1
|
Oh SH, Lee SE, Han DH, Yoon JW, Kim SH, Lim ES, Lee HB, Kim EY, Park SP. Treatments of Porcine Nuclear Recipient Oocytes and Somatic Cell Nuclear Transfer-Generated Embryos with Various Reactive Oxygen Species Scavengers Lead to Improvements of Their Quality Parameters and Developmental Competences by Mitigating Oxidative Stress-Related Impacts. Cell Reprogram 2023; 25:73-81. [PMID: 36939858 DOI: 10.1089/cell.2022.0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
This study investigated the antioxidant effects of β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA), and their effects on in vitro maturation of porcine oocytes and subsequent embryonic development of somatic cell nuclear transfer (SCNT). Treatment with 1 μM BCX (BCX-1) increased the developmental rate of porcine oocytes more than treatment with 100 μM HES (HES-100) or 5 μM ICA (ICA-5). The glutathione level and mRNA expression of antioxidant genes (NFE2L2, SOD1, and SOD2) were more increased in the BCX-1 group than in the HES-100 and ICA-5 groups, while the reactive oxygen species level was more decreased. Moreover, BCX improved the developmental capacity and quality of SCNT embryos. The total cell number, apoptotic cell rate, and development-related gene expression were modulated in the BCX-1 group to enhance embryonic development of SCNT. These results show that the antioxidant effects of BCX enhance in vitro maturation of porcine oocytes and subsequent embryonic development of SCNT.
Collapse
Affiliation(s)
- Seung-Hwan Oh
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea.,Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Mirae Cell Bio, Seoul, Korea.,Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| |
Collapse
|
2
|
Rim CS, Kim YS, Rim CH, Ri YJ, Choe JS, Kim DS, Kim GS, Il Ri J, Kim RC, Chen H, Xiao L, Fu Z, Pak YJ, Jong UM. Effect of roscovitine pretreatment for increased utilization of small follicle-derived oocytes on developmental competence of somatic cell nuclear transfer embryos in pigs. Anim Reprod Sci 2022; 241:106987. [DOI: 10.1016/j.anireprosci.2022.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
|
3
|
Braga TF, Silva TCF, Marques MG, de Souza AP, Albring D, Silva LP, Caetano AR, Dode MAN, Franco MM. The dynamics of gene expression, lipid composition and DNA methylation reprogramming are different during in vitro maturation of pig oocytes obtained from prepubertal gilts and cycling sows. Reprod Domest Anim 2019; 54:1217-1229. [PMID: 31269288 DOI: 10.1111/rda.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
This study aimed to characterize the gene expression, lipid composition and DNA methylation reprogramming during in vitro maturation (IVM) of pig oocytes with different developmental competencies. We used prepubertal gilts and cycling sows as a model to obtain oocytes with different levels of competency. We found that genes involved in lipid metabolism, SLC27A4, CPT2 and PLIN2, and DNA methylation, DNMT3A, TET1 and TET3, possessed altered transcript expression levels during IVM. Specifically, SLC27A4 mRNA (p = 0.05) increased in oocytes from cycling females, whereas CPT2 (p = 0.05), PLIN2 (p = 0.02) and DNMT3A (p = 0.02) increased in oocytes from prepubertal females during IVM. Additionally, TET3 mRNA increased during IVM in oocytes from prepubertal (p = 0.0005) and cycling females (p = 0.02). The TET1 transcript decreased (p = 0.05) during IVM in oocytes from cycling sows. Regarding lipid composition, mass spectrometry revealed a cluster of ions, with molecular masses higher than m/z 700, which comprises a group of complex phospholipids, was identified in all groups of oocytes, except in those from prepubertal gilts. With respect to DNA methylation reprogramming, it was noted that the less competent oocytes were not able to reprogramme the XIST gene during IVM. We conclude that the maternal mRNA store, lipid composition and epigenetic reprogramming are still being established during maturation and are related to oocyte competence. In addition, we propose that the methylation pattern of the XIST may be used as molecular marker for oocyte competence in pigs.
Collapse
Affiliation(s)
- Thiago Felipe Braga
- Universidade de Brasília - UnB, Brasília, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Thainara Christie Ferreira Silva
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.,Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | | | | - Maurício Machaim Franco
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.,Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
4
|
Qasim M, Jin JX, Lee S, Taweechaipaisankul A, Setyawan EMN, Kim GA, Lee BC. Effects of manganese on maturation of porcine oocytes in vitro and their subsequent embryo development after parthenogenetic activation and somatic cell nuclear transfer. J Reprod Dev 2019; 65:259-265. [PMID: 30905887 PMCID: PMC6584182 DOI: 10.1262/jrd.2019-001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study was carried out to examine the effects of manganese (Mn) on the developmental competence of porcine oocytes during in vitro maturation (IVM) after
parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Upon treatment of porcine oocytes with different concentrations (0, 3, 6, and 12 ng/ml) of Mn during IVM, PA was
performed to determine the optimum concentration. Following PA, the rate of blastocyst formation was higher significantly in treated porcine oocytes at 6 ng/ml of Mn than in other groups (P
< 0.05). However, there was no substantial difference in the cleavage rate and total blastocyst cell numbers among all groups. SCNT was performed using the optimal concentration of Mn
from PA, which showed an improved blastocyst formation rate in treated oocytes compared to that in control group (P < 0.05). However, the cleavage rate and total cell numbers per
blastocyst were not different between the control and the Mn treated groups after SCNT. Additionally, oocyte nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species
(ROS) levels were assessed. There was no significant difference observed in nuclear maturation among all the groups. However, enhanced intracellular GSH levels while lower levels of ROS were
seen in the Mn treated group compared to the control group (P < 0.05). Thus, these results indicate that Mn supplementation can improve the developmental competence of porcine PA and SCNT
embryos by increasing GSH and decreasing ROS levels.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agriculture University, Heilongjiang 150030, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Budna J, Bryja A, Celichowski P, Kahan R, Kranc W, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. Reproduction 2017; 154:535-545. [PMID: 28733345 DOI: 10.1530/rep-17-0367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Proper oocyte maturation in mammals produces an oocyte capable of monospermic fertilization and embryo preimplantation. The cumulus-oocyte complexes (COCs), surrounding an oocyte, play a significant role in oocyte maturation. During this process, when the COCs undergo cumulus expansion wherein tightly compact cumulus cells (CCs) form a dispersed structure, permanent biochemical and molecular modifications occur in the maturing oocytes, indicating that the gene expression between immature and mature oocytes differs significantly. This study focuses on the genes responsible for the cellular components of morphogenesis within the developing oocyte. Brilliant cresyl blue (BCB) was used to determine the developmental capability of porcine oocytes. The immature oocytes (GV stage) were compared with matured oocytes (MII stage), using microarray and qRT-PCR analysis to track changes in the genetic expression profile of transcriptome genes. The data showed substantial upregulation of genes influencing oocyte's morphology, cellular migration and adhesion, intracellular communication, as well as plasticity of nervous system. Conversely, downregulation involved genes related to microtubule reorganization, regulation of adhesion, proliferation, migration and cell differentiation processes in oocytes. This suggests that most genes recruited in morphogenesis in porcine oocyte in vitro, may have cellular maturational capability, since they have a higher level of expression before the oocyte's matured form. It shows the process of oocyte maturation and developmental capacity is orchestrated by significant cellular modifications during morphogenesis.
Collapse
Affiliation(s)
- Joanna Budna
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Piotr Celichowski
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland
| | - Rotem Kahan
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Sylwia Ciesiółka
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland
| | - Marta Rybska
- Institute of Veterinary SciencesPoznan University of Life Sciences, Poznan, Poland
| | - Sylwia Borys
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Michal Jeseta
- Department of Obstetrics and GynecologyUniversity Hospital and Masaryk University, Brno, Czech Republic
| | - Dorota Bukowska
- Institute of Veterinary SciencesPoznan University of Life Sciences, Poznan, Poland
| | - Paweł Antosik
- Institute of Veterinary SciencesPoznan University of Life Sciences, Poznan, Poland
| | - Klaus P Brüssow
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Bruska
- Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland
| | - Maciej Zabel
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland.,Department of Histology and EmbryologyWroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Histology and EmbryologyPoznan University of Medical Sciences, Poznan, Poland .,Department of AnatomyPoznan University of Medical Sciences, Poznan, Poland.,Department of Obstetrics and GynecologyUniversity Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Budna J, Rybska M, Ciesiółka S, Bryja A, Borys S, Kranc W, Wojtanowicz-Markiewicz K, Jeseta M, Sumelka E, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach. Reprod Biol Endocrinol 2017; 15:43. [PMID: 28576120 PMCID: PMC5457624 DOI: 10.1186/s12958-017-0261-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.
Collapse
Affiliation(s)
- Joanna Budna
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Marta Rybska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Sylwia Ciesiółka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Artur Bryja
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Sylwia Borys
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Wiesława Kranc
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Katarzyna Wojtanowicz-Markiewicz
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Michal Jeseta
- 0000 0004 0609 2751grid.412554.3Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilnitrh 11, 602 00 Brno, Czech Republic
| | - Ewa Sumelka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Dorota Bukowska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Paweł Antosik
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Klaus P. Brüssow
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Małgorzata Bruska
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Michał Nowicki
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Maciej Zabel
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Bartosz Kempisty
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| |
Collapse
|
7
|
Maternal effect gene expression in porcine metaphase II oocytes and embryos in vitro: effect of epidermal growth factor, interleukin-1β and leukemia inhibitory factor. ZYGOTE 2016; 25:120-130. [PMID: 28007046 DOI: 10.1017/s0967199416000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternal effect genes (MEG) play a crucial role in early embryogenesis. In vitro culture conditions may affect MEG expression in porcine oocytes and embryos. We investigated whether in vitro culture medium supplementation with epidermal growth factor (EGF), IL-1β or LIF (leukemia inhibitory factor) affects the mRNA level of ZAR-1 (zygote arrest 1), NPM2 (nucleoplasmin 2) and DPPA3 (developmental associated protein 3) in porcine MII oocytes and embryos. Cumulus-oocyte complexes (COCs) were matured in NCSU-37 medium (control) or in NCSU-37 with EGF 10 ng/ml, IL-1β 10 ng/ml or LIF 50 ng/ml. After maturation for 44-46 h, MII oocytes were preserved for the analysis of MEG mRNA levels (experiment 1). In experiment 2, COCs were fertilized, and the presumptive zygotes were cultured in the same groups. Then, 2-, 4-, 8-cell embryos, morulae and blastocysts were collected for the analysis of MEG mRNA levels. LIF addition to the maturation medium increased MII oocyte numbers (P < 0.05), while EGF and IL-1β did not affect oocyte maturation. Medium supplementation with EGF resulted in lower DPPA3 mRNA levels in MII oocytes and in 2- and 4-cell embryos versus control embryos (P < 0.05). LIF treatment increased DPPA3 mRNA levels in morulae and blastocysts (P < 0.05). Culture with EGF and IL-1β decreased ZAR-1 and NPM2 mRNA levels in 2-cell embryos (P < 0.05). The inclusion of EGF or IL-1β in the porcine in vitro production system influences ZAR-1, NPM2 and DPPA3 mRNA in MII oocytes and embryos but not beyond the 4-cell stage. LIF stimulates oocyte maturation and affects DPPA3 mRNA in porcine morulae and blastocysts in vitro.
Collapse
|
8
|
Liu C, Wu GQ, Fu XW, Mo XH, Zhao LH, Hu HM, Zhu SE, Hou YP. The Extracellular Calcium-Sensing Receptor (CASR) Regulates Gonadotropins-Induced Meiotic Maturation of Porcine Oocytes. Biol Reprod 2015; 93:131. [PMID: 26490840 DOI: 10.1095/biolreprod.115.128579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gonadotropins and epidermal growth factor (EGF) play crucial roles in promoting oocyte maturation. The regulatory network downstream of these key factors is not well understood. The present study was designed to investigate the role of the calcium-sensing receptor (CASR) in porcine oocyte in vitro maturation. CASR expression was up-regulated in oocytes matured in gonadotropin-containing medium. Cortical distribution of CASR was enhanced with gonadotropins but not EGF. Supplementation of a CASR agonist (NPS R-568) in the gonadotropin (FSH and/or LH)-containing maturation medium significantly enhanced oocyte nuclear maturation. Addition of NPS2390, a CASR antagonist, compromised oocyte nuclear maturation. Furthermore, increased cortical distribution and decreased expression of CASR was observed after the NPS R-568 treatment. Oocytes treated with NPS R-568 had higher concentration of CYCLIN B1, decreased reactive oxygen species, and increased glutathione levels, indicative of advanced cytoplasmic maturation. In contrast, NPS2390 treatment compromised oocyte cytoplasmic maturation. A higher blastocyst formation rate after parthenogenetic activation was observed when oocytes were matured in the presence of the CASR agonist, NPS R-568. MAPK3/1 phosphorylation was increased during in vitro maturation and after NPS R-568 treatment, and decreased following CASR antagonist supplementation. Taken together, our data showed that the CASR is a gonadotropin-regulated factor that promotes porcine oocyte maturation in a MAPK-dependent manner.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guo-Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiang-Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian-Hong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Hong Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Mei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Peng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Abstract
The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.
Collapse
|
10
|
Malo C, Gil L, Cano R, Martinez F, Gonzalez N. Progesterone improves porcine in vitro fertilisation system. Acta Vet Hung 2014; 62:117-24. [PMID: 24334087 DOI: 10.1556/avet.2013.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens - progesterone analogues - on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.
Collapse
Affiliation(s)
- Clara Malo
- 1 Universidad de Zaragoza Department of Animal Pathology, Obstetrics and Reproduction Area, Faculty of Veterinary Miguel Servet 177 Zaragoza 50013 Spain
| | - Lydia Gil
- 1 Universidad de Zaragoza Department of Animal Pathology, Obstetrics and Reproduction Area, Faculty of Veterinary Miguel Servet 177 Zaragoza 50013 Spain
| | - Rafael Cano
- 1 Universidad de Zaragoza Department of Animal Pathology, Obstetrics and Reproduction Area, Faculty of Veterinary Miguel Servet 177 Zaragoza 50013 Spain
| | - Felisa Martinez
- 1 Universidad de Zaragoza Department of Animal Pathology, Obstetrics and Reproduction Area, Faculty of Veterinary Miguel Servet 177 Zaragoza 50013 Spain
| | - Noelia Gonzalez
- 1 Universidad de Zaragoza Department of Animal Pathology, Obstetrics and Reproduction Area, Faculty of Veterinary Miguel Servet 177 Zaragoza 50013 Spain
| |
Collapse
|
11
|
Son J, Malaweera DBO, Lee E, Shin S, Cho J. Development of in vitro produced porcine embryos according to serum types as macromolecule. J Vet Sci 2013; 14:315-21. [PMID: 23820204 PMCID: PMC3788157 DOI: 10.4142/jvs.2013.14.3.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/15/2012] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to establish an in vitro maturation (IVM) system by selection of efficient porcine serum during porcine in vitro production. To investigate the efficient porcine serum (PS), different types of PS [newborn pig serum, prepubertal gilt serum (PGS), estrus sow serum, and pregnancy sow serum] were used to supplement IVM media with or without gonadotrophin (GTH) and development rates of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos were then compared. The maturation rates of the PGS group was significantly higher when GTH was not added. Additionally, during development of PA embryos without GTH, the PGS group showed significantly higher cleavage and blastocyst formation rates. Moreover, the cleavage rates of IVF embryos were significantly higher in the PGS group, with no significant differences in the blastocyst formation. However, when GTH was supplemented into the IVM media, there were no significant differences among the four groups in the cleavage rates, development rates of the blastocyst, and cell number of the blastocyst after PA and IVF. In conclusion, PGS is an efficient macromolecule in porcine IVM, and GTH supplementation of the IVM media is beneficial when PS is used as macromolecule, regardless of its origin.
Collapse
Affiliation(s)
- Jungmin Son
- College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
12
|
Advances on in vitro production and cryopreservation of porcine embryos. Anim Reprod Sci 2012; 132:115-22. [PMID: 22698497 DOI: 10.1016/j.anireprosci.2012.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022]
Abstract
There have been intensive attempts to establish reliable in vitro production (IVP) and cryopreservation methods of embryos in pigs. Although a great deal of progress has been made, current IVP systems and cryopreservation still suffer from insufficient cytoplasmic abilities of in vitro matured oocytes, polyspermic fertilization, poor quality of in vitro produced embryos and low efficiency of embryo cryopreservation. Compared to other mammalian species, pig oocytes and embryos are characterized by large amounts of lipid content stored mainly in the form of lipid droplets in the cytoplasm. This fact has a negative influence on biotechnological applications on porcine oocytes and embryos. In this review, we will discuss recent studies about methods and techniques for modifying porcine embryo IVP system and embryo cryopreservation that produces high quality of pig blastocysts using in vitro maturation, in vitro fertilization, in vitro culture, microsurgical manipulation, addition of protein, the use of cytoskeleton stabilizing agents and various physical methods. The presented methods and techniques make it possible to modify the characteristics of oocytes and embryos and thus may become major tools in mammalian gamete and embryo agricultural or biotechnological applications in the future.
Collapse
|
13
|
Abstract
Oocyte maturation is a critical component of in vitro embryo production. If not carried out in a precise manner under optimal conditions, subsequent fertilization and embryo development will be compromised. Here, we describe collection and in vitro maturation procedures in swine that maintain oocyte competence, resulting in successful embryo development following fertilization. These procedures can be used both for basic research purposes and large-scale production of mature oocytes for use in subsequent assisted reproductive technologies.
Collapse
Affiliation(s)
- Ye Yuan
- University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
14
|
Marques MG, de Barros FRO, Goissis MD, Cavalcanti PV, Viana CHC, Assumpção MEOD, Visintin JA. Effect of Low Oxygen Tension Atmosphere and Maturation Media Supplementation on Nuclear Maturation, Cortical Granules Migration and Sperm Penetration in Swine In Vitro Fertilization. Reprod Domest Anim 2011; 47:491-7. [DOI: 10.1111/j.1439-0531.2011.01909.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ock SA, Kwack DO, Mohana Kumar B, Han J, Kim SW, Rho GJ. Effects of Activation Methods on DNA Synthesis and Development of Parthenogenetic Porcine Embryos. Reprod Domest Anim 2011; 46:1082-9. [DOI: 10.1111/j.1439-0531.2011.01790.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Pawlak P, Pers-Kamczyc E, Renska N, Kubickova S, Lechniak D. Disturbances of nuclear maturation in BCB positive oocytes collected from peri-pubertal gilts. Theriogenology 2011; 75:832-40. [DOI: 10.1016/j.theriogenology.2010.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 09/30/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
|
17
|
Effect of culture media on porcine embryos produced by in vitro fertilization or parthenogenetic activation after oocyte maturation with cycloheximide. ZYGOTE 2011; 19:331-7. [DOI: 10.1017/s0967199410000614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThis study evaluated the effects of reversible meiotic inhibition and different culture media (PZM3 or NCSU23) on production of porcine embryos by either in vitro fertilization (IVF) or parthenogenetic activation (PA). Oocytes from abattoir-derived ovaries were allocated into two groups for maturation: CHX (5 μg/ml cycloheximide for 10 h) or Control (no CHX). The percentage of metaphase II (MII) oocytes was determined at 36, 40 or 44 h of in vitro maturation. For IVF and PA, denuded oocytes were fertilized with purified sperm for 6 h or activated by electric stimuli. Zygotes were then subdivided into two culture groups: NCSU23 or PZM3. No effect of treatment with CHX and culture media was observed on cleavage (D3) and blastocyst (D7) rates in IVF and PA groups. There are no differences of quality or development rates between IVF-derived embryos cultured in NCSU23 or PZM3. However, we observed high quality PA embryos in PZM3 compared with NCSU23. Maturation arrest with CHX decreased the average blastocyst cell number in IVF while it was increased in PA embryos. As older oocytes are more effectively activated, CHX– blocked oocytes reached the mature stage faster than the control group. In conclusion, the CHX treatment for 10 h, followed by oocyte maturation for 40 h, is an efficient protocol to produce high quality parthenote embryos, especially when they are cultured in PZM3. However, this protocol is not satisfactory for IVF embryos production. In this case, a shorter maturation period could provide better embryo quality.
Collapse
|
18
|
Nichols SM, Gierbolini L, Gonzalez-Martinez JA, Bavister BD. Effects of in vitro maturation and age on oocyte quality in the rhesus macaque Macaca mulatta. Fertil Steril 2010; 93:1591-600. [PMID: 19249021 DOI: 10.1016/j.fertnstert.2008.12.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/28/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate oocyte quality in a primate model. DESIGN Analysis of oocyte karyotype by chromosome spreading and oocyte spindles by confocal microscopy. SETTING Research laboratory, Caribbean Primate Research Center. ANIMAL(S) Rhesus macaques aged 6-22 years. INTERVENTION(S) Fourteen females underwent both Regimen A (FSH + hCG) and Regimen B (FSH only) stimulation cycles to facilitate collection of mature and immature oocytes. Immature oocytes from Regimens A and B underwent in vitro maturation (IVM) to produce metaphase II oocytes. All metaphase II oocytes underwent gradual fixation to spread chromosomes or were fixed and stained with probes specific to alpha-tubulin, actin, and DNA for visualization of the meiotic spindle using confocal microscopy. MAIN OUTCOME MEASURE(S) Karyotype and meiotic spindle architecture differences among in vivo matured (IVO) and IVM oocytes from young and old rhesus macaques. RESULT(S) In all, 4.7% of IVO oocytes (Regimen A) from young females were hyperhaploid versus 25.0% of IVM oocytes (Regimen B) from old females; 4.5% of IVO oocytes (Regimen A) from young females versus 51.5% of IVM oocytes (Regimen B) from old females displayed abnormal chromosome alignment on the metaphase spindle. CONCLUSION(S) IVM can induce meiotic anomalies in macaque oocytes, especially those obtained from older females. Results from this study provide possible explanations for the reported reduction in developmental competence of IVM primate oocytes.
Collapse
Affiliation(s)
- Stephanie M Nichols
- Reproductive Biology Program, Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, P.O. Box 1053, Sabana Seca 00979, Puerto Rico.
| | | | | | | |
Collapse
|
19
|
Lee SR, Kim JW, Kim BS, Yoo DH, Park YS, Lee TH, Ha JH, Hyun BH, Ryoo ZY. Parthenogenetic Induction of Canine Oocytes by Electrical Stimulation and Ca-EDTA. Reprod Domest Anim 2009; 44:740-4. [DOI: 10.1111/j.1439-0531.2008.01062.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Effects of culture media and inhibitors on biology of porcine early embryonic development in vitro. Livest Sci 2009. [DOI: 10.1016/j.livsci.2008.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
The use of R-roscovitine to fit the ‘time frame’ on in vitro porcine embryo production by intracytoplasmic sperm injection. ZYGOTE 2009; 17:63-70. [DOI: 10.1017/s0967199408005017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMicromanipulation of oocytes is time consuming during ICSI experiments; however the ‘time frame’ to manipulate oocytes without a drop in efficiency is not very wide due to the use of not completely matured and/or aged MII oocytes. Therefore, the aim of this work was to study the effect of a short roscovitine pretreatment for 5 h and two different IVM periods (5R + 40IVM or 5R + 45IVM) and a prolonged IVM time from 45 h (45IVM) to 50 h (50IVM) on parthenogenetic and ICSI embryo development, in order to fit the time frame to manipulate pig oocytes to the whole labour day session. In the first experiment, oocytes, pretreated with roscovitine and IVM cultured for 5 h, showed a similar nuclear stage as non-cultured oocytes and a significantly higher percentage of GVI-GVII oocytes compared with non-roscovitine treated oocytes cultured for 5 h in IVM conditions. When COC were cultured under the 5R + 40IVM system, nuclear maturation and cleavage rates after electrical activation were significantly lower than when COC were cultured under the 45IVM, 50IVM and 5R + 45IVM culture systems (54.2% vs. 72.6–76.8% and 58.8% vs. 81.4–88.3%, respectively). However, this difference was not statistically significant for parthenogenote blastocyst rate. No differences were observed in MII and in parthenogenote and ICSI embryo development among 45IVM, 50IVM and 5R + 45IVM experimental groups. In conclusion, under our conditions and using parthenogenetic and ICSI embryos, we observed that it is feasible to prolong the pig oocyte manipulation ‘time frame’ by at least 5 h with no significant drop in blastocyst rate.
Collapse
|
22
|
Abedelahi A, Salehnia M, Allameh AA. The effects of different concentrations of sodium selenite on the in vitro maturation of preantral follicles in serum-free and serum supplemented media. J Assist Reprod Genet 2008; 25:483-8. [PMID: 18814023 DOI: 10.1007/s10815-008-9252-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/04/2008] [Indexed: 02/04/2023] Open
Abstract
PURPOSE This study was to investigate the effect of sodium selenite (SS) on in vitro maturation of mouse preantral follicles. METHODS The isolated preantral follicles were cultured in TCM 199 medium supplemented with different concentrations (0, 5, 10, 15 ng/ml) of SS and 3 mg/ml bovine serum albumin (BSA) or 5% Fetal Bovine Serum (FBS). The ovulation was induced by addition of 1.5 IU/ml human chorionic gonadotropin. The size and development of follicles and oocytes were assessed by calibrated eyepiece. RESULTS The survival rates of follicles in FBS supplemented groups containing 5 and 10 ng/ml SS (88.23%, 90.83%) were higher than other groups (P < 0.05 and P < 0.001 respectively). The mean diameter of follicles (199.84 +/- 15.58 microm) and the percentage of MII oocyte (33.08%) were higher in FBS supplemented group containing 10 ng/ml SS (P < 0.001). CONCLUSION The sodium selenite and FBS improve the in vitro growth and maturation of mouse preantral follicles.
Collapse
Affiliation(s)
- A Abedelahi
- Department of Anatomy, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | | | | |
Collapse
|
23
|
Preovulatory follicular fluid during in vitro maturation decreases polyspermic fertilization of cumulus-intact porcine oocytes. Theriogenology 2008; 70:715-24. [DOI: 10.1016/j.theriogenology.2008.04.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/02/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
|
24
|
Li M, Liang CG, Xiong B, Xu BZ, Lin SL, Hou Y, Chen DY, Schatten H, Sun QY. PI3-kinase and mitogen-activated protein kinase in cumulus cells mediate EGF-induced meiotic resumption of porcine oocyte. Domest Anim Endocrinol 2008; 34:360-71. [PMID: 18023131 DOI: 10.1016/j.domaniend.2007.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that epidermal growth factor (EGF) has the ability to promote in vitro cultured porcine oocyte maturation. However, little is known about the detailed downstream events in EGF-induced meiotic resumption. We designed this study to determine the relationship of EGF, EGFR, phosphatidylinositol 3-kinase (PI3-kinase), MAPK, and germinal vesicle breakdown (GVBD) during oocyte maturation. Our results showed that GVBD in cumulus-enclosed oocytes (CEOs) but not in denuded oocytes (DOs) was induced by EGF in a dose-dependent manner, which indicated that cumulus cells but not oocyte itself were the main target for EGF-induced meiotic resumption. Furthermore, we found that MAPK in cumulus cells rather than in oocyte was activated immediately after EGF administration. To explore whether EGF exerts its functions through MAPK pathway, the activities of EGF receptor (EGFR) and MAPK were inhibited by employing AG1478 and U0126, respectively. Inhibition of MAPK blocked EGF-induced GVBD, whereas inhibition of EGFR prevented MAPK activation. Both AG1478 and U0126 could lead to the failure of EGF-induced GVBD singly. Notably, we found that LY294002, a specific inhibitor of PI3-kinase, effectively inhibited EGF-induced MAPK activation as well as subsequent oocyte meiotic resumption and this inhibition could not be reversed by adding additional EGF. Thus, PI3-kinase-induced MAPK activation in cumulus cells mediated EGF-induced meiotic resumption in porcine CEOs. Together, this study provides evidences demonstrating a linear relationship of EGF/EGFR, PI3-kinase, MAPK and GVBD and presents a relatively definitive mechanism of EGF-induced meiotic resumption of porcine oocyte.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Da Tun Road, Chaoyang, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|