects flavor amino acids and yolk trimethylamine of duck eggs via cecal microbiota-yolk metabolites crosstalk. Food Chem 2024; 430:137008. [PMID: 37586289 DOI: 10.1016/j.foodchem.2023.137008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Microbial fermented feed (MFF) has been demonstrated to improve nutritional status as well as promote animal health. However, only a few studies have focused on its effect on the flavor of animal products, and the potential underlying mechanisms remain poorly understood. Herein, egg amino acids and yolk trimethylamine (TMA), small intestine histomorphology, cecal microbiota and yolk metabolites were analyzed in MFF-treated ducks. The results showed that MFF significantly increased the flavor amino acids in duck eggs, along with reducing the yolk TMA. MFF caused an increase in beneficial cecal microflora, and regulated the bacteria involved in the metabolism of glucolipid, TMA and its N-oxide. Moreover, MFF regulated 34 annotated metabolites markedly enriched in four metabolic pathways. Correlation analysis showed that cecal microbiota and yolk metabolites were closely related to flavor-related indicators of duck eggs. Our study therefore provides a theoretical basis for improving avian egg flavor starting from the feed.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Ruikun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xizhong Du
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
21
|
Wei C, Chang C, Zhang W, Ren D, Cai X, Zhou T, Shi S, Wu X, Si J, Yuan X, Li J, Zhang Z. Preselecting Variants from Large-Scale Genome-Wide Association Study Meta-Analyses Increases the Genomic Prediction Accuracy of Growth and Carcass Traits in Large White Pigs. Animals (Basel) 2023; 13:3746. [PMID: 38136785 PMCID: PMC10740834 DOI: 10.3390/ani13243746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Preselected variants associated with the trait of interest from genome-wide association studies (GWASs) are available to improve genomic prediction in pigs. The objectives of this study were to use preselected variants from a large GWAS meta-analysis to assess the impact of single-nucleotide polymorphism (SNP) preselection strategies on genome prediction of growth and carcass traits in pigs. We genotyped 1018 Large White pigs using medium (50k) SNP arrays and then imputed SNPs to sequence level by utilizing a reference panel of 1602 whole-genome sequencing samples. We tested the effects of different proportions of selected top SNPs across different SNP preselection strategies on genomic prediction. Finally, we compared the prediction accuracies by employing genomic best linear unbiased prediction (GBLUP), genomic feature BLUP and three weighted GBLUP models. SNP preselection strategies showed an average improvement in accuracy ranging from 0.3 to 2% in comparison to the SNP chip data. The accuracy of genomic prediction exhibited a pattern of initial increase followed by decrease, or continuous decrease across various SNP preselection strategies, as the proportion of selected top SNPs increased. The highest level of prediction accuracy was observed when utilizing 1 or 5% of top SNPs. Compared with the GBLUP model, the utilization of estimated marker effects from a GWAS meta-analysis as SNP weights in the BLUP|GA model improved the accuracy of genomic prediction in different SNP preselection strategies. The new SNP preselection strategies gained from this study bring opportunities for genomic prediction in limited-size populations in pigs.
Collapse
Affiliation(s)
- Chen Wei
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Chengjie Chang
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Wenjing Zhang
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Duanyang Ren
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Xiaodian Cai
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Tianru Zhou
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Shaolei Shi
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Xibo Wu
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530022, China; (X.W.); (J.S.)
| | - Jinglei Si
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530022, China; (X.W.); (J.S.)
| | - Xiaolong Yuan
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Jiaqi Li
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| | - Zhe Zhang
- National Engineering Research Centre for Swine Breeding Industry, Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (C.W.); (C.C.); (W.Z.); (D.R.); (X.C.); (T.Z.); (S.S.); (X.Y.); (J.L.)
| |
Collapse
|
22
|
Ibrahim D, El-sayed HI, Mahmoud ER, El-Rahman GIA, Bazeed SM, Abdelwarith AA, Elgamal A, Khalil SS, Younis EM, Kishawy ATY, Davies SJ, Metwally AE. Impacts of Solid-State Fermented Barley with Fibrolytic Exogenous Enzymes on Feed Utilization, and Antioxidant Status of Broiler Chickens. Vet Sci 2023; 10:594. [PMID: 37888546 PMCID: PMC10611247 DOI: 10.3390/vetsci10100594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
The present and future high demand of common cereals as corn and wheat encourage the development of feed processing technology that allows for the dietary inclusion of other cereals of low nutritional value in poultry feeding. Barley grains contain anti-nutritional factors that limit their dietary inclusion in the poultry industry. The treatment of barley with solid-state fermentation and exogenous enzymes (FBEs) provides a good alternative to common cereals. In this study, barley grains were subjected to solid-state microbial fermentation using Lactobacillus plantarum, Bacillus subtilis and exogenous fibrolytic enzymes. This study aimed to assess the impact of FBEs on growth, feed utilization efficiency, immune modulation, antioxidant status and the expression of intestinal barrier and nutrient transporter-related genes. One-day-old broiler chicks (Ross 308, n = 400) comprised four representative groups with ten replicates (10 chicks/replicate) and were fed corn-soybean meal basal diets with inclusions of FBEs at 0, 5, 10 and 15% for 38 days. Solid-state fermentation of barley grains with fibrolytic enzymes increased protein content, lowered crude fiber and reduced sugars compared to non-fermented barley gains. In consequence, the group fed FBEs10% had the superior feed utilization efficiency and body weight gain (increased by 4.7%) with higher levels of nutrient metabolizability, pancreatic digestive enzyme activities and low digesta viscosity. Notably, the group fed FBEs10% showed an increased villi height and a decreased crypt depth with a remarkable hyperactivity of duodenal glands. In addition, higher inclusion levels of FBEs boosted serum immune-related parameters and intestinal and breast muscle antioxidants status. Intestinal nutrient transporters encoding genes (GLUT-1, CAAT-1, LAT1 and PepT-1) and intestinal barriers encoding genes (MUC-2, JAM-2, occludin, claudins-1 and β-defensin 1) were upregulated with higher dietary FBEs levels. In conclusion, feeding on FBEs10% positively enhanced broiler chickens' performance, feed efficiency and antioxidant status, and boosted intestinal barrier nutrient transporters encoding genes.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hassainen I. El-sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Elsabbagh R. Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Shefaa M. Bazeed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Samah S. Khalil
- Department of biochemistry, drug information center, Zagazig University Hospitals, Zagazig University, Zagazig P.O. Box 44511, Egypt;
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91 V8Y1 Galway, Ireland;
| | - Abdallah E. Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
He H, Yang M, Li W, Lu Z, Wang Y, Jin M. Fecal microbial and metabolic characteristics of swine from birth to market. Front Microbiol 2023; 14:1191392. [PMID: 37789849 PMCID: PMC10543884 DOI: 10.3389/fmicb.2023.1191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the β-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Zhou X, Zhang H, Li S, Jiang Y, Kang L, Deng J, Yang C, Zhao X, Zhao J, Jiang L, Chen X. The effects of fermented feedstuff derived from Citri Sarcodactylis Fructus by-products on growth performance, intestinal digestive enzyme activity, nutrient utilization, meat quality, gut microbiota, and metabolites of broiler chicken. Front Vet Sci 2023; 10:1231996. [PMID: 37470069 PMCID: PMC10352846 DOI: 10.3389/fvets.2023.1231996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
This research aimed to assess the impact of fermented Citri Sarcodactylis Fructus by-products (FCSF) on the growth performance, gut digestive enzyme activity, nutrient utilization efficiency, gut microbiota, and their metabolites in broiler chickens. A total of 1,080 male broiler chickens were allocated into four groups (T1-T4) consisting of 6 replicates per group, each containing 45 chickens. The basal diet was provided to group T1, while groups T2, T3, and T4 were supplemented with 1%, 3%, and 5% FCSF in the basal diet, respectively. The experimental period was 42 days. The findings revealed that supplementing FCSF improved the FW and ADG of broiler chickens, and led to a reduction in the F/G, ADFI, and mortality rate of broiler chickens (p < 0.05). Furthermore, supplementation with 3% and 5% FCSF improved the thigh yield, semi-eviscerated carcass yield, slaughter yield, and lipase activity in the duodenum and ileum of birds (p < 0.05). Additionally, supplementing 3% FCSF enhanced the activity of protease in the duodenum of broilers (p < 0.05). Moreover, supplementing 3% FCSF enhanced the utilization of total phosphorus, dry matter, crude protein, and crude ash in the feed by broilers (p < 0.05). Compared with the control group, supplementation of 3% and 5% FCSF reduced the serine content in broiler chicken breast meat (p < 0.05). Supplementing 1% FCSF significantly increased the C14:0, C14:1, and C20:1 content in the breast meat compared to the other experimental groups (p < 0.05). The levels of C20:4n6 and C23:0 in the breast meat of birds of FCSF supplemented groups were lower than in T1 (p < 0.05). Furthermore, the content of ∑ω-3PUFA decreased after supplementing with 3% and 5% FCSF (p < 0.05). 16SrDNA showed that supplementing 3% FCSF reduced the ACE, Chao1, and Shannon indices in the cecum of birds (p < 0.05). Supplementing 3% FCSF also decreased the abundance of the phylum Desulfobacterota and improved genera Coprobacter and Prevotella in the cecum of broiler chickens (p < 0.05). Metabolomic analysis of the gut microbiota revealed that supplementing 3% FCSF upregulated 6 metabolites and downregulated 16 metabolites (p < 0.05). Moreover, supplementing 3% FCSF downregulated 12 metabolic pathways and upregulated 3 metabolic pathways (p < 0.05). In summary our findings indicate that supplementing FCSF can improve the growth performance of broiler chickens by enhancing intestinal digestive enzyme activity, nutrient utilization, improving gut microbial diversity, and influencing the metabolism of gut microbiota.
Collapse
Affiliation(s)
- Xinhong Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Lijuan Kang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xin Zhao
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jingjing Zhao
- Leshan Animal Disease Prevention and Control Center, Leshan, Sichuan, China
| | - Li Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| |
Collapse
|
26
|
Ma Y, Han L, Raza SHA, Gui L, Zhang X, Hou S, Sun S, Yuan Z, Wang Z, Yang B, Hassan MM, Alghsham RS, Al Abdulmonem W, Alkhalil SS. Exploring the effects of palm kernel meal feeding on the meat quality and rumen microorganisms of Qinghai Tibetan sheep. Food Sci Nutr 2023; 11:3516-3534. [PMID: 37324863 PMCID: PMC10261763 DOI: 10.1002/fsn3.3340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 10/03/2023] Open
Abstract
Palm kernel meal (PKM) has been shown to be a high-quality protein source in ruminant feeds. This study focused on the effects of feed, supplemented with different amounts of PKM (ZL-0 as blank group, and ZL-15, ZL-18, and ZL-21 as treatment group), on the quality and flavor profile of Tibetan sheep meat. Furthermore, the deposition of beneficial metabolites in Tibetan sheep and the composition of rumen microorganisms on underlying regulatory mechanisms of meat quality were studied based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry as well as 16S rDNA sequencing. The results of the study showed that Tibetan sheep in the ZL-18 group exhibited superior eating quality and flavor profile while depositing more protein and fat relative to the other groups. The ZL-18 group also changed significantly in terms of the concentration and metabolic pathways of meat metabolites, as revealed by metabolomics. Metabolomics and correlation analyses finally showed that PKM feed mainly affected carbohydrate metabolism in muscle, which in turn affects meat pH, tenderness, and flavor. In addition, 18% of PKM increased the abundance of Christensenellaceae R-7 group, Ruminococcaceae UCG-013, Lachnospiraceae UCG-002, and Family XIII AD3011 group in the rumen but decreased the abundance of Prevotella 1; the above bacteria groups regulate meat quality by regulating rumen metabolites (succinic acid, DL-glutamic acid, etc.). Overall, the addition of PKM may improve the quality and flavor of the meat by affecting muscle metabolism and microorganisms in the rumen.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation‐Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry ProductsSouth China Agricultural UniversityGuangzhou510642China
- College of Animal Science and Technology, Northwest A&F UniversityYangling712100ShaanxiPeople's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Xue Zhang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Mohamed M. Hassan
- Department of BiologyCollege of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Ruqaih S. Alghsham
- Department of PathologyCollege of Medicine, Qassim UniversityQassimSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityP.O. Box 6655Buraidah51452Kingdom of Saudi Arabia
| | - Samia S. Alkhalil
- Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, Shaqra UniversityAlquwayiyahRiyadhSaudi Arabia
| |
Collapse
|
27
|
Chen W, Tu Y, Cai P, Wang L, Zhou Y, Liu S, Huang Y, Zhang S, Gu X, Yi W, Shan T. Melatonin supplementation promotes muscle fiber hypertrophy and regulates lipid metabolism of skeletal muscle in weaned piglets. J Anim Sci 2023; 101:skad256. [PMID: 37531568 PMCID: PMC10439708 DOI: 10.1093/jas/skad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.
Collapse
Affiliation(s)
- Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wuzhou Yi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|