1
|
Fijak M, Hasan H, Meinhardt A. Galectin-1 and galectin-3 in male reproduction - impact in health and disease. Semin Immunopathol 2025; 47:6. [PMID: 39792160 PMCID: PMC11723847 DOI: 10.1007/s00281-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved. In this context, possible effects of galectins on the immunoregulatory functions and fertilization ability of male germ cells are postulated. Galectins are pleiotropic lectins involved in the homeostasis, modulation of immune responses and pathological processes. Despite the well-recognized role of galectins in female reproduction, the functions of galectins in the male reproductive organs, particularly the testis and epididymis, remain largely unexplored. Among the galectins, galectin-1 and galectin-3 are the best-studied in these organs. This review summarizes the current knowledge of the cellular expression and the roles of galectin-1 and galectin-3 in testis and epididymis and discusses their functions in spermatogenesis, steroidogenesis, epididymal maturation of spermatozoa and inflammatory response.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany
| |
Collapse
|
2
|
Peng J, Wang T, Li F, Wang S, Zhang M, Ayala J, Liu Y, Hou R, Cai K. Proteomic analysis of giant panda testicular tissue of different age groups. PeerJ 2024; 12:e18249. [PMID: 39677950 PMCID: PMC11639135 DOI: 10.7717/peerj.18249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Background The reproductive ability of male giant pandas has been a major complicating factor in the ex-situ conservation of the species. While it is well known that the testis produces sperm and secretes androgens, a process that requires precise regulation of various proteins, at present, there has been no systematic study on the composition of proteins in the testis of the giant pandas. Therefore, this study aims to apply proteomics to explore the regulation of proteins in the testes of giant pandas. Methods Samples from the testes of three giant pandas (22 years, 18 years, 8 days) were studied to assess the protein's function. A label-free quantitative method was used to isolate testicular proteins from each male, 139,039 peptides and 11,435 proteins were obtained. Results Gene Ontology (GO) annotates most of the proteins involved in the processes of protein phosphorylation, oxidation-reduction, proteolysis, and signal transduction. KEGG pathway indicated that most of the proteins were involved in the pathway of signal transduction, transport, and catabolism. The protein kinase and WD40 repeats were involved in protein-protein interaction, which in turn regulates gene expression in the testicular tissue of giant pandas. Conclusions This study is the first to conduct an in-depth proteomic analysis of testicular tissue in giant pandas. The results revealed the important role of proteins in testicular tissue on spermatogenesis, testosterone production, and testicular microenvironment, providing clues for further research on male giant panda reproduction.
Collapse
Affiliation(s)
- Jing Peng
- School of Pharmacy, Chengdu University, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu, Sichuan, China
| | - Feiping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shenfei Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Mengshi Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - James Ayala
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Yuliang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kailai Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shi L, Zhang Y, Huang X, Shi M, Sun D, Zhang Y, Li W, Jin T, Feng J, Xing J, Li B, Cao G. Effects of mitoquinone (MitoQ) supplementation during boar semen cryopreservation on sperm quality, antioxidant status and mitochondrial proteomics. Anim Reprod Sci 2022; 247:107099. [DOI: 10.1016/j.anireprosci.2022.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/01/2022]
|
4
|
Li T, Wang H, Luo R, An X, Li Q, Su M, Shi H, Chen H, Zhang Y, Ma Y. Proteome Informatics in Tibetan Sheep (Ovis aries) Testes Suggest the Crucial Proteins Related to Development and Functionality. Front Vet Sci 2022; 9:923789. [PMID: 35909681 PMCID: PMC9334778 DOI: 10.3389/fvets.2022.923789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Testis has an indispensable function in male reproduction of domestic animals. Tibetan sheep (Ovis aries) is a locally adapted breed of sheep raised in the Qinghai-Tibet Plateau, with outsized roles in providing the livelihood for millions of residents. Nevertheless, less is known on how protein expression and their functional roles in developmental testes of such breed limit their use in breeding efforts. In this study, we obtained comprehensive protein profiles from testes of Tibetan sheep at three developmental stages (including pre-puberty, post-puberty, and adulthood) using data-independent acquisition-based proteomic strategy to quantitatively identify the differentially abundant proteins (DAPs) associated with testicular development and function and to unravel the molecular basis of spermatogenesis. A total of 6,221 proteins were differentially expressed in an age-dependent manner. The reliability of the gene expression abundance was corroborated by quantitative PCR and targeted parallel reaction monitoring. These DAPs were significantly enriched to biological processes concerning spermatid development and sperm deformation, mitosis, glycolytic process, cell-cell/extracellular matrix (ECM) junctions, cell proliferation, apoptosis, and migration and to the pathways including, developmental process and sexual reproduction-related (such as VEGF, estrogen, insulin, GnRH, Hippo, PI3K-Akt, mTOR, MAPK, and AMPK), and testicular cell events-related pathways (such as tight/gap/adherens junctions, ECM-receptor interaction, regulation of actin cytoskeleton, glycolysis, cell cycle, and meiosis). Based on these bioinformatics analysis, we constructed four protein–protein interaction network, among which the proteins are involved in mitosis, meiosis, spermiogenesis, and testicular microenvironment, respectively. Altogether, these bioinformatics-based sequencing results suggest that many protein-coding genes were expressed in a development-dependent manner in Tibetan sheep testes to contribute to the testicular cell development and their surrounding microenvironment remodeling at various stages of spermatogenesis. These findings have important implications for further understanding of the mechanisms underlying spermatogenesis in sheep and even other plateau-adapted animals.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ruirui Luo
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Haolin Chen
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guiyang, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Youji Ma
| |
Collapse
|
5
|
Kwiatkowski M, Hotze M, Schumacher J, Asif AR, Pittol JMR, Brenig B, Ramljak S, Zischler H, Herlyn H. Protein speciation is likely to increase the chance of proteins to be determined in 2‐DE/MS. Electrophoresis 2022; 43:1203-1214. [DOI: 10.1002/elps.202000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Madlen Hotze
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | | | - Abdul R. Asif
- Department of Clinical Chemistry/UMG‐Laboratories University Medical Center Göttingen Germany
| | - Jose Miguel Ramos Pittol
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Bertram Brenig
- Department of Molecular Biology of Livestock Institute of Veterinary Medicine University of Göttingen Göttingen Germany
| | | | - Hans Zischler
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| |
Collapse
|
6
|
Maistrelli C, Hüneke H, Langeheine M, Keuling O, Siebert U, Brehm R. Precocious puberty in male wild boars: a possible explanation for the dramatic population increase in Germany and Europe. PeerJ 2021; 9:e11798. [PMID: 34322327 PMCID: PMC8300498 DOI: 10.7717/peerj.11798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Background The wild boar population in Europe is steadily growing, one of the reasons for this increase probably being the high reproductive potential of this large mammal. Population management is important to stabilise wild boar numbers and a great deal of attention is focusing on the reasons, which might contribute to the high reproductive rates. Understanding the timing of puberty attainment provides information required for proper management practices. Knowledge of the earliest expected time of sexual maturation in male wild boars is limited, research being mostly focused on females. Previous hunting references indicate that sexual maturity in males occurs in the second year after birth. In contrast, male domestic pigs become sexually mature from about seven months of age. Thus, aims of this study were to investigate (1) whether there is a physiological ability for reproduction also in male wild boars of a younger age and (2) whether the body weight of wild boar males has a more important role than age in driving the maturation of the testis. Methods Male wild boar individuals were sampled during hunting drives in the eastern part of Lower Saxony in Germany. Testes with epididymides from 74 males were collected and prepared for histological examination and immunohistochemistry. The reproductive status could be ascertained based on development/occurrence of different germ cell populations using histology and based on the immunohistochemical detection of the anti-Müllerian hormone and androgen receptor. Results In this study, male wild boars aged nine to ten months already passed puberty and were able to reproduce if they had reached the appropriate body condition of about 29 kg dressed weight. Immunopositivity to the anti-Müllerian hormone in Sertoli cells was evident only in prepubertal animals and decreased with the onset of puberty. No immunoreaction was evident at postpuberty. The androgen receptor was detected in Sertoli cells, peritubular cells and Leydig cells, surprisingly already in Sertoli cells of prepubertal wild boars as well depending on body weight. Moreover, two-thirds of young males aged about ten months were precociously reproductively mature, showing histologically the presence of spermatozoa in testes and epididymides. Conclusions As piglets are mostly born in spring, also these young male individuals could target the heat of female wild boars in the winter months, resulting in the observed population increase. Therefore, a reduction in wild boar numbers should also focus on piglets of both sexes.
Collapse
Affiliation(s)
- Claudia Maistrelli
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Hanna Hüneke
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Oliver Keuling
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
7
|
Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Mol Cell Endocrinol 2021; 527:111216. [PMID: 33639219 DOI: 10.1016/j.mce.2021.111216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The testis is a temperature-sensitive organ that needs to be maintained 2-7 °C below core body temperature to ensure the production of normal sperm. Failure to maintain testicular temperature in mammals impairs spermatogenesis and leads to low sperm counts, poor sperm motility and abnormal sperm morphology in the ejaculate. This review discusses the recent knowledge on the response of testicular somatic cells to heat stress and, specifically, regarding the relevant contributions of heat, germ cell depletion and inflammatory reactions on the functions of Sertoli and Leydig cells. It also outlines mechanisms of testicular thermoregulation, as well as the thermogenic factors that impact testicular function.
Collapse
Affiliation(s)
- Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Peter G Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Ribeiro JC, Alves MG, Amado F, Ferreira R, Oliveira P. Insights and clinical potential of proteomics in understanding spermatogenesis. Expert Rev Proteomics 2021; 18:13-25. [PMID: 33567922 DOI: 10.1080/14789450.2021.1889373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: With the worldwide decline on male fertility potential, the importance of the insight of the spermatogenic process has been increasing. In recent years, proteomic methodologies have been applied to seminal fluid of infertile men to search for infertility potential biomarkers. However, to understand the spermatogenic event and to search for treatment to spermatogenic impairment, comparative analysis of testicular proteomics is considered a powerful methodology.Areas covered: Herein, we present a critical overview of the studies addressing proteomic alterations in the development of spermatogenesis during puberty, as well as during the different phases of the spermatogenic event. The comparative studies of the proteomic testicular profile of men with and without spermatogenic impairment are also discussed and key proteins and pathways involved highlighted.Expert opinion: The usage of whole human testicular tissue with its heterogeneous cellular composition makes proteome data interpretation particularly challenging. This may be minimized by controlled experiments involving the collection of testicular tissue and sperm from the same individuals, integrated in a clinically characterized cohort of healthy and infertile men. The analysis of specific subcellular proteomes can add more information to the proteomic puzzle, opening new treatment possibilities for infertile/subfertile men.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Proteomic analysis reveals key proteins involved in arginine promotion of testicular development in boars. Theriogenology 2020; 154:181-189. [PMID: 32622198 DOI: 10.1016/j.theriogenology.2020.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023]
Abstract
In order to study the effect of l-arginine on testicular development in boars and its underlying mechanism, thirty 30-day-old Duroc boars (7.0 ± 0.3 kg) were randomly allocated to either a basal diet (CON, n = 15) or a 0.8% arginine diet (ARG, n = 15). Blood samples were collected and weight measurements were done regularly to every pig during the experimental period. Testes were collected for histological and proteomic analysis from 150-day-old boars. Results showed that dietary supplementation with arginine significantly increased testicular weight, the number of spermatogonia, and the height of the seminiferous epithelium (P < 0.05). The serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were also significantly increased in the ARG group (P < 0.05). A total of 154 differentially expressed proteins (DEPs) were identified, 76 of them were upregulated and 78 were downregulated. Mainly enriched metabolic pathways were the mTOR and Wnt signaling pathways. Functional annotation suggested that 18 DEPs were related to male reproduction. Western blotting results further validated the results from proteomics. This study may provide new insights into the molecular mechanisms by which arginine promotes male testicular development.
Collapse
|
10
|
Gärtner SM, Hundertmark T, Nolte H, Theofel I, Eren-Ghiani Z, Tetzner C, Duchow TB, Rathke C, Krüger M, Renkawitz-Pohl R. Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. Eur J Cell Biol 2019; 98:103-115. [DOI: 10.1016/j.ejcb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
|
11
|
Ruan CM, Wang J, Yang YX, Hu JJ, Ma YJ, Zhang Y, Zhao XX. Proteomic analysis of Tianzhu White Yak (Bos grunniens
) testis at different sexual developmental stages. Anim Sci J 2019; 90:333-343. [DOI: 10.1111/asj.13157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Chong-Mei Ruan
- College of Veterinary Medicine; Gansu Agriculture University; Lanzhou China
- School of Animal Science and Veterinary Medicine; Xinyang Agriculture and Forestry University; Xinyang China
| | - Jing Wang
- Animal husbandry base teaching and research section; College of Animal Science and Technology; Hebei North University; Zhangjiakou Hebei China
| | - Yong-Xin Yang
- Institute of Animal Science and Veterinary Medicine; Anhui Academy of Agricultural Sciences; Hefei China
| | - Jun-Jie Hu
- College of Veterinary Medicine; Gansu Agriculture University; Lanzhou China
| | - You-Ji Ma
- College of Animal Science and Technology; Gansu Agriculture University; Lanzhou China
| | - Yong Zhang
- College of Veterinary Medicine; Gansu Agriculture University; Lanzhou China
| | - Xing-Xu Zhao
- College of Veterinary Medicine; Gansu Agriculture University; Lanzhou China
| |
Collapse
|
12
|
Özbek M, Hitit M, Yıldırım N, Özgenç Ö, Ergün E, Ergün L, Beyaz F, Kurtdede N, Altunay H. Expression pattern of galectin-1 and galectin-3 in rat testes and epididymis during postnatal development. Acta Histochem 2018; 120:814-827. [PMID: 30241677 DOI: 10.1016/j.acthis.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/20/2023]
Abstract
Galectins are a family of lectins-binding beta-galactosides involved in a variety of extracellular and intracellular processes, thereby contributing to homeostasis, cell adhesion, cellular turnover, and immunity. This study aimed to determine the localization and expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) in the testis and epididymis of rats at postnatal [(prepubertal (day 5), pubertal (day 20), postpubertal (day 50) and mature (day 70)] periods by using immunohistochemistry and Western blotting. Gal-1 and Gal-3 were differentially expressed in different types of cells in the testis and epididymis during postnatal development. While we detected Gal-1 expression in some spermatogenic cells and Leydig cells in the testis, not in the epididymal epithelium, Gal-3 was expressed in Sertoli cells, peritubular myoid cells, Leydig cells, smooth muscles and interstitial CD68-positive macrophages. Epithelial cells of the corpus and cauda epididymis showed an intense Gal-3 expression. Gal-1 expression was higher in the testis than in the epididymis on days 50 and 70. The expression of Gal-3 in the testis increased from the prepubertal to mature period. While the expression difference of Gal-3 was not statistically significant in the testis and epididymis until puberty, Gal-3 expression in the postpubertal and mature periods was higher in the epididymis. The expression of Gal-3 in the corpus and cauda epididymis was higher than that in the caput epididymis. In conclusion, our findings suggest that puberty has potential regulatory effect on the expression of galectins in testis and epididymis of rats. Gal-1 and 3 may play a role in the development of the reproductive system and the preservation of the immune-privileged environment in the testis, due to their pro-apoptotic and anti-apoptotic functions. The presence of intense expression of Gal-3 in the corpus and cauda epididymis may contribute to the maturation and storage of spermatozoa.
Collapse
Affiliation(s)
- Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Nuh Yıldırım
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Özge Özgenç
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Nevin Kurtdede
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hikmet Altunay
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Xu XY, Wu D, Xu SY, Che LQ, Fang ZF, Feng B, Li J, Wu CM, Lin Y. Comparison of microRNA transcriptomes reveals differential regulation of microRNAs in different-aged boars. Theriogenology 2018; 119:105-113. [DOI: 10.1016/j.theriogenology.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
14
|
Chen X, Shen LH, Gui LX, Yang F, Li J, Cao SZ, Zuo ZC, Ma XP, Deng JL, Ren ZH, Chen ZX, Yu SM. Genome-wide DNA methylation profile of prepubertal porcine testis. Reprod Fertil Dev 2018; 30:349-358. [PMID: 28727982 DOI: 10.1071/rd17067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
The biological structure and function of the mammalian testis undergo important developmental changes during prepuberty and DNA methylation is dynamically regulated during testis development. In this study, we generated the first genome-wide DNA methylation profile of prepubertal porcine testis using methyl-DNA immunoprecipitation (MeDIP) combined with high-throughput sequencing (MeDIP-seq). Over 190 million high-quality reads were generated, containing 43642 CpG islands. There was an overall downtrend of methylation during development, which was clear in promoter regions but less so in gene-body regions. We also identified thousands of differentially methylated regions (DMRs) among the three prepubertal time points (1 month, T1; 2 months, T2; 3 months, T3), the majority of which showed decreasing methylation levels over time. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that many genes in the DMRs were linked with cell proliferation and some important pathways in porcine testis development. Our data suggest that DNA methylation plays an important role in prepubertal development of porcine testis, with an obvious downtrend of methylation levels from T1 to T3. Overall, our study provides a foundation for future studies and gives new insights into mammalian testis development.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Liu-Hong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Li-Xuan Gui
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Fang Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jie Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Sui-Zhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Cai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiao-Ping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun-Liang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Hua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhong-Xu Chen
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Shu-Min Yu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| |
Collapse
|
15
|
Zhuang ZX, Chang SC, Chen CJ, Chan HL, Lin MJ, Liao HY, Cheng CY, Lin TY, Jea YS, Huang SY. Effect of Seasonal Change on Testicular Protein Expression in White Roman Geese. Anim Biotechnol 2018; 30:43-56. [PMID: 29426259 DOI: 10.1080/10495398.2018.1432488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to investigate the change in protein expression in the testes of ganders at various breeding stages. A total of nine 3-year-old male White Roman ganders were used. The blood and testis samples were collected at the nonbreeding, sexual reactivation, and breeding stages for sex hormone analysis and proteomic analysis, respectively. The testicular weight and serum testosterone observed for ganders at the breeding stage were higher than those for ganders at nonbreeding and sexual reactivation stages (P < 0.05). There were 124 protein spots differentially expressed in the testes of ganders at various reproductive stages. A total of 107 protein spots of 74 proteins was identified through mass spectrometry. Most of the differentially expressed proteins were responsible for the molecular functions of protein binding (24%) and catalytic activity (16%). A functional pathway analysis suggested that proteins involved in steroidogenesis, metabolism, and spermatogenesis pathways changed in the White Roman geese at various reproductive stages. In conclusion, ganders at various reproductive stages exhibited different levels of testosterone and protein expression in the testes. The varied levels of the proteins might be essential and unique key factors in seasonal reproduction in ganders.
Collapse
Affiliation(s)
- Zi-Xuan Zhuang
- a Department of Animal Science , National Chung Hsing University , Taichung , Taiwan
| | - Shen-Chang Chang
- b Kaohsiung Animal Propagation Station , Livestock Research Institute, Council of Agriculture , Pingtung , Taiwan
| | - Chao-Jung Chen
- c Department of Medical Research, Proteomics Core Laboratory , China Medical University Hospital , Taichung , Taiwan.,d Graduate Institute of Integrated Medicine , China Medical University , Taichung , Taiwan
| | - Hong-Lin Chan
- e Institute of Bioinformatics and Structural Biology , National Tsing Hua University , Hsinchu , Taiwan.,f Department of Medical Sciences , National Tsing Hua University , Hsinchu , Taiwan
| | - Min-Jung Lin
- g Changhua Animal Propagation Station , Livestock Research Institute, Council of Agriculture , Changhua , Taiwan
| | - Hsin-Yi Liao
- c Department of Medical Research, Proteomics Core Laboratory , China Medical University Hospital , Taichung , Taiwan
| | - Chuen-Yu Cheng
- a Department of Animal Science , National Chung Hsing University , Taichung , Taiwan
| | - Tsung-Yi Lin
- g Changhua Animal Propagation Station , Livestock Research Institute, Council of Agriculture , Changhua , Taiwan
| | - Yu-Shine Jea
- g Changhua Animal Propagation Station , Livestock Research Institute, Council of Agriculture , Changhua , Taiwan
| | - San-Yuan Huang
- a Department of Animal Science , National Chung Hsing University , Taichung , Taiwan.,h Agricultural Biotechnology Center , National Chung Hsing University , Taichung , Taiwan.,i Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center , National Chung Hsing University , Taichung , Taiwan.,j Research Center for Sustainable Energy and Nanotechnology , National Chung Hsing University , Taichung , Taiwan
| |
Collapse
|
16
|
Zhang PF, Huang YL, Fu Q, Chen FM, Lu YQ, Liang XW, Zhang M. Comparative proteomic analysis of different developmental stages of swamp buffalo testicular seminiferous tubules. Reprod Domest Anim 2017; 52:1120-1128. [PMID: 28804967 DOI: 10.1111/rda.13044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Abstract
With ageing, many protein components change markedly during mammalian spermatogenesis. Most of these proteins have yet to be characterized and verified. Here, we have employed two-dimensional electrophoresis coupled to tandem mass spectrometry to explore the different proteins from pre-pubertal, pubertal and post-pubertal swamp buffalo testicular seminiferous tubules. The results showed that 25 protein spots were differentially expressed among developmental stages, and 13 of them were successfully identified by mass spectrometry. Of which four proteins were up-regulated and three proteins were down-regulated with age, and the remaining six proteins were fluctuated among developmental stages. Bioinformatics analysis indicates that these proteins were probably related to cellular developmental process (53.8%), cell differentiation (53.8%), spermatogenesis (15.4%), apoptotic process and cell death (30.8%). Expression profiles of calumenin (CALU) and galectin-1 (LGALS1) were further verified via Western blotting. In summary, the results help to develop an understanding of molecular mechanisms associated with buffalo spermatogenesis.
Collapse
Affiliation(s)
- P-F Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Y-L Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China.,College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Q Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - F-M Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Y-Q Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - X-W Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - M Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
MacLeod G, Varmuza S. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function. FEBS J 2013; 280:5635-51. [DOI: 10.1111/febs.12461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Graham MacLeod
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| | - Susannah Varmuza
- Department of Cell & Systems Biology; University of Toronto; ON Canada
| |
Collapse
|
18
|
Li H, Zhang H, Xie Y, He Y, Miao G, Yang L, Di C, He Y. Proteomic analysis for testis of mice exposed to carbon ion radiation. Mutat Res 2013; 755:148-155. [PMID: 23827780 DOI: 10.1016/j.mrgentox.2013.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
This paper investigates the mechanism of action of heavy ion radiation (HIR) on mouse testes. The testes of male mice subjected to whole body irradiation with carbon ion beam (0.5 and 4Gy) were analyzed at 7days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the alteration of protein expression in the testes. Spot detection and matching were performed using the PDQuest 8.0 software. A difference of more than threefold in protein quantity (normalized spot volume) is the standard for detecting differentially expressed protein spots. A total of 11 differentially expressed proteins were found. Protein identification was performed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF). Nine specific proteins were identified by searching the protein sequence database of the National Center for Biotechnology Information. These proteins were found involved in molecular chaperones, metabolic enzymes, oxidative stress, sperm function, and spermatogenic cell proliferation. HIR decreased glutathione activity and increased malondialdehyde content in the testes. Given that Pin1 is related to the cell cycle and that proliferation is affected by spermatogenesis, we analyzed testicular histological changes and Pin1 protein expression through immunoblotting and immunofluorescence. Alterations of multiple pathways may be associated with HIR toxicity to the testes. Our findings are essential for studies on the development, biology, and pathology of mouse testes after HIR in space or radiotherapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling expression studies and/or systematic analyses of testicular proteomes in entire organs or isolated cells from various species. We consider the pros and cons of proteomics for studying the testicular germ cell gene expression program. Finally, we address the use of protein datasets, through integrative genomics (i.e., combining genomics, transcriptomics, and proteomics), bioinformatics, and modelling.
Collapse
Affiliation(s)
- Sophie Chocu
- Inserm, U1085, IRSET, University of Rennes I, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|