1
|
Fernández Míguez M, Presa P, Puvanendran V, Tveiten H, Hansen ØJ, Pérez M. Gene Expression and Phenotypic Assessment of Egg Quality across Developmental Stages of Atlantic Cod throughout the Spawning Season. Int J Mol Sci 2024; 25:7488. [PMID: 39000593 PMCID: PMC11242223 DOI: 10.3390/ijms25137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Egg quality in fishes is commonly determined by fertilisation success and cleavage patterns as a phenotypic outcome of underlying regulatory mechanisms. Although these phenotypic estimators of egg quality are useful in farming conditions, these "good quality" egg batches do not always translate to good larval growth and survival. The identification of genes involved in embryonic development may help find links between genetic factors of maternal origin and egg quality. Herein, the relative expression of seven stage-specific developmental genes of Atlantic cod was analysed using quantitative PCR to understand the function during embryogenesis and its relationship with egg quality. Genes ccnb2 and pvalb1 showed significant differential expression between developmental stages and significant upregulation from blastula and somite stages, respectively. The comparison of spawning batches showed that the relative gene expression of genes ccnb2, acta, tnnt3 and pvalb1 was significantly higher from the middle of the spawning season where phenotypic quality estimators establish the best egg quality. Moreover, a positive significant correlation was observed between quality estimators based on egg morphology and the genetic expression of genes acta and acta1 during somitogenesis. This study suggests that the combination of quality estimators, genetics and batch timing could help optimise reproductive protocols for commercial stocks of Atlantic cod.
Collapse
Affiliation(s)
- María Fernández Míguez
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
- Laboratory of Marine Genetic Resources, ReXenMar, CIM, Universidade de Vigo, 36310 Vigo, Spain;
- AQUACOV, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), 36202 Vigo, Spain;
| | - Pablo Presa
- Laboratory of Marine Genetic Resources, ReXenMar, CIM, Universidade de Vigo, 36310 Vigo, Spain;
| | - Velmurugu Puvanendran
- Department of Production Biology, Centre for Marine Aquaculture, Nofima AS, 9291 Tromsø, Norway; (V.P.); (Ø.J.H.)
| | - Helge Tveiten
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, The Arctic University of Norway (UiT), 9019 Tromsø, Norway;
| | - Øyvind J. Hansen
- Department of Production Biology, Centre for Marine Aquaculture, Nofima AS, 9291 Tromsø, Norway; (V.P.); (Ø.J.H.)
| | - Montse Pérez
- AQUACOV, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), 36202 Vigo, Spain;
| |
Collapse
|
2
|
Huixin P, Guangji W, Yanxin H, Yanfang P, Huixiong Y, Xiong Z, Yu'an X, Wencheng C. Transcriptome-based analysis of the toxic effects of aluminum chloride exposure on spermatocytes. Toxicol In Vitro 2023; 92:105658. [PMID: 37544489 DOI: 10.1016/j.tiv.2023.105658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Aluminum chloride (AlCl3) exposure is pervasive in our daily lives. Numerous studies have demonstrated that exposure to AlCl3 can lead to male reproductive toxicity. However, the precise mechanism of action remains unclear. The objective of this study is to investigate the mechanism of aluminum-induced toxicity by analyzing the alterations in the global transcriptome gene profile of mouse spermatocytes (GC-2spd cells) exposed to AlCl3. GC-2spd cells were exposed to concentrations of 0, 1, 2, and 4 mM AlCl3, and high-throughput mRNA-seq was performed to investigate the changes in the transcriptome after exposure to 4 mM AlCl3. Our findings indicate that exposure to AlCl3 led to an increase in oxidative stress, disrupted glutathione metabolism, reduced cell viability, and altered gene expression in mouse spermatocytes. Gene enrichment analysis revealed that the differentially expressed genes (DEGs) were associated with various biological functions such as mitochondrial inner membrane, response to oxidative stress. Furthermore, these DEGs were found to be enriched in pathways including proteasome, glutathione metabolism, oxidative phosphorylation, and Hif-1 signaling pathway. Real-time PCR and western blot were employed to validate the expression alterations of pivotal genes, and the outcomes exhibited concordance with the mRNA-seq findings. This study provides a theoretical basis for revealing the potential mechanism of male reproductive toxicity caused by aluminum exposure.
Collapse
Affiliation(s)
- Peng Huixin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wei Guangji
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Clinical Laboratory, The People's Hospital of Baise, Baise 530000, Guangxi, China
| | - Huang Yanxin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Pang Yanfang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Yuan Huixiong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Zou Xiong
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China
| | - Xie Yu'an
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China.
| | - Chen Wencheng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
3
|
Sengseng T, Okutsu T, Songnui A, Boonchuay J, Sakunrang C, Wonglapsuwan M. Molecular Markers of Ovarian Germ Cells of Banana Prawn ( Fenneropenaeus merguiensis). Curr Issues Mol Biol 2023; 45:5708-5724. [PMID: 37504276 PMCID: PMC10378296 DOI: 10.3390/cimb45070360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms involved in oogenesis for elucidating ovarian germ cell development in banana prawns. The tissue-specific distribution of certain genes identified from previous transcriptome data showed that FmCyclinB, FmNanos, and nuclear autoantigenic sperm protein (FmNASP) were only expressed in gonads. The in situ hybridization (ISH) of these three genes showed different expression patterns throughout oogenesis. FmCyclinB was highly expressed in pre-vitellogenic oocytes. FmNanos was expressed at almost the same level during oogenesis but showed the most expression in late pre-vitellogenic stages. Based on the highest expression of FmCyclinB and FmNanos in mid pre-vitellogenic and late pre-vitellogenic oocytes, respectively, we suggested that FmNanos may suppress FmCyclinB expression before initiation of vitellogenesis. Meanwhile, FmNASP expression was detected only in pre-vitellogenesis. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analysis of FmNASP expression was supported by FmNASP ISH analysis based on high expression of FmNASP in sub-adult ovaries, which contain most of pre-vitellogenic oocytes. In this study, we found three reliable ovarian markers for banana prawns and also found a dynamic change of molecular mechanism during the sub-stage of pre-vitellogenesis. We determined the expression levels of these genes involved in oogenesis. Our findings provide information for further studies on banana prawn reproduction which may assist in their cultivation.
Collapse
Affiliation(s)
- Tatiyavadee Sengseng
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Tomoyuki Okutsu
- Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Ibaraki, Japan
| | - Anida Songnui
- Trang Coastal Fisheries Research and Development Center, Department of Fisheries, Trang 92150, Thailand
| | - Jaruwan Boonchuay
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Chanida Sakunrang
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Zhang Y, Lv M, Jiang H, Li H, Li R, Yang C, Huang Y, Zhou H, Mei Y, Gao J, Cao X. Mitotic defects lead to unreduced sperm formation in cdk1 -/- mutants. Int J Biol Macromol 2023:125171. [PMID: 37271265 DOI: 10.1016/j.ijbiomac.2023.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Unreduced gametes, that are important for species evolution and agricultural development, are generally believed to be formed by meiotic defects. However, we found that male diploid loach (Misgurnus anguillicaudatus) could produce not only haploid sperms, but also unreduced sperms, after cyclin-dependent kinase 1 gene (cdk1, one of the most important kinases in regulating cell mitosis) deletion. Observations on synaptonemal complexes of spermatocyte in prophase of meiosis and spermatogonia suggested that the number of chromosomes in some spermatogonia of cdk1-/- loach doubled, leading to unreduced diploid sperm production. Then, transcriptome analysis revealed aberrant expressions of some cell cycle-related genes (such as ppp1c and gadd45) in spermatogonia of cdk1-/- loach relative to wild-type loach. An in vitro and in vivo experiment further validated that Cdk1 deletion in diploid loach resulted in mitotic defects, leading to unreduced diploid sperm formation. In addition, we found that cdk1-/- zebrafish could also produce unreduced diploid sperms. This study provides important information on revealing the molecular mechanisms behind unreduced gamete formation through mitotic defects, and lays the foundation for a novel strategy for fish polyploidy creation by using cdk1 mutants to produce unreduced sperms, which can then be used to obtain polyploidy, proposed to benefit aquaculture.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Meiqi Lv
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanjun Jiang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Yang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
5
|
Das P, Saha I, Chatterjee A, Pramanick K, Chakraborty S, Maity A, Bhowal S, Pradhan D, Mukherjee D, Maiti B. Participation of Phosphatidylinositol-3 Kinase Signalling in Human Chorionic Gonadotropin, Bovine Insulin (B-Insulin) and Human-Insulin-Like Growth Factor-I Induced Oocyte Maturation and Steroidogenesis in the Grey Mullet, Mugil Cephalus. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2020; 16:426-436. [PMID: 34084233 PMCID: PMC8126398 DOI: 10.4183/aeb.2020.426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CONTEXT The grey mullet, Mugil cephalus, is an edible fish of high economic importance. Breeding biology with reference to hormonal/growth factor regulation of oocyte maturation needs to be known for its commercial production. OBJECTIVE The present study was conducted to examine the potency of maturation inducing hormones, chorionic gonadotropin (hCG), bovine-insulin, and insulin like growth factor1 (h-IGF-1) I on ovarian steroidogenesis and oocyte maturation. DESIGN The role of hormones and growth factors on steroidogenesis and oocyte maturation was investigated using specific inhibitors, Wortmannin for phosphatidylinositol-3 (PI3) kinase, trilostane for 3β-hydroxysteroid dehydrogenase, 1-octanol and 1-heptanol for gap junctions, actinomycin D for transcription and cycloheximide for translation of signal molecules. METHODS Actions of hormonal and growth factors were examined for steroidogenesis, by radioimmunoassay and oocyte maturation by germinal vesicle breakdown (GVBD). Specific inhibitors were used to determine the cell signaling pathways, PI3 kinase. RESULTS All the inhibitors attenuated the hCG-induced oocyte maturation (GVBD%), steroidogenesis including transcription, translation, gap junctions and PI3 kinase signaling. These inhibitors failed to inhibit h-IGF-I and b-insulin-induced oocyte maturation, steroidogenesis, translation and PI3 kinase signaling. CONCLUSION hCG induces oocyte maturation via steroid dependent pathway involving gap junctions, transcription, translation and PI3 kinase signaling, unlike h-IGF-I and b-insulin in the mullet.
Collapse
Affiliation(s)
- P. Das
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | - I. Saha
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | - A. Chatterjee
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | - K. Pramanick
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | | | - A. Maity
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | - S. Bhowal
- University Of Calcutta - Biochemistry, Kolkata, West Bengal, India
| | - D. Pradhan
- Egra Sarada Shashi Bhusan College - Zoology, Egra, West Bengal, India
| | - D. Mukherjee
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| | - B.R. Maiti
- University Of Calcutta - Zoology, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Kottmann JS, Jørgensen MGP, Bertolini F, Loh A, Tomkiewicz J. Differential impacts of carp and salmon pituitary extracts on induced oogenesis, egg quality, molecular ontogeny and embryonic developmental competence in European eel. PLoS One 2020; 15:e0235617. [PMID: 32634160 PMCID: PMC7340298 DOI: 10.1371/journal.pone.0235617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Low egg quality and embryonic survival are critical challenges in aquaculture, where assisted reproduction procedures and other factors may impact egg quality. This includes European eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is applied to override a dopaminergic inhibition of the neuroendocrine system, preventing gonadotropin secretion and gonadal development. The present study used either CPE or SPE to induce vitellogenesis in female European eel and compared impacts on egg quality and offspring developmental competence with emphasis on the maternal-to-zygotic transition (MZT). Females treated with SPE produced significantly higher proportions of floating eggs with fewer cleavage abnormalities and higher embryonic survival. These findings related successful embryogenesis to higher abundance of mRNA transcripts of genes involved in cell adhesion, activation of MZT, and immune response (dcbld1, epcam, oct4, igm) throughout embryonic development. The abundance of mRNA transcripts of cldnd, foxr1, cea, ccna1, ccnb1, ccnb2, zar1, oct4, and npm2 was relatively stable during the first eight hours, followed by a drop during MZT and low levels thereafter, indicating transfer and subsequent clearance of maternal mRNA. mRNA abundance of zar1, epcam, and dicer1 was associated with cleavage abnormalities, while mRNA abundance of zar1, sox2, foxr1, cldnd, phb2, neurod4, and neurog1 (before MZT) was associated with subsequent embryonic survival. In a second pattern, low initial mRNA abundance with an increase during MZT and higher levels persisting thereafter indicating the activation of zygotic transcription. mRNA abundance of ccna1, npm2, oct4, neurod4, and neurog1 during later embryonic development was associated with hatch success. A deviating pattern was observed for dcbld1, which mRNA levels followed the maternal-effect gene pattern but only for embryos from SPE treated females. Together, the differences in offspring production and performance reported in this study show that PE composition impacts egg quality and embryogenesis and in particular, the transition from initial maternal transcripts to zygotic transcription.
Collapse
Affiliation(s)
- Johanna S. Kottmann
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Adrian Loh
- School of Science, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
8
|
Luo S, Gao X, Ding J, Liu C, Du C, Hou C, Zhu J, Lou B. Transcriptome Sequencing Reveals the Traits of Spermatogenesis and Testicular Development in Large Yellow Croaker ( Larimichthys crocea). Genes (Basel) 2019; 10:E958. [PMID: 31766567 PMCID: PMC6947352 DOI: 10.3390/genes10120958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Larimichthys crocea is an economically important marine fish in China. To date, the molecular mechanisms underlying testicular development and spermatogenesis in L. crocea have not been thoroughly elucidated. In this study, we conducted a comparative transcriptome analysis between testes (TES) and pooled multiple tissues (PMT) (liver, spleen, heart, and kidney) from six male individuals. More than 54 million clean reads were yielded from TES and PMT libraries. After mapping to the draft genome of L. crocea, we acquired 25,787 genes from the transcriptome dataset. Expression analyses identified a total of 3853 differentially expressed genes (DEGs), including 2194 testes-biased genes (highly expressed in the TES) and 1659 somatic-biased genes (highly expressed in the PMT). The dataset was further annotated by blasting with multi-databases. Functional genes and enrichment pathways involved in spermatogenesis and testicular development were analyzed, such as the neuroactive ligand-receptor interaction pathway, gonadotropin-releasing hormone (GnRH) and mitogen-activated protein kinase (MAPK) signaling pathways, cell cycle pathway, and dynein, kinesin, myosin, actin, heat shock protein (hsp), synaptonemal complex protein 2 (sycp2), doublesex- and mab-3-related transcription factor 1 (dmrt1), spermatogenesis-associated genes (spata), DEAD-Box Helicases (ddx), tudor domain-containing protein (tdrd), and piwi genes. The candidate genes identified by this study lay the foundation for further studies into the molecular mechanisms underlying testicular development and spermatogenesis in L. crocea.
Collapse
Affiliation(s)
- Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.L.); (X.G.); (J.D.); (C.L.); (C.D.); (C.H.)
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
9
|
Guan W, Qiu L, Zhang B, Yao J, Xiao Q, Qiu G. Characterization and localization of cyclin B3 transcript in both oocyte and spermatocyte of the rainbow trout ( Oncorhynchus mykiss). PeerJ 2019; 7:e7396. [PMID: 31372324 PMCID: PMC6660826 DOI: 10.7717/peerj.7396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
B-type cyclins are regulatory subunits with distinct roles in the cell cycle. To date, at least three subtypes of B-type cyclins (B1, B2, and B3) have been identified in vertebrates. Previously, we reported the characterization and expression profiles of cyclin B1 and B2 during gametogenesis in the rainbow trout (Oncorhynchus mykiss). In this paper, we isolated another subtype of cyclin B, cyclin B3 (CB3), from a cDNA library of the rainbow trout oocyte. The full-length CB3 cDNA (2,093 bp) has an open reading frame (1,248 bp) that encodes a protein of 416 amino acid residues. The CB3 transcript was widely distributed in all the examined tissues, namely, eye, gill, spleen, brain, heart, kidney, stomach, skin, muscle, and, especially, gonad. Northern blot analysis indicated only one form of the CB3 transcript in the testis and ovary. In situ hybridization revealed that, in contrast to cyclin B1 and B2 transcripts, CB3 transcripts were localized in the oocytes, spermatocytes, and spermatogonia. These findings strongly suggest that CB3 plays a role not only as a mitotic cyclin in spermatogonial proliferation during early spermatogenesis but also during meiotic maturation of the spermatocyte and oocyte in the rainbow trout.
Collapse
Affiliation(s)
- Wenzhi Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Liangjie Qiu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, USA
| | - Qing Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gaofeng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Zhao D, Zhang X, Li X, Ru S, Wang Y, Yin J, Liu D. Oxidative damage induced by copper in testis of the red swamp crayfish Procambarus clarkii and its underlying mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:120-131. [PMID: 30557757 DOI: 10.1016/j.aquatox.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is one of the most widespread environmental pollutants and is known to exert multiple toxic effects including reproductive toxicity. In this study, we investigated the toxic effect of Cu on reproduction of the red swamp crayfish (Procambarus clarkii), an economic crustacean species, by exposing adult male crayfish to 0.03 and 3.00 mg/L Cu2+ for 7 days. The results showed that Cu2+ exposure induced oxidative stress accompanied by elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in testes, and resulted in decreased sperm quality and abnormal testicular structures with apoptotic germ cells and vacuolisation in Sertoli cells. To reveal the molecular mechanism of Cu2+-induced oxidative damage in crayfish testes, we sequenced, assembled and annotated the transcriptome for crayfish testes, using the Illumina sequencing approach. After the 3.00 mg/L Cu2+ treatment, 6745 genes with differentially expressed profile were identified, of which many genes were involved in cellular response to ROS based on Gene Ontology enrichment analysis. Further, KEGG analysis demonstrated that genes with up-regulated expression levels significantly enriched in mitochondria oxidative phosphorylation pathway, suggesting disturbed mitochondrial electron transport chain was probably a main source of Cu2+-induced ROS production in testes. This study represented the first use of transcriptome to investigate the toxic effect of Cu2+ on male crayfish reproduction, and the pathways identified underlying Cu2+ toxicity at molecular level provide a novel insight into the reproductive toxicity of Cu in crustaceans.
Collapse
Affiliation(s)
- Dan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yanwen Wang
- Ecological Society of Shandong, Zhijinshi Jie 12, Jinan 250012, China
| | - Jinbin Yin
- Shandong Institute of Environmental Science, Lishan Lu 50, Jinan 250013, China
| | - Dasheng Liu
- Ecological Society of Shandong, Zhijinshi Jie 12, Jinan 250012, China; Shandong Institute of Environmental Science, Lishan Lu 50, Jinan 250013, China.
| |
Collapse
|
11
|
Qiu L, Zhao C, Wang P, Fan S, Yan L, Xie B, Jiang S, Wang S, Lin H. Genomic structure, expression, and functional characterization of checkpoint kinase 1 from Penaeus monodon. PLoS One 2018; 13:e0198036. [PMID: 29795680 PMCID: PMC5967826 DOI: 10.1371/journal.pone.0198036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Chk1 is a cell-cycle regulator. Chk1 has been identified in organisms ranging from yeast to humans, but few researchers have studied Chk1 in shrimps. We cloned Chk1 from the black tiger shrimp (Penaeus monodon). The full-length cDNA sequence of PmChk1 had 3,334 base pairs (bp), with an open reading frame of 1,455 bp. The complete genomic sequence of PmChk1 (11,081 bp) contained 10 exons separated by nine introns. qRT-PCR showed that PmChk1 was highly expressed in the ovaries and gills of P. monodon. The lowest PmChk1 expression was noted in stage III of ovarian development in P. monodon. PmChk1 expression decreased significantly after injection of 5-hydroxytryptamine and eyestalk ablation in P. monodon ovaries. RNA interference experiments were undertaken to examine the expression of PmChk1, PmCDC2, and PmCyclin B. PmChk1 knockdown in the ovaries and hepatopancreas by dsRNA-Chk1 was successful. The localization and level of PmChk1 expression in the hepatopancreas was studied using in situ hybridization, which showed that data were in accordance with those of qRT-PCR. The Gonadosomatic Index of P. monodon after dsRNA-Chk1 injection was significantly higher than that after injection of dsRNA-GFP or phosphate-buffered saline. These data suggest that PmChk1 may have important roles in the ovarian maturation of P. monodon.
Collapse
Affiliation(s)
- Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Sigang Fan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Bobo Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| | - Shu Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| |
Collapse
|
12
|
Nath P, Das D, Pal S, Maitra S. Nitric oxide (NO) inhibition of meiotic G2-M1 transition in Anabas testudineus oocytes: Participation of cAMP-dependent protein kinase (PKA) in regulation of intra-oocyte signaling events. Mol Cell Endocrinol 2018; 460:162-169. [PMID: 28743518 DOI: 10.1016/j.mce.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20β-dihydroxy-4-pregenen-3-one (17,20β-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
13
|
Genomic structure, expression pattern, and functional characterization of transcription factor E2F-2 from black tiger shrimp (Penaeus monodon). PLoS One 2017; 12:e0177420. [PMID: 28558060 PMCID: PMC5448752 DOI: 10.1371/journal.pone.0177420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/26/2017] [Indexed: 01/10/2023] Open
Abstract
Transcription factor E2F-2 is a regulator of cell cycle. Researchers identified E2F-2 genes from yeasts to humans, but few reports investigated E2F-2 gene from black tiger shrimp. In the present study, we cloned E2F-2 gene from black tiger shrimp (Penaeus monodon). Full-length PmE2F-2 complementary DNA sequence measures 3,189 bp with an open reading frame of 1,371 bp. Complete PmE2F-2 genomic sequence (17,305 bp) of P. monodon contains nine exons, which are separated by eight introns. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that PmE2F-2 is highly expressed in hepatopancreas and ovaries of P. monodon. Highest PmE2F-2 expression levels were observed in stage III ovarian development of P. monodon. PmE2F-2 expression levels were significantly augmented in ovaries of P. monodon after 5-hydroxytryptamine injection and eyestalk ablation. RNA interference experiments were conducted to examine PmE2F-2, PmCDK2, and PmCyclin E expression profiles. PmE2F-2 was successfully knocked down in ovaries and hepatopancreas via double-stranded RNA (dsRNA)-E2F-2 injection. In the same organs, PmE2F-2 expression localization and level were investigated through in situ hybridization, which revealed consistent results with those of qRT-PCR. After dsRNA-E2F-2 injection, gonadosomatic index of shrimp was significantly lower than those following dsRNA-GFP and phosphate-buffered solution injections. Therefore, PmE2F-2 may be involved in ovarian maturation in P. monodon.
Collapse
|
14
|
Molecular characterization and expression analysis of Cyclin B and Cell division cycle 2 in gonads of diploid and triploid bighead catfish, Clarias macrocephalus Günther, 1864. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.anres.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yumnamcha T, Khan ZA, Rajiv C, Devi SD, Mondal G, Sanjita Devi H, Bharali R, Chattoraj A. Interaction of melatonin and gonadotropin-inhibitory hormone on the zebrafish brain-pituitary-reproductive axis. Mol Reprod Dev 2017; 84:389-400. [PMID: 28295807 DOI: 10.1002/mrd.22795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 11/07/2022]
Abstract
Circadian cycles and photoperiod are known to influence reproductive physiology in several animals. Neuropeptides, such as gonadotropin-inhibitory hormone (GNIH) and gonadotropin-releasing hormone (GNRH), are influenced by melatonin in birds and mammals. The present study demonstrates the role of melatonin in oocyte maturation in the zebrafish (Danio rerio), via the brain-pituitary-reproductive axis, under different photic conditions. Melatonin was significantly higher both in the whole brain and ovary under continuous dark (DD) compared to continuous light (LL) conditions. Transcription of gnih in the brain was high in LL, but low in DD; similarly, melatonin exogenous treatment reduced gnih in cultured brain in a dose-dependent manner. Expression of gnrh3, however, was high in both continuous photic conditions (DD and LL), whereas fshb and lhb were high only during DD. kiss2, another neuropeptide, was high in LL, but kiss1 remain unchanged among the conditions. At the gonad level, expression of fshr, lhcgr, mtnr1aa, and mtnr1ab tracked with the expression of their respective ligand in DD and LL. The expression of mprb is high in DD ovary, although intra-ovarian growth factors (tgfb1a and bmp15) were low. The measured increased percentages of germinal vesicle breakdown, expression of Cyclin B1, and reduced Cdc2p34 phosphorylation are consistent with increased maturation in the dark. Our study thus links melatonin to the inhibition of gnih in the brain-pituitary-reproductive axis of zebrafish in response to photic conditions.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Zeeshan A Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Sijagurumayum D Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| |
Collapse
|
16
|
Tariq K, Peng W, Saccone G, Zhang H. Identification, characterization and target gene analysis of testicular microRNAs in the oriental fruit fly Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2016; 25:32-43. [PMID: 26486729 DOI: 10.1111/imb.12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate various diverse biological processes including insect spermatogenesis. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive horticultural pests in East Asia and the Pacific region. Although developmental miRNA profiles of B. dorsalis have enriched our knowledge, specific testicular miRNAs in this dipteran species are unexplored. In this study, we identified miRNAs from B. dorsalis testes by deep sequencing, which provided an overview of miRNA expression during spermatogenesis. Small RNA libraries were constructed from the testes of fully mature (FM), immature (IM) and middle-aged (MA) adult flies of B. dorsalis. Small RNA sequencing and data analysis revealed 172 known and 78 novel miRNAs amongst these libraries. Pairwise comparisons of libraries led to the identification of 24, 15 and 14 differentially expressed miRNAs in FM vs. IM, FM vs. MA and IM vs. MA insects, respectively. Using a bioinformatic approach, we predicted 124 target genes against the 13 most differentially expressed miRNAs. Furthermore, the expression patterns of six randomly selected miRNAs (from the 13 most differentially expressed miRNAs) and their putative target genes (from the 124 predicted target genes) were analysed in the testis of B. dorsalis by quantitative real-time PCR, which showed that out of six, four tested miRNAs-mRNAs had an inverse expression pattern and are probably co-regulated. This study is the first comparative profile of the miRNA transcriptome in three developmental stages of the testis, and provides a useful resource for further studies on the role of miRNAs in spermatogenesis in B. dorsalis.
Collapse
Affiliation(s)
- K Tariq
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - G Saccone
- Department of Biological Sciences, University Federico II of Naples, Naples, Italy
| | - H Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Marcos PL, Adalberto LV. Differentially expressed genes in the pituitary of the Amazonian fish Arapaima gigas. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ijfa15.0473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Wei D, Li HM, Yang WJ, Wei DD, Dou W, Huang Y, Wang JJ. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2015; 24:41-57. [PMID: 25255964 DOI: 10.1111/imb.12134] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The testis is a highly specialized tissue that plays a vital role in ensuring fertility by producing spermatozoa, which are transferred to the female during mating. Spermatogenesis is a complex process, resulting in the production of mature sperm, and involves significant structural and biochemical changes in the seminiferous epithelium of the adult testis. The identification of genes involved in spermatogenesis of Bactrocera dorsalis (Hendel) is critical for a better understanding of its reproductive development. In this study, we constructed a cDNA library of testes from male B. dorsalis adults at different ages, and performed de novo transcriptome sequencing to produce a comprehensive transcript data set, using Illumina sequencing technology. The analysis yielded 52 016 732 clean reads, including a total of 4.65 Gb of nucleotides. These reads were assembled into 47 677 contigs (average 443 bp) and then clustered into 30 516 unigenes (average 756 bp). Based on BLAST hits with known proteins in different databases, 20 921 unigenes were annotated with a cut-off E-value of 10(-5). The transcriptome sequences were further annotated using the Clusters of Orthologous Groups, Gene Orthology and the Kyoto Encyclopedia of Genes and Genomes databases. Functional genes involved in spermatogenesis were analysed, including cell cycle proteins, metalloproteins, actin, and ubiquitin and antihyperthermia proteins. Several testis-specific genes were also identified. The transcripts database will help us to understand the molecular mechanisms underlying spermatogenesis in B. dorsalis. Furthermore, 2913 simple sequence repeats and 151 431 single nucleotide polymorphisms were identified, which will be useful for investigating the genetic diversity of B. dorsalis in the future.
Collapse
Affiliation(s)
- D Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Phinyo M, Visudtiphole V, Roytrakul S, Phaonakrop N, Jarayabhand P, Klinbunga S. Characterization and expression of cell division cycle 2 (Cdc2) mRNA and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Gen Comp Endocrinol 2013; 193:103-11. [PMID: 23899716 DOI: 10.1016/j.ygcen.2013.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 11/26/2022]
Abstract
The meiotic maturation of oocytes is regulated by the maturation-promoting factor (MPF), a complex of Cdc2 (Cdk1) and Cyclin B. Here, the complete open reading frame (ORF) of Cdc2 in Penaeus monodon was characterized. PmCdc2 were 900bp in length corresponding to a polypeptide of 299 amino acids with the conserved Thr14, Tyr15 and Thr161 residues. Quantitative real-time PCR indicated that the expression level of PmCdc2 in wild intact broodstock was significantly increased in stages II (vitellogenic) and III (early cortical rod) ovaries relative to stage I (previtellogenic) ovaries and peaked in stage IV (mature) ovaries (P<0.05). The expression level of PmCdc2 in stages I-IV ovaries of eyestalk-ablated broodstock was greater than that of the same ovarian developmental stages in intact broodstock (P<0.05). Expression levels of PmCdc2 in ovaries of 18-month-old P. monodon upon 5-HT injection (50μg/g body weight) were significantly increased at 1hour post injection (hpi, P<0.05). Recombinant PmCdc2 protein and its polyclonal antibody were successfully produced. Western blot analysis revealed the expected 34kDa band (PmCdc2) along with a smaller band of 23kDa (ribosomal protein S3) in ovaries of juveniles and various ovarian stages of broodstock. Using phospho-Cdc2 (Thr161) polyclonal antibody, the positive signal of 34kDa was observed in all ovarian stages but the most intense signal was found in stage IV ovaries. Results in the present study indicated that PmCdc2 gene/protein plays an important role in the development and maturation of oocytes/ovaries in P. monodon.
Collapse
Affiliation(s)
- Mahattanee Phinyo
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
20
|
Chen J, Liu P, Li Z, Chen Y, Qiu GF. The cloning of the cdk2 transcript and the localization of its expression during gametogenesis in the freshwater giant prawn, Macrobrachium rosenbergii. Mol Biol Rep 2013; 40:4781-90. [PMID: 23653005 DOI: 10.1007/s11033-013-2574-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinases (cdks) are key regulators of the cell cycle. In mammals, cdk2 plays an essential role in the meiosis of spermatocytes and oocytes. To investigate the role of cdk2 kinase during gametogenesis in crustaceans, we cloned a complete cDNA sequence of cdk2 from the freshwater giant prawn, Macrobrachium rosenbergii, and examined its localization and expression in the developing gonads. The prawn cdk2 cDNA is 1,745 bp in length and encodes a putative protein of 305 amino acids. The deduced protein contains a conserved cyclin binding motif PSTAIRE and shares high homology with reported cdk2 kinases of other species. RT-PCR analysis showed a wide distribution of the cdk2 mRNA in all tested organs including the testis, ovary, heart, muscles, hepatopancreas and gills, and the highest level of expression in the ovary and testis. Localization by in situ hybridization of cdk2 mRNA in the ovary showed high expression in the ooplasm of previtellogenic and the nuclei of late vitellogenic oocytes. In testicular sections, cdk2 transcript is low in spermatogonia, high in spermatocytes, but reduced in spermatids and sperm. The high expression of the cdk2 transcripts in meiotic spermatocytes and oocytes indicated that the cdk2 gene has the conservative function in the germ cells meiosis during gametogenesis.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Aquatic Genetic Resources and Utilization Certificated by the Ministry of Agriculture, College of Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
He L, Jiang H, Cao D, Liu L, Hu S, Wang Q. Comparative transcriptome analysis of the accessory sex gland and testis from the Chinese mitten crab (Eriocheir sinensis). PLoS One 2013; 8:e53915. [PMID: 23342039 PMCID: PMC3547057 DOI: 10.1371/journal.pone.0053915] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/04/2012] [Indexed: 01/30/2023] Open
Abstract
The accessory sex gland (ASG) is an important component of the male reproductive system, which functions to enhance the fertility of spermatozoa during male reproduction. Certain proteins secreted by the ASG are known to bind to the spermatozoa membrane and affect its function. The ASG gene expression profile in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been conducted on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for the ASG of E. sinensis using Illumina sequencing technology. This analysis yielded a total of 33,221,284 sequencing reads, including 2.6 Gb of total nucleotides. Reads were assembled into 85,913 contigs (average 218 bp), or 58,567 scaffold sequences (average 292 bp), that identified 37,955 unigenes (average 385 bp). We assembled all unigenes and compared them with the published testis transcriptome from E. sinensis. In order to identify which genes may be involved in ASG function, as it pertains to modification of spermatozoa, we compared the ASG and testis transcriptome of E. sinensis. Our analysis identified specific genes with both higher and lower tissue expression levels in the two tissues, and the functions of these genes were analyzed to elucidate their potential roles during maturation of spermatozoa. Availability of detailed transcriptome data from ASG and testis in E. sinensis can assist our understanding of the molecular mechanisms involved with spermatozoa conservation, transport, maturation and capacitation and potentially acrosome activation.
Collapse
Affiliation(s)
- Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Hui Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Dandan Cao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lihua Liu
- School of Life Science, East China Normal University, Shanghai, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Drivenes Ø, Taranger GL, Edvardsen RB. Gene expression profiling of Atlantic cod (Gadus morhua) embryogenesis using microarray. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:167-176. [PMID: 21833508 DOI: 10.1007/s10126-011-9399-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
Atlantic cod (Gadus morhua) is a fish species of high importance, as a key species in a range of Northern ecosystems, in fisheries, and as an emerging species in aquaculture. So far, little is known about the transcriptional activity during early developmental stages of Atlantic cod. Hence, we decided to use a cDNA microarray covering 7,000 genes to analyze the temporal activity of the transcriptome during cod embryogenesis. Twelve different embryonic time points were selected, covering major developmental stages and processes such as maternally derived mRNA, blastula, gastrula, segmentation, hatching, and first-feeding larval stage. The microarray analysis revealed a highly dynamic transcriptional profile, showing for the first time the differential expression of thousands of known and unknown genes during Atlantic cod embryogenesis. These initial findings will serve as an important baseline for future in-depth studies of candidate genes involved in development, reproductive control, disease resistance, growth, nutrient digestion, and metabolism.
Collapse
Affiliation(s)
- Øyvind Drivenes
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | | | | |
Collapse
|
23
|
He L, Wang Q, Jin X, Wang Y, Chen L, Liu L, Wang Y. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS One 2012; 7:e33735. [PMID: 22442720 PMCID: PMC3307765 DOI: 10.1371/journal.pone.0033735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation.
Collapse
Affiliation(s)
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| | | | | | | | | | | |
Collapse
|
24
|
An ovary transcriptome for all maturational stages of the striped bass (Morone saxatilis), a highly advanced perciform fish. BMC Res Notes 2012; 5:111. [PMID: 22353237 PMCID: PMC3305648 DOI: 10.1186/1756-0500-5-111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/21/2012] [Indexed: 12/30/2022] Open
Abstract
Background The striped bass and its relatives (genus Morone) are important fisheries and aquaculture species native to estuaries and rivers of the Atlantic coast and Gulf of Mexico in North America. To open avenues of gene expression research on reproduction and breeding of striped bass, we generated a collection of expressed sequence tags (ESTs) from a complementary DNA (cDNA) library representative of their ovarian transcriptome. Results Sequences of a total of 230,151 ESTs (51,259,448 bp) were acquired by Roche 454 pyrosequencing of cDNA pooled from ovarian tissues obtained at all stages of oocyte growth, at ovulation (eggs), and during preovulatory atresia. Quality filtering of ESTs allowed assembly of 11,208 high-quality contigs ≥ 100 bp, including 2,984 contigs 500 bp or longer (average length 895 bp). Blastx comparisons revealed 5,482 gene orthologues (E-value < 10-3), of which 4,120 (36.7% of total contigs) were annotated with Gene Ontology terms (E-value < 10-6). There were 5,726 remaining unknown unique sequences (51.1% of total contigs). All of the high-quality EST sequences are available in the National Center for Biotechnology Information (NCBI) Short Read Archive (GenBank: SRX007394). Informative contigs were considered to be abundant if they were assembled from groups of ESTs comprising ≥ 0.15% of the total short read sequences (≥ 345 reads/contig). Approximately 52.5% of these abundant contigs were predicted to have predominant ovary expression through digital differential display in silico comparisons to zebrafish (Danio rerio) UniGene orthologues. Over 1,300 Gene Ontology terms from Biological Process classes of Reproduction, Reproductive process, and Developmental process were assigned to this collection of annotated contigs. Conclusions This first large reference sequence database available for the ecologically and economically important temperate basses (genus Morone) provides a foundation for gene expression studies in these species. The predicted predominance of ovary gene expression and assignment of directly relevant Gene Ontology classes suggests a powerful utility of this dataset for analysis of ovarian gene expression related to fundamental questions of oogenesis. Additionally, a high definition Agilent 60-mer oligo ovary 'UniClone' microarray with 8 × 15,000 probe format has been designed based on this striped bass transcriptome (eArray Group: Striper Group, Design ID: 029004).
Collapse
|
25
|
Preechaphol R, Klinbunga S, Khamnamtong B, Menasveta P. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH). Genet Mol Biol 2010; 33:676-85. [PMID: 21637577 PMCID: PMC3036150 DOI: 10.1590/s1415-47572010000400014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/29/2010] [Indexed: 12/05/2022] Open
Abstract
Suppression subtractive hybridization (SSH) libraries between cDNA in stages I (previtellogenic) and III (cortical rod) ovaries of the giant tiger shrimp (Penaeus monodon) were established. In all, 452 ESTs were unidirectionally sequenced. Sequence assembly generated 28 contigs and 201 singletons, 109 of which (48.0%) corresponding to known sequences previously deposited in GenBank. Several reproduction-related transcripts were identified. The full-length cDNA of anaphase promoting complex subunit 11 (PmAPC11; 600 bp with an ORF of 255 bp corresponding to a polypeptide of 84 amino acids) and selenoprotein Mprecursor (PmSePM; 904 bp with an ORF of 396 bp corresponding to a polypeptide of 131 amino acids) were characterized and reported for the first time in penaeid shrimp. Semiquantitative RT-PCR revealed that the expression levels of PmSePM and keratinocyte-associated protein 2 significantly diminished throughout ovarian development, whereas Ser/Thrcheckpoint kinase 1 (Chk1), DNA replication licensing factor mcm2 and egalitarian were down-regulated in mature ovaries of wild P. monodon (p < 0.05). Accordingly, the expression profiles of PmSePM and keratinocyte-associated protein 2 could be used as biomarkers for evaluating the degree of reproductive maturation in domesticated P. monodon.
Collapse
Affiliation(s)
- Rachanimuk Preechaphol
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok Thailand
| | | | | | | |
Collapse
|
26
|
Wanna W, Rexroad CE, Yao J. Identification of a functional splice variant of 14-3-3E1 in rainbow trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:70-80. [PMID: 19590924 DOI: 10.1007/s10126-009-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and characterization of a new isoform of the rainbow trout 14-3-3E1 gene generated by alternative splicing. The new isoform contains an insertion of 48 nucleotides (from intron 5) in the coding region of 14-3-3E1 which results in the introduction of a premature stop codon between exon 5 and exon 6. Thus, the alternatively spliced form of 14-3-3E1 (14-3-3E1DeltaC17) lacks 17 amino acid residues at the C terminus encoded by the last exon (exon 6). Reverse-transcription polymerase chain reaction analysis revealed that the wild-type 14-3-3E1 (14-3-3E1wt) is ubiquitously expressed, while 14-3-3E1DeltaC17 shows tissue-specific as well as stage-specific expression during ovarian development and early embryogenesis. Analysis by yeast two-hybrid system demonstrated that 14-3-3E1Delta17 interacts with a number of proteins including ATP synthase, ankyrin repeat domain 13b, cytochrome c subunit VIa, cytochrome c subunit VIb, 60S ribosomal protein L34, solute carrier family 17 member 6 (SLC17A6), troponin I, and an unknown protein. Although all of these proteins except for SLC17A6 also interact with 14-3-3E1wt, 14-3-3E1Delta17 appears to have higher binding affinity with these proteins than 14-3-3E1wt. These findings suggest that alternative splicing affects the function and tissue-specific expression of 14-3-3E1.
Collapse
Affiliation(s)
- Warapond Wanna
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
27
|
DONG LY, LI QF, QU XG, LI YX, LI XF, XU HT. Expression levels of Cdc2 and Cdc25A mRNA in cattle, yak, and cattle-yak testis. YI CHUAN = HEREDITAS 2009; 31:495-9. [DOI: 10.3724/sp.j.1005.2009.00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Jiang H, Yin Y, Zhang X, Hu S, Wang Q. Chasing relationships between nutrition and reproduction: A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:227-34. [PMID: 20403758 DOI: 10.1016/j.cbd.2009.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
There is a delicate relationship between nutrition and reproduction of mitten crab (Eriocheir sinensis). The crabs store significant amounts of energy in hepatopancreas, which is prepared for significant energy output and expenditure during reproduction, but the internal molecular mechanism has never been known. Here we present the first relationship between hepatopancreas and testis of E. sinensis. We acquired 6287 high quality expressed sequence tags (EST), representing 3829 unigenes totally, from healthy male mitten crabs of first grade. We investigated the Gene Ontology and the main metabolism processes of hepatopancreas and testis from E. sinensis. Genes most likely expressed more frequently and localized in hepatopancreas, and abundant genes from testis for multiple functions. Many genes important for the nutrition regulation are in the EST resource, including arginine kinase, leptin receptor-like protein, seminal plasma glycoprotein 120, and many kinds of zinc finger proteins. The EST data also revealed genes such as heat shock protein 70, testis enhanced gene transcript (TEGT), Cyclin K, etc. predicted to play important roles in regulation of reproduction mechanisms. Among these genes, alignment of leptin receptor-like protein and vasa-like protein from E. sinensis and other species showed even more genomic information on E. sinensis. We identified seventeen genes relevant to control of nutrition mechanisms and eleven genes involved in regulation of reproduction. And this study provides insights into the genetic and molecular mechanisms of nutrition and reproduction in the crab. Such information would facilitate the optimization of breeding in the aquaculture of mitten crabs.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Biology, East China Normal University, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Kortner TM, Rocha E, Arukwe A. Previtellogenic oocyte growth and transcriptional changes of steroidogenic enzyme genes in immature female Atlantic cod (Gadus morhua L.) after exposure to the androgens 11-ketotestosterone and testosterone. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:304-13. [DOI: 10.1016/j.cbpa.2008.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
|
30
|
Visudtiphole V, Klinbunga S, Kirtikara K. Molecular characterization and expression profiles of cyclin A and cyclin B during ovarian development of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:535-43. [PMID: 19141329 DOI: 10.1016/j.cbpa.2008.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/16/2008] [Accepted: 12/16/2008] [Indexed: 12/01/2022]
Abstract
The meiotic maturation of oocytes is regulated by maturation promoting factor (MPF), a complex of cdc2 (Cdk1) and cyclin B and other Cdk/cyclin complexes. To better understand molecular aspects governing reproductive maturation of the giant tiger shrimp (Penaeus monodon), the full length cDNAs and genomic organization of cyclins A and B (PMCyA and PMCyB) were characterized. A single form of PMCyA contained an open reading frame (ORF) of 1326 bp corresponding to a deduced protein of 441 amino acids. Its genomic sequence contained 5 exons, 4 introns and untranslated regions (UTRs) spanning 2586 bp in length. In contrast, PMCyB possessed three isoforms with an identical ORF of 1206 bp (401 amino acids) but three different 3' UTR lengths of 416, 543 and 1117 bp, respectively. Their respective genomic sequences were composed of 8 exons, 7 introns and UTRs covering 4181, 4307 and 4940 bp. Expression levels of both PMCyA and PMCyB in ovaries of broodstock were much greater than those of juveniles (P<0.05). During ovarian development and after spawning of normal shrimp broodstock, PMCyA was not differentially expressed (P>0.05) whereas the level of PMCyB in stage IV was greater than that of stage I ovaries (P<0.05). Unilateral eyestalk ablation, a technique commonly used to induce spawning in P. monodon female brooders, had no effects on transcription of PMCyB (P>0.05) but resulted in a lower expression of PMCyA at stage IV of ovarian development of this economically important species (P<0.05).
Collapse
Affiliation(s)
- Virak Visudtiphole
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | | | | |
Collapse
|
31
|
Qiu GF, Liu P. On the role of Cdc2 kinase during meiotic maturation of oocyte in the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:243-8. [PMID: 19118638 DOI: 10.1016/j.cbpb.2008.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Cdc2 kinase is a catalytic subunit of maturation-promoting factor (MPF), a central factor for inducing the meiotic maturation of oocyte. To understand the role of Cdc2 kinase on the oocyte maturation in crustacean, a complete cDNA sequence of Cdc2 kinase was cloned from Chinese mitten crab Eriocheir sinensis and its spatial-temporal expression profiles were analyzed during oogenesis at RNA and protein levels. The crab Cdc2 cDNA (1364 bp) encodes for a 299 amino acids protein with calculated molecular weight of 34.7 kDa. The Cdc2 mRNAs level showed no significant change in the ovary during oogenesis, whereas higher protein level was found at previtellogenesis, late vitellogenesis and germinal vesicle breakdown (GVBD) stages. Two forms (35 kDa and 34 kDa) of Cdc2 proteins were simultaneously identified in ovary at all stages. Immunocytochemistry analysis revealed that Cdc2 proteins locate exclusively in ooplasm of previtellogenic oocyte, and then relocate into germinal vesicle at vitellogenesis stage and accumulate on meiotic spindle at oocyte maturation. These findings suggest that Cdc2 kinase has essential roles in inducing GVBD and generating meiotic apparatus during the crab oocyte maturation.
Collapse
Affiliation(s)
- Gao-Feng Qiu
- E-Institute of Shanghai Universities (EISU) Aquaculture Division, and Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, PR China.
| | | |
Collapse
|
32
|
|