1
|
Ma C, Yu X, Zhang X, Su L, Jiang O, Cui R. Combination of radiotherapy and ICIs in advanced hepatocellular carcinoma: A systematic review of current evidence and future prospects (Review). Oncol Lett 2025; 30:342. [PMID: 40438865 PMCID: PMC12117537 DOI: 10.3892/ol.2025.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/24/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern because of its rising prevalence and high fatality rates. Conventional treatments for advanced HCC (aHCC) have limited success, emphasizing the need for novel treatment options. Radiotherapy (RT) treatments, such as stereotactic body radiation and proton therapy, improve local tumor management via precision targeting. Moreover, immune checkpoint inhibitors (ICIs) that target the programmed cell death protein 1(PD-1)/PD ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) pathways have promise for systemic antitumor effectiveness. The combination of RT and ICIs takes advantage of their complementary mechanisms: RT kills immunogenic cells and controls the tumor microenvironment to increase antigen presentation, whereas ICIs enhance and maintain antitumor immune responses. This combination enhances tumor regression and immune response in aHCC, improving response rate and progression-free survival with manageable safety. The present review aimed to summarize the rationale for combining RT + ICIs in patients with aHCC and clinical outcomes, as well as ways to enhance this combination technique. The combination of these models is a promising technique for improving outcomes for patients with aHCC and warrants further investigation.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Xinlin Yu
- Department of Oncology, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Xialin Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lihong Su
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ou Jiang
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
2
|
Scheiner B, Kang B, Balcar L, Radu IP, Reiter FP, Adžić G, Guo J, Gao X, Yuan X, Cheng L, Gorgulho J, Schultheiss M, Peeters F, Hucke F, Ben Khaled N, Piseddu I, Philipp A, Sinner F, D'Alessio A, Pomej K, Saborowski A, Bathon M, Schwacha-Eipper B, Zarka V, Lampichler K, Nishida N, Lee PC, Krall A, Saeed A, Himmelsbach V, Tesini G, Huang YH, Vivaldi C, Masi G, Vogel A, Schulze K, Trauner M, Djanani A, Stauber R, Kudo M, Parikh ND, Dufour JF, Prejac J, Geier A, Bengsch B, von Felden J, Venerito M, Weinmann A, Peck-Radosavljevic M, Finkelmeier F, Dekervel J, Ji F, Wang HW, Rimassa L, Pinato DJ, Bouattour M, Chon HJ, Pinter M. Outcome and management of patients with hepatocellular carcinoma who achieved a complete response to immunotherapy-based systemic therapy. Hepatology 2025; 81:1714-1727. [PMID: 39643944 DOI: 10.1097/hep.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/12/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS The outcome of patients with HCC who achieved complete response (CR) to immune-checkpoint inhibitor (ICI)-based systemic therapies is unclear. APPROACH AND RESULTS Retrospective study of patients with HCC who had CR according to modified Response Evaluation Criteria in Solid Tumors (CR-mRECIST) to ICI-based systemic therapies from 28 centers in Asia, Europe, and the United States. Of 3933 patients with HCC treated with ICI-based noncurative systemic therapies, 174 (4.4%) achieved CR-mRECIST, and 97 (2.5%) had CR according to RECISTv1.1 (CR-RECISTv1.1) as well. The mean age of the total cohort (male, 85%; Barcelona-Clinic Liver Cancer-C, 70%) was 65.9±9.8 years. The majority (83%) received ICI-based combination therapies. Median follow-up was 32.2 (95% CI: 29.9-34.4) months. One- and 3-year overall survival rates were 98% and 86%. One- and 3-year recurrence-free survival rates were excellent in patients with CR-mRECIST-only and CR-RECISTv1.1 (78% and 55%; 70% and 42%). Among patients who discontinued ICIs for reasons other than recurrence, those who received immunotherapy for ≥6 months after the first mRECIST CR had a longer recurrence-free survival than those who discontinued immunotherapy earlier ( p =0.008). Of 9 patients who underwent curative surgical conversion therapy, 8 (89%) had pathological CR (CR-RECISTv1.1, n= 2/2; CR-mRECIST-only, n= 6/7). CONCLUSIONS Overall survival and recurrence-free survival of patients with CR-mRECIST-only and CR-RECISTv1.1 were excellent, and 6 of 7 patients with CR-mRECIST-only who underwent surgical conversion therapy had pathological CR. Despite potential limitations, these findings support the use of mRECIST in the context of immunotherapy for clinical decision-making. When considering ICI discontinuation, treatment for at least 6 months beyond CR seems advisable.
Collapse
Affiliation(s)
- Bernhard Scheiner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Beodeul Kang
- Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea
| | - Lorenz Balcar
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Iuliana-Pompilia Radu
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Florian P Reiter
- Department of Medicine II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Gordan Adžić
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jiang Guo
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xu Gao
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Yuan
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Long Cheng
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Joao Gorgulho
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center-University of Freiburg, Germany, Faculty of Medicine, University of Freiburg, Germany
| | - Frederik Peeters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat, Leuven, Belgium
| | - Florian Hucke
- Internal Medicine and Gastroenterology (IMuG), including Centralized Emergency Service (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Ignazio Piseddu
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Philipp
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Friedrich Sinner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von Guericke University Hospital, Magdeburg, Germany
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, London, United Kingdom
- Department of Translational Medicine, Division of Oncology, University of Piemonte Orientale, Novara, Italy
| | - Katharina Pomej
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Melanie Bathon
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Birgit Schwacha-Eipper
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Valentina Zarka
- Department of Medicine II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Lampichler
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Pei-Chang Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Anja Krall
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh (UPMC), Pittsburgh, Pennsylvania, USA
| | - Vera Himmelsbach
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Giulia Tesini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Healthcare and Services Center, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Arndt Vogel
- Division of Gastroenterology and Hepatology, Toronto General Hospital, Toronto, Canada
- Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
- Hannover Medical School, Hannover, Germany
| | - Kornelius Schulze
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Trauner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Angela Djanani
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Stauber
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Juraj Prejac
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb, School of Dental Medicine, Zagreb, Croatia
| | - Andreas Geier
- Department of Medicine II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center-University of Freiburg, Germany, Faculty of Medicine, University of Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Johann von Felden
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von Guericke University Hospital, Magdeburg, Germany
| | - Arndt Weinmann
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology (IMuG), including Centralized Emergency Service (ZAE), Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Jeroen Dekervel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat, Leuven, Belgium
| | - Fanpu Ji
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Hung-Wei Wang
- Department of Internal Medicine, Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - David J Pinato
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, London, United Kingdom
- Department of Translational Medicine, Division of Oncology, University of Piemonte Orientale, Novara, Italy
| | - Mohamed Bouattour
- Liver Cancer and Innovative Therapy, AP-HP, Hôpital Beaujon, Clichy, France
| | - Hong Jae Chon
- Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea
| | - Matthias Pinter
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zhang D, Zhu Y, Shen Z, Ma S, Liu S, Lu Z. Immunosenescence and immunotherapy in elderly patients with hepatocellular carcinoma. Semin Cancer Biol 2025; 111:60-75. [PMID: 40020977 DOI: 10.1016/j.semcancer.2025.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Liver cancer, more specifically hepatocellular carcinoma (HCC), is a global health issue and one of the dominant causes of cancer death around the world. In the past few decades, remarkable advances have been achieved in the systemic therapy of HCC. Immune checkpoint inhibitors (ICIs) have become a therapy mainstay for advanced HCC and have shown promise in the neoadjuvant therapy before resection. Despite these significant advancements, the compositions and functions of the immune system occur various alterations with age, called "immunosenescence", which may affect the antitumor effects and safety of ICIs, thus raising concerns that immunosenescence may impair elderly patients' response to ICIs. Therefore, it is important to learn more about the immunosenescence characteristics of elderly patients. However, the real-world elderly HCC patients may be not accurately represented by the elderly patients included in the clinical trials, affecting the generalizability of the efficacy and safety profiles from the clinical trials to the real-world elderly patients. This review summarizes the characteristics of immunosenescence and its influence on HCC progression and immunotherapy efficacy as well as provides the latest progress in ICIs available for HCC and discusses their treatment efficacy and safety on elderly patients. In the future, more studies are needed to clarify the mechanisms of immunosenescence in HCC, and to find sensitive screening tools or biomarkers to identify the patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengchao Shen
- Department of General Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Sihua Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China.
| |
Collapse
|
4
|
Zhou J, Bai L, Luo J, Bai Y, Pan Y, Yang X, Gao Y, Shi R, Zhang W, Zheng J, Hua X, Xu A, Hu S, Zhang F, Yang X, Da M, Wang R, Ma J, Jia W, Quan D, Peng C, Yang W, Yin G, Qi Y, Zhang G, Du X, Mao X, Meng Z, Jiao S, Fan J, APOLLO Study Group. Anlotinib plus penpulimab versus sorafenib in the first-line treatment of unresectable hepatocellular carcinoma (APOLLO): a randomised, controlled, phase 3 trial. Lancet Oncol 2025; 26:719-731. [PMID: 40349716 DOI: 10.1016/s1470-2045(25)00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Immunotherapy combinations have revolutionised the therapeutic landscape of advanced hepatocellular carcinoma (HCC), but not all yield a significant overall survival benefit, underscoring the need for novel effective agents. Anlotinib plus penpulimab has demonstrated encouraging activity and safety in a phase 2 study. In this phase 3 trial, we aimed to assess whether the combination of anlotinib plus penpulimab improved survival versus sorafenib in patients with unresectable HCC. METHODS APOLLO was a multicentre, open-label, parallel-controlled, randomised, phase 3 trial conducted at 79 centres in China. Patients aged 18-75 years with unresectable HCC, no previous systemic therapy, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 were randomly assigned (2:1) to anlotinib (10 mg orally once daily on days 1-14) plus penpulimab (200 mg intravenously on day 1), or sorafenib (400 mg orally twice daily) every 3 weeks. Randomisation was done centrally using block randomisation with a fixed block size of 3 and stratified by the presence of macrovascular invasion or extrahepatic metastasis, α-fetoprotein concentration, and ECOG performance status. Sex (male or female) and ethnicity (Chinese or other) were self-reported. The co-primary endpoints were progression-free survival assessed by masked independent review committee and overall survival in the intention-to-treat population. Safety was assessed in all participants who received at least one dose of the study drug and had at least one recorded safety assessment. Final progression-free survival and second interim overall survival analyses are presented. This trial is registered at ClinicalTrials.gov, NCT04344158, and follow-up is ongoing. FINDINGS From Aug 11, 2020, to June 20, 2023, 940 patients were screened for inclusion in the trial, 291 were excluded, and 649 were randomly assigned to an intervention (433 were assigned to the anlotinib plus penpulimab group and 216 were assigned to the sorafenib group. 551 (85%) of the 649 patients were male and 98 (15%) were female. All patients were Chinese with a median age of 57 years (IQR 50-65). For the final analysis of progression-free survival (June 5, 2023), 636 patients (424 patients in the anlotinib plus penpulimab group vs 212 patients in the sorafenib group) comprised the intention-to-treat population. For the second interim analysis of overall survival (Jan 29, 2024), 649 patients (433 vs 216) comprised the intention-to-treat population. Median follow-up was 6·2 months (IQR 5·5-7·5) for the anlotinib plus penpulimab group and 4·2 months (2·9-7·1) for the sorafenib group for final progression-free survival analysis, and 15·3 months (14·3-17·3) for the anlotinib plus penpulimab group and 14·5 months (11·5-17·0) for the sorafenib group for the second interim overall survival analysis. Median progression-free survival was significantly extended with anlotinib plus penpulimab versus sorafenib (6·9 months [95% CI 5·8-8·0] vs 2·8 months [2·7-4·1]; hazard ratio [HR] 0·52 [95% CI 0·41-0·66]; p<0·0001). Median overall survival was significantly prolonged with anlotinib plus penpulimab compared with sorafenib (16·5 months [95% CI 14·7-19·0] vs 13·2 months [9·7-16·9]; HR 0·69 [95% CI 0·55-0·87]; p=0·0014). The most common grade 3 or worse treatment-related adverse events were hypertension (75 [17%] patients in the anlotinib plus penpulimab group vs 22 [10%] in the sorafenib group) and decrease in platelet count (39 [9%] vs 13 [6%]). Treatment-related serious adverse events occurred in 90 (21%) and 19 (9%) patients in the respective groups; treatment-related deaths occurred in one (<1%) patient in the anlotinib plus penpulimab group (upper gastrointestinal haemorrhage) and two (1%) patients in the sorafenib group (hepatic failure and death of unknown cause). INTERPRETATION Anlotinib plus penpulimab significantly improved progression-free survival and overall survival versus sorafenib in unresectable HCC and might be a new first-line option. These findings require verification in other regions of the world. FUNDING Chia Tai Tianqing Pharmaceutical Group.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Bai
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital, Changsha, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaozhen Pan
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xinrong Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rongshu Shi
- Department of Intervention, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenhua Zhang
- Hepatobiliary Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Haikou, China
| | - Xiangdong Hua
- Department of Hepatobiliary and Pancreatic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Aibing Xu
- Department of Oncological Internal Medicine, Nantong Tumor Hospital, Nantong, China
| | - Sheng Hu
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Feng Zhang
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Xiaojun Yang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Mingxu Da
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weidong Jia
- Department of General Surgery, Anhui Provincial Hospital, Hefei, China
| | - Dongmei Quan
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guowen Yin
- Intervention Department, Jiangsu Cancer Hospital, Nanjing, China
| | - Yue Qi
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guifang Zhang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, China
| | - Xilin Du
- Department of General Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xiaorong Mao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jia Fan
- Department of Hepatobiliary Surgery and Liver Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | |
Collapse
|
5
|
Lau G, Abou-Alfa GK, Chan SL. Reply to: "STRIDE's efficacy and safety in Asian hepatocellular carcinoma". J Hepatol 2025; 82:e346-e347. [PMID: 40024547 DOI: 10.1016/j.jhep.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Affiliation(s)
- George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong Special Administrative Region of China
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Medical College, Cornell University, New York, NY, USA; Trinity College Dublin, Dublin, Ireland.
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
6
|
Cabibbo G, Rimassa L, Lamarca A, Masi G, Daniele B, Pinato DJ, Casadei-Gardini A. The present and the future of immunotherapy in hepatocellular carcinoma and biliary tract cancers. Cancer Treat Rev 2025; 137:102955. [PMID: 40373702 DOI: 10.1016/j.ctrv.2025.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Hepatobiliary malignancies encompass a spectrum of invasive carcinomas arising in the liver [hepatocellular carcinoma (HCC), bile ducts [intrahepatic cholangiocarcinoma (ICC), and extrahepatic cholangiocarcinoma (EHC)] and the gallbladder. These malignancies represent a growing global health burden, with rising incidence and mortality rates and their overall prognosis remains poor because many patients present with advanced unresectable disease at diagnosis. In recent years, significant advancements in understanding HCC immunogenicity have reshaped the therapeutic scenario of advanced HCC with the immunotherapy revolutionizing the current HCC treatment landscape and patients' prognosis. Moreover, the addition of immunotherapy to chemotherapy has recently established a new standard of care first-line treatment for patients with biliary tract cancers (BTCs) who had historically few therapeutic options. Currently, immunotherapy and immune checkpoint inhibitor (ICI)-based regimens stand as a valuable and practice-changing options in both HCC and BTC management. The mounting recent evidence supporting immunotherapy's survival benefit demands clinicians to stay updated with a rapidly evolving treatment landscape as well as gain knowledge about patient selection, response rate compared with other systemic treatments and immune-mediated adverse events (imAEs) management. A panel of international Experts, comprising hepatologists and oncologists, gathered to explore the challenges in effectively integrating immunotherapy in routine clinical practice. The aim of this review is to present the Experts' insights to inform treatment choice in HCC and BTC with a special emphasis on the role of currently available ICI-based therapies in shifting treatment paradigms and potentially reversing the natural course of these two deadly malignancies.
Collapse
Affiliation(s)
- Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties PROMISE, University of Palermo, Piazza delle Cliniche n 2, 90127 Palermo, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Angela Lamarca
- Department of Oncology - OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation, Manchester, England, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gianluca Masi
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy; Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Napoli, Italy
| | - David James Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy; Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
7
|
Lehrich BM, Delgado ER, Yasaka TM, Liu S, Cao C, Liu Y, Taheri MN, Guan X, Koeppen H, Singh S, Meadows V, Liu JJ, Singh-Varma A, Krutsenko Y, Poddar M, Hitchens TK, Foley LM, Liang B, Rialdi A, Rai RP, Patel P, Riley M, Bell A, Raeman R, Dadali T, Luke JJ, Guccione E, Ebrahimkhani MR, Lujambio A, Chen X, Maier M, Wang Y, Broom W, Tao J, Monga SP. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. Nat Commun 2025; 16:5009. [PMID: 40442146 PMCID: PMC12122713 DOI: 10.1038/s41467-025-60457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in CTNNB1 (encoding for β-catenin), AXIN1/2, or APC, and demonstrate heterogeneous and limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting CTNNB1 (LNP-CTNNB1). Both single-cell and spatial transcriptomics reveal cellular and zonal reprogramming, along with activation of immune regulatory transcription factors IRF2 and POU2F1, re-engaged type I/II interferon signaling, and alterations in both innate and adaptive immunity upon β-catenin suppression with LNP-CTNNB1 at early- and advanced-stage disease. Moreover, ICI enhances response to LNP-CTNNB1 in advanced-stage disease by preventing T cell exhaustion and through formation of lymphoid aggregates (LA). In fact, expression of an LA-like gene signature prognosticates survival for patients receiving atezolizumab plus bevacizumab in the IMbrave150 phase III trial and inversely correlates with CTNNB1-mutatational status in this patient cohort. In conclusion, LNP-CTNNB1 is efficacious as monotherapy and in combination with ICI in CTNNB1-mutated HCCs through impacting tumor cell-intrinsic signaling and remodeling global immune surveillance, providing rationale for clinical investigations.
Collapse
MESH Headings
- beta Catenin/genetics
- beta Catenin/metabolism
- beta Catenin/antagonists & inhibitors
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Animals
- Mice
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Bevacizumab/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- Cell Line, Tumor
- Mutation
- Nanoparticles/chemistry
- Female
- Cellular Reprogramming
Collapse
Affiliation(s)
- Brandon M Lehrich
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Evan R Delgado
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Catherine Cao
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuqing Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad N Taheri
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Hartmut Koeppen
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Sucha Singh
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vik Meadows
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jia-Jun Liu
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anya Singh-Varma
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yekaterina Krutsenko
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lesley M Foley
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Rialdi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi P Rai
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Panari Patel
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madeline Riley
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reben Raeman
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Jason J Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mo R Ebrahimkhani
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | | | - Junyan Tao
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Satdarshan P Monga
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Li C, Zhang H, Liu Y, Zhang T, Gu F. Gpr109A in TAMs promoted hepatocellular carcinoma via increasing PKA/PPARγ/MerTK/IL-10/TGFβ induced M2c polarization. Sci Rep 2025; 15:18820. [PMID: 40442173 PMCID: PMC12122892 DOI: 10.1038/s41598-025-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
To delineate Gpr109A's role and mechanisms in modulating the immune microenvironment of hepatocellular carcinoma. Employing Gpr109A-knockout mice and in vitro co-cultures of hepatocellular carcinoma cells with macrophages, this study utilized a suite of techniques, including lentiviral vectors for stable cell line establishment, Western blotting, cell scratch, CCK-8, transwell assays, flow cytometry, immunohistochemistry and phagocytosis assay to assess various cellular behaviors and interactions. Gpr109A deletion markedly reduced the oncogenic potential of H22 cells, both in vivo and when co-cultured with knockout macrophages, impairing their growth, invasion, and migration. In Gpr109A-knockout macrophages, an upregulation of MerTK and a reduction in immunosuppressive cytokine release were observed, indicating a shift towards an M2c macrophage phenotype. This shift is linked to Gpr109A's role in promoting protease overexpression and inhibiting SHP2 phosphorylation, crucial for enhancing cancer cell proliferation and invasiveness. Gpr109A significantly influences macrophage polarization to the M2c type, augmenting hepatocellular carcinoma cell aggressiveness.
Collapse
Affiliation(s)
- Cong Li
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Hongan Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Yanchun Liu
- Department of Pediatrics, North China Petroleum Administration General Hospital, Renqiu, China
| | - Ting Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Feng Gu
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China.
| |
Collapse
|
9
|
Tomonari T, Shimose S, Saeki I, Tani J, Honma Y, Ito T, Takeuchi M, Naito T, Takeuchi Y, Sasaki R, Sasaki K, Hatanaka T, Kakizaki S, Kanayama Y, Naganuma A, Tanabe N, Tanaka H, Kawano Y, Sato Y, Nishina S, Miyaaki H, Otsuka M, Kawashima H, Harada M, Kobara H, Takami T, Kawaguchi T, Takayama T, Hepatology InVestigator Experts in Japan (HIVE‐J) Study Group. A novel approach to evaluate the therapeutic efficacy of durvalumab and tremelimumab combination therapy in hepatocellular carcinoma. Hepatol Res 2025. [PMID: 40433908 DOI: 10.1111/hepr.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
AIM This study aimed to evaluate the efficacy of durvalumab + tremelimumab (Dur + Tre) in real-world clinical practice, characterize "stable disease (SD)," and identify SD responders (SD-R) who benefit from Dur + Tre treatment. METHODS This multicenter observational study included 212 patients with unresectable hepatocellular carcinoma (u-HCC) treated with Dur + Tre between March 2023 and November 2024. The patients were categorized into 95 first-line and 117 later-line cases, respectively. Sequential cutoff points for depth of response (DOR) and progression-free survival (PFS) were tested to identify subgroups with survival outcomes comparable to those of responders. RESULTS Disease control rate (DCR) and PFS were significantly better in the first-line setting for both response evaluation criteria in solid tumors (RECIST) and modified RECIST (mRECIST) criteria. Patients who achieved PFS of ≥84 days or RECIST DOR of ≤-10% were classified as SD-R, as they had long-term survival outcomes similar to those with PR or CR. Furthermore, the CR + PR + SD-R group had significantly better survival outcomes than the other groups (p < 0.01), and multivariate analysis confirmed that SD-R was an independent prognostic factor with the strongest impact on survival outcomes (hazard ratio = 0.11). CONCLUSIONS In real-world clinical practice, Dur + Tre is highly effective as a first-line treatment for u-HCC. Additionally, patients with SD who met the SD-R criteria (PFS ≥84 days or RECIST DOR ≤-10%) showed survival outcomes comparable to those of patients with PR or CR. These findings may help identify patients who are most likely to benefit from treatment and improve their prognoses.
Collapse
Affiliation(s)
- Tetsu Tomonari
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
- Tomonari Gastroenterology and Hepatology Clinic, Tokushima, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Hospital, Nagoya, Japan
| | - Mamiko Takeuchi
- Department of Gastroenterology, Anjo Kosei Hospital, Anjo, Japan
| | - Takehito Naito
- Department of Gastroenterology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyo Sasaki
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Yuki Kanayama
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Atsushi Naganuma
- Department of Clinical Research, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Norikazu Tanabe
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hironori Tanaka
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Yutaka Kawano
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Sohji Nishina
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Hospital, Nagoya, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | | |
Collapse
|
10
|
Vithayathil M, Sharma R. Nivolumab plus ipilimumab in hepatocellular carcinoma. Lancet 2025; 405:1795-1797. [PMID: 40349715 DOI: 10.1016/s0140-6736(25)00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Mathew Vithayathil
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
11
|
Yau T, Galle PR, Decaens T, Sangro B, Qin S, da Fonseca LG, Karachiwala H, Blanc JF, Park JW, Gane E, Pinter M, Peña AM, Ikeda M, Tai D, Santoro A, Pizarro G, Chiu CF, Schenker M, He A, Chon HJ, Wojcik-Tomaszewska J, Verset G, Wang QQ, Stromko C, Neely J, Singh P, Jimenez Exposito MJ, Kudo M, CheckMate 9DW investigators. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): an open-label, randomised, phase 3 trial. Lancet 2025; 405:1851-1864. [PMID: 40349714 DOI: 10.1016/s0140-6736(25)00403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Patients with unresectable hepatocellular carcinoma have a poor prognosis, and treatments with long-term benefits are needed. We report results from the preplanned interim analysis of the CheckMate 9DW trial assessing nivolumab plus ipilimumab versus lenvatinib or sorafenib for unresectable hepatocellular carcinoma in the first-line setting. METHODS This open-label, randomised, phase 3 trial enrolled patients aged 18 years or older with unresectable hepatocellular carcinoma without previous systemic therapy at 163 hospitals and cancer centres across 25 countries in Asia, Australia, Europe, North America, and South America. Patients had at least one measurable untreated lesion per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1, a Child-Pugh score of 5 or 6, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients were randomly assigned (1:1) via an interactive response technology system to receive nivolumab (1 mg/kg) plus ipilimumab (3 mg/kg) intravenously every 3 weeks for up to four doses, followed by nivolumab 480 mg every 4 weeks or investigator's choice of either oral lenvatinib (8 mg or 12 mg mg daily depending on bodyweight) or oral sorafenib (400 mg twice daily). Randomisation was stratified by aetiology; the presence of macrovascular invasion, extrahepatic spread, or both; and baseline alpha-fetoprotein concentration. The primary endpoint was overall survival, which was assessed in all randomly assigned patients; safety was an exploratory endpoint and was assessed in all randomly assigned patients who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov, NCT04039607 (ongoing). FINDINGS Between Jan 6, 2020, and Nov 8, 2021, 668 patients were randomly assigned to nivolumab plus ipilimumab (n=335) or lenvatinib or sorafenib (n=333). Early crossing of the overall survival Kaplan-Meier curves reflected a higher number of deaths during the first 6 months after randomisation with nivolumab plus ipilimumab (hazard ratio 1·65 [95% CI 1·12-2·43]) but was followed by a sustained separation of the curves thereafter in favour of nivolumab plus ipilimumab (0·61 [0·48-0·77]). After a median follow-up of 35·2 months (IQR 31·1-39·9), overall survival was significantly improved with nivolumab plus ipilimumab versus lenvatinib or sorafenib (median 23·7 months [95% CI 18·8-29·4] vs 20·6 months [17·5-22·5]; hazard ratio 0·79 [0·65-0·96]; two-sided stratified log-rank p=0·018); respective overall survival rates were 49% (95% CI 44-55) versus 39% (34-45) at 24 months and 38% (32-43) versus 24% (19-30) at 36 months. Overall, 137 (41%) of 332 patients receiving nivolumab plus ipilimumab and 138 (42%) of 325 patients receiving lenvatinib or sorafenib had grade 3-4 treatment-related adverse events. 12 deaths were attributed to treatment with nivolumab plus ipilimumab and three were attributed to treatment with lenvatinib or sorafenib. INTERPRETATION Nivolumab plus ipilimumab showed a significant overall survival benefit versus lenvatinib or sorafenib and manageable safety in patients with previously untreated unresectable hepatocellular carcinoma. These results support nivolumab plus ipilimumab as a first-line treatment in this setting. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Thomas Yau
- Centre of Cancer Medicine and University Department of Medicine, The University of Hong Kong, Hong Kong
| | - Peter R Galle
- University Medical Center, I Medical Department, Mainz, Germany.
| | - Thomas Decaens
- University of Grenoble Alpes, CHU Grenoble Alpes, Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France
| | - Bruno Sangro
- Clinica Universidad de Navarra and CIBEREHD, Pamplona-Madrid, Spain
| | - Shukui Qin
- Nanjing Tianyinshan Hospital of China Pharmaceutical University, Nanjing, China
| | - Leonardo G da Fonseca
- Instituto do Cancer do Estado de São Paulo, ICESP, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Joong-Won Park
- National Cancer Center and Myongji Hospital, Goyang, South Korea
| | - Edward Gane
- University of Auckland, Auckland, New Zealand
| | | | - Ana Matilla Peña
- Hospital General Universitario Gregorio Marañón, CIBEREHD, Madrid, Spain
| | - Masafumi Ikeda
- National Cancer Center Hospital East, Kashiwa Chiba, Japan
| | | | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, and IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | | | | | - Aiwu He
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | | | - Gontran Verset
- HUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Qi Qi Wang
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Moris D, Martinino A, Schiltz S, Allen PJ, Barbas A, Sudan D, King L, Berg C, Kim C, Bashir M, Palta M, Morse MA, Lidsky ME. Advances in the treatment of hepatocellular carcinoma: An overview of the current and evolving therapeutic landscape for clinicians. CA Cancer J Clin 2025. [PMID: 40392748 DOI: 10.3322/caac.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer-related death worldwide. Contemporary advances in systemic and locoregional therapies have led to changes in peer-reviewed guidelines regarding systemic therapy as well as the possibility of downstaging disease that may enable some patients with advanced disease to ultimately undergo partial hepatectomy or transplantation with curative intent. This review focuses on all modalities of therapy for HCC, guided by modern-day practice-changing randomized data where available. The surgical management of HCC, including resection and transplantation, both of which have evolving criteria for what is considered biologically resectable and transplantable, as well as locoregional therapy (i.e., therapeutic embolization, ablation, radiation, and hepatic arterial infusion), are discussed. Historical and modern-day practice-changing trials evaluating immunotherapy with targeted therapies for advanced disease, as well as adjuvant systemic therapy, are also summarized. In addition, this article examines the critical dimension of toxicities and patient-oriented considerations to ensure a comprehensive and balanced discourse on treatment implications.
Collapse
Affiliation(s)
- Dimitrios Moris
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alessandro Martinino
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Schiltz
- Patient Advocate Steering Committee, National Cancer Institute Hepatobiliary Task Force, Los Gatos, California, USA
- Blue Faery, Simi Valley, California, USA
- Cancer CAREpoint, Los Gatos, California, USA
| | - Peter J Allen
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew Barbas
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Debra Sudan
- Division of Abdominal Transplantation, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Lindsay King
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Carl Berg
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Charles Kim
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mustafa Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Morse
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael E Lidsky
- Division of Surgical Oncology, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Oh DY, He AR, Qin S, Chen LT, Okusaka T, Kim JW, Suksombooncharoen T, Lee MA, Kitano M, Burris HA, Bouattour M, Tanasanvimon S, Zaucha R, Avallone A, Cundom J, Kuzko A, Wang J, Xynos I, Vogel A, Valle JW. Durvalumab plus chemotherapy in advanced biliary tract cancer: 3-year overall survival update from the phase III TOPAZ-1 study. J Hepatol 2025:S0168-8278(25)02201-9. [PMID: 40381735 DOI: 10.1016/j.jhep.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND At the TOPAZ-1 (NCT03875235) primary analysis, durvalumab plus gemcitabine and cisplatin (GemCis) significantly improved overall survival (OS) in advanced biliary tract cancer (aBTC). We report updated exploratory analyses of OS and safety, characterisation of extended long-term survivors (eLTS), and subsequent anticancer therapy (SAT) use. METHODS Participants with aBTC received durvalumab+GemCis or placebo+GemCis every 3 weeks (≤8 cycles), then durvalumab or placebo monotherapy every 4 weeks until progressive disease or other discontinuation criteria were met. OS and serious adverse events (SAEs) were assessed in the full analysis and safety analysis sets (FAS/SAS), respectively. eLTS outcomes were assessed (FAS participants alive ≥30 months after randomisation). RESULTS 685 participants were randomised: durvalumab+GemCis (n = 341); placebo+GemCis (n = 344). After a median 41.3 (95% confidence interval [CI] 39.3-44.1) months' follow-up in all participants, median OS (95% CI) for durvalumab+GemCis versus placebo+GemCis was 12.9 (11.6-14.1) versus 11.3 (10.1-12.5) months (hazard ratio, 0.74 [95% CI 0.63-0.87]); 36-month OS rate was 14.6% versus 6.9%, respectively. In participants who achieved disease control (566/685; 82.6%), the 36-month OS rate was higher for durvalumab+GemCis (17.0%) versus placebo+GemCis (7.6%). Overall, 12.8% were eLTS, with more eLTS in the durvalumab+GemCis (17.0%) versus placebo+GemCis (8.7%) arms; eLTS included all clinically relevant subgroups. Durvalumab+GemCis improved OS regardless of SAT use. In eLTS, SAEs were comparable between arms and less frequent than in the full SAS. CONCLUSIONS Survival benefit and manageable safety continued with durvalumab+GemCis versus placebo+GemCis approximately 3 years after the last participant was randomised. All clinically relevant subgroups were represented in eLTS, supporting standard-of-care status for durvalumab+GemCis in aBTC. LAY SUMMARY The TOPAZ-1 study found that treatment with durvalumab plus gemcitabine and cisplatin (chemotherapy, also known as GemCis), helped people with advanced biliary tract cancer (BTC) to live longer on average than those treated with a placebo plus GemCis. The latest results from TOPAZ-1 showed that these benefits continued for over 3 years in participants treated with durvalumab plus GemCis and side effects continued to be manageable. At an updated analysis, carried out 3 years after the last participant started the study, twice as many participants treated with durvalumab plus GemCis were alive compared to those treated with placebo plus GemCis. Results also showed that the positive effect of durvalumab plus GemCis compared with placebo plus GemCis was not affected by the use of other therapies some participants received after they finished the study treatment. These results continue to support durvalumab plus GemCis as a standard first-line treatment for people with advanced BTC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03875235; https://clinicaltrials.gov/study/NCT03875235.
Collapse
Affiliation(s)
- Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Aiwu Ruth He
- Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Shukui Qin
- Cancer Center of Nanjing, Jinling Hospital, Nanjing, China
| | - Li-Tzong Chen
- Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Jin Won Kim
- Medical Oncology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | | | - Myung Ah Lee
- Seoul St. Mary's Hospital, College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Howard A Burris
- Drug Development Department, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | | | - Suebpong Tanasanvimon
- Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Antonio Avallone
- Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples, Italy
| | - Juan Cundom
- Medical Oncology, Instituto de Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | - Julie Wang
- Oncology R&D, AstraZeneca, New York, USA
| | | | - Arndt Vogel
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Medical School Hannover, Hannover, Germany
| | - Juan W Valle
- Research, Cholangiocarcinoma Foundation, Herriman, Utah, USA; Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Tan AJ, Liu WY, Lu JL, Tan QY, Yan Y, Mo DC. A pharmacovigilance analysis of post-marketing safety of durvalumab. Sci Rep 2025; 15:16661. [PMID: 40360595 PMCID: PMC12075497 DOI: 10.1038/s41598-025-01583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Durvalumab has demonstrated significant efficacy in several types of malignancies, while large-scale real-world safety studies remain limited. This study aimed to systematically evaluate the safety of durvalumab through data mining of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). We extracted reports of durvalumab as the primary suspected drug from the FAERS database (January 2017 to June 2024). Four disproportionality analysis algorithms were used to detect signals between durvalumab and adverse events (AEs). Durvalumab was recorded in 10,120 reports as the primary suspected drug. Of these, 43.6% of AEs occurred during the first month of treatment, with a median onset time of 40 days (IQR: 14-99 ). Among 181 potential signals, 64 were unexpected preferred terms not listed in the prescribing information, including cytokine release syndrome (CRS), pulmonary tuberculosis, radiation esophagitis, oesophageal fistula, oesophageal perforation, pleural effusion, pneumothorax, cerebral infarction, biliary tract infection, cholecystitis, psoriasiform dermatitis, portal vein thrombosis, acute cholangitis and pericarditis malignant. Serious adverse events accounted for 93.3% of cases. Males exhibited a significantly higher risk of experiencing serious outcomes compared to females (OR = 1.83, 95% CI: 1.52-2.19, P < 0.001). Older age groups demonstrated an elevated risk of severe outcomes relative to those under 65 years (65-74 years: OR = 1.52, 95% CI: 1.15-2.00, P = 0.003; ≥75 years: OR = 1.40, 95% CI: 1.02-1.92, P = 0.038). This study comprehensively assessed the safety of durvalumab and discovered potential new adverse event signals, which may provide critical support for risk identification and monitoring of durvalumab.
Collapse
Affiliation(s)
- An-Ju Tan
- Office of Drug Clinical Trials Institutions, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wan-Ying Liu
- Office of Drug Clinical Trials Institutions, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun-Li Lu
- Office of Drug Clinical Trials Institutions, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qing-Ying Tan
- Reproductive Medical Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Yan
- Office of Drug Clinical Trials Institutions, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dun-Chang Mo
- Department of Tumor Radiotherapy, The Third Affiliated Hospital of Guangxi Medical University, Dan-Cun Road No.13, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Zhao X, Dufault T, Sapisochin G, Saborowski A, Vogel A. The clinical implications of trial endpoints in immunotherapy for hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2025:1-13. [PMID: 40320908 DOI: 10.1080/17474124.2025.2500369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Investigative work in the treatment of hepatocellular carcinoma is rapidly growing with the advent of immunotherapy. Nonetheless, trial endpoints and, more importantly, clinically meaningful endpoints need to be accurately chosen depending on the phase of trial and the patient population studied. We provide a scoping review focusing on trial endpoints on the use of immunotherapy in hepatocellular carcinoma. AREAS COVERED We searched PubMed and Google Scholar for prospective phase II and III trials using immunotherapy, whether in the neoadjuvant, adjuvant, bridging, downstaging, or palliative settings, while discussing the clinical implications of trial endpoints. EXPERT OPINION The field of immune oncology is rapidly progressing and has become the standard of care in advanced hepatocellular carcinoma. However, the role of immunotherapy in the treatment of early and intermediate stage hepatocellular carcinoma is yet to be defined. Prospective trials for all stages of disease must strive for endpoints that are not only statistically significant but also clinically consequential. Whereas overall response rate may be a reasonable trial endpoint in phase II trials, phase III trials should rather aim for the improvement of overall survival or quality of life to have clinically meaningful impacts.
Collapse
Affiliation(s)
- Xun Zhao
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, Canada
| | - Talia Dufault
- Division of Internal Medicine, Université de Laval, Québec, Canada
| | - Gonzalo Sapisochin
- Abdominal Transplant & HPB Surgical Oncology, University Health Network, University of Toronto, Toronto, Canada
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Division of Hepatology, Toronto General Hospital, Toronto, Canada
- Division of Gastrointestinal Oncology, Princess Margeret Cancer Center, Toronto, Canada
| |
Collapse
|
16
|
Myojin Y, Babaei S, Trehan R, Hoffman C, Kedei N, Ruf B, Benmebarek MR, Bauer KC, Huang P, Ma C, Monge C, Xie C, Hrones D, Duffy AG, Armstrong P, Kocheise L, Desmond F, Buchalter J, Galligan M, Cantwell C, Ryan R, McCann J, Bourke M, Mac Nicholas R, McDermott R, Awosika J, Cam M, Krebs R, Budhu A, Revsine M, Figg WD, Kleiner DE, Redd B, Wood BJ, Wang XW, Korangy F, Claassen M, Greten TF. Multiomics analysis of immune correlatives in hepatocellular carcinoma patients treated with tremelimumab plus durvalumab. Gut 2025; 74:983-995. [PMID: 39965889 DOI: 10.1136/gutjnl-2024-334026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. The combination of tremelimumab and durvalumab is now a standard treatment option for advanced HCC. OBJECTIVE To study immune responses in HCC patients treated with tremelimumab and durvalumab. DESIGN We treated 28 HCC patients with durvalumab, tremelimumab and locoregional therapies. We performed a high-dimensional multiomics analysis including whole exome sequencing, single-cell RNA seq, CO-Detection by indEXing, flow cytometry and multiplex cytokine/chemokine analysis of patients' blood and tumour samples and integrated this data to elucidate immune correlatives and response mechanisms. Mice with syngeneic HCC were treated with anti-PD-L1 plus anti-CTLA4 for hepatic lymphocytes, tumour-infiltrating lymphocytes and peripheral blood mononuclear cell analysis. RESULTS The median overall survival was 19.2 months. Tumour tissue analysis revealed enhanced interferon responses, with stronger effects in responders. Gene set variation analysis indicated enhanced antigen presentation in responders. Spatial analysis revealed that non-responder tumours had higher numbers of Tregs located in neighbourhoods enriched with immune cells and expressed higher levels of ICOS and PD-1. Conversely, non-responder PD1+CD8+T in these Treg-enriched neighbourhoods expressed lower ICOS. Cell-communication analysis demonstrated that Treg-CD8+T interaction was enhanced in non-responder tissue. Peripheral blood analysis showed increased classical monocytes in responders and Tregs in non-responders. Treg-CD8+T interaction was confirmed in preclinical models. Finally, single-patient computational analysis from the all-across analysis was performed on 860 features, which led to the identification of multiomics feature sets including Treg features. CONCLUSION Our study provides a blueprint for in-depth analysis of immune correlates in immunotherapy studies and demonstrates the importance of Treg distribution in HCC. TRIAL REGISTRATION NUMBERS NCT02821754 and the EudraCT identifier: 2019-002767-98.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Multiomics
- T-Lymphocytes, Regulatory/immunology
- Antibodies, Monoclonal
Collapse
Affiliation(s)
- Yuta Myojin
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sepideh Babaei
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Rajiv Trehan
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Hoffman
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick Huang
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chi Ma
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna Hrones
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Austin G Duffy
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Paul Armstrong
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorenz Kocheise
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fiona Desmond
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Marie Galligan
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Colin Cantwell
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ronan Ryan
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Jeff McCann
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Michele Bourke
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ross Mac Nicholas
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ray McDermott
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Joy Awosika
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- Center for Collaborative Bioinformatics, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosanna Krebs
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernadette Redd
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manfred Claassen
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Ding X, Yin X, Zheng L, Zhou L, Hu J, Sun W, Sun L, Shen Y, Teng Y, Xu Y, Li W, Liu M, Chen J. Patients with uHCC and Child-Pugh B8/9 also benefit from a combination of antiangiogenic agents and PD-1 inhibitors: a multicenter real-world study. Acta Oncol 2025; 64:607-615. [PMID: 40325791 PMCID: PMC12067986 DOI: 10.2340/1651-226x.2025.42652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND PURPOSE Patients with unresectable hepatocellular carcinoma (uHCC) and Child-Pugh grade B face limited treatment options and poor outcomes. This study aims to evaluate whether the effect and safety of combining tyrosine kinase inhibitors (TKIs) with progressive disease (PD)-1 inhibitors in uHCC patients with Child-Pugh B7 (CP7) and B8/9 (CP8/9) differ. METHODS This multicenter retrospective study included 179 uHCC patients with Child-Pugh B (CP7 group: n = 106; CP8/9 group: n = 73), receiving a combination of lenvatinib/sorafenib/other TKIs and PD-1 inhibitors between December 2020 and March 2023. Progression-free survival (PFS) and overall survival (OS) were defined as the primary endpoint. Secondary endpoints included the objective response rate (ORR) and safety. RESULTS The median PFS and OS for the entire cohort were 7.3 months (95% confidence intervals [CI]: 6.3-8.3) and 16.0 months (95% CI: 12.9-19.1), respectively. No statistically significant differences were observed between CP7 and CP8/9 groups in PFS (7.8 vs. 6.3 months, p = 0.28), OS (17.8 vs. 14.0 months, p = 0.20), ORR (33.0% vs. 27.4%, p = 0.42), or safety profiles. However, the CP8/9 group had significantly higher rates of TKI dose reductions (46.6% vs. 31.1%, p = 0.04) and discontinuations (57.5% vs. 24.5%, p < 0.001). Notably, 30.2% of patients maintained sustained radiographic responses despite advanced liver dysfunction. INTERPRETATION Combining TKIs with PD-1 inhibitors is an effective and well-tolerated option for HCC patients with Child-Pugh B, including those with CP8/9.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xue Yin
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zheng
- Jinan Eco-environmental Monitoring Center of Shandong Province, Jinan, Shandong Province, China
| | - Lin Zhou
- Department of Interventional Radiology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junke Hu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjun Shen
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Teng
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yawen Xu
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wendong Li
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China.
| | - Jinglong Chen
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Singal AG, Salem R, Pinato DJ, Pillai A. Advances in Locoregional and Systemic Treatments for Hepatocellular Carcinoma. Gastroenterology 2025:S0016-5085(25)00660-2. [PMID: 40320088 DOI: 10.1053/j.gastro.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/29/2025]
Abstract
Significant advances have occurred in the locoregional and systemic therapy landscape for hepatocellular carcinoma (HCC), with the most notable being the introduction of immune checkpoint inhibitor (ICI) combinations. ICI combinations have significantly improved the overall survival of patients with unresectable HCC, affording median survival over 2 years and long-term survival exceeding 5 years in a subset of patients. Accordingly, there has been increased interest in the earlier application of systemic therapies, including (neo)adjuvant therapy in the perioperative setting or in combination with intra-arterial therapies. However, recent data failed to demonstrate improved recurrence-free survival with use of adjuvant ICI therapy. Conversely, 2 trials showed improved progression-free survival when ICI therapies were combined with transarterial chemoembolization, although data regarding the impact on overall survival are still immature. These improved outcomes raise several new questions, including which patients with liver-localized HCC should receive systemic therapy, how should this be sequenced or combined with other available therapies, and how to manage those patients with marked responses, including consideration of liver transplantation. These questions are often determined on a case-by-case basis and best made in a multidisciplinary manner considering several factors, including tumor burden, degree of liver dysfunction, performance status, and patient's long-term goals of care.
Collapse
Affiliation(s)
- Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas Texas.
| | - Riad Salem
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom; Department of Translational Medicine (DIMET), University of Piemonte Orientale, Novara, Italy
| | - Anjana Pillai
- Department of Internal Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Vogel A, Chan SL, Dawson LA, Kelley RK, Llovet JM, Meyer T, Ricke J, Rimassa L, Sapisochin G, Vilgrain V, Zucman-Rossi J, Ducreux M. Hepatocellular carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2025; 36:491-506. [PMID: 39986353 DOI: 10.1016/j.annonc.2025.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Affiliation(s)
- A Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Division of Hepatology, Toronto General Hospital, Toronto, Canada; Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - S L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - R K Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - J M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - T Meyer
- Department of Oncology, Royal Free Hospital, London, UK; UCL Cancer Institute, University College London, London, UK
| | - J Ricke
- Klinik und Poliklinik für Radiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - L Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - G Sapisochin
- Department of Surgery, University of Toronto, Toronto, Canada
| | - V Vilgrain
- Centre de Recherche sur l'Inflammation U 1149, Université Paris Cité, Paris, France; Department of Radiology, Beaujon Hospital, APHP Nord, Clichy, France
| | - J Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - M Ducreux
- INSERM U1279, Université Paris-Saclay, Villejuif, France; Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| |
Collapse
|
20
|
Wang J, Chen Q, Shan Q, Liang T, Forde P, Zheng L. Clinical development of immuno-oncology therapeutics. Cancer Lett 2025; 617:217616. [PMID: 40054657 PMCID: PMC11930610 DOI: 10.1016/j.canlet.2025.217616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Immuno-oncology (IO) is one of the fastest growing therapeutic areas within oncology. IO agents work indirectly via the host's adaptive and innate immune system to recognize and eradicate tumor cells. Despite checkpoint inhibitors being only introduced to the market since 2011, they have become the second most approved product category. Current Food and Drug Administration (FDA)-approved classes of IO agents include: immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell therapy (CAR-T), bi-specific T-cell engager (BiTE) antibody therapy, T-cell receptor (TCR) engineered T cell therapy, tumor-infiltrating lymphocyte (TIL) therapy, cytokine therapy, cancer vaccine therapy, and oncolytic virus therapy. Cancer immunotherapy has made progress in multiple cancer types including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), and urothelial carcinoma; however, several cancers remain refractory to immunotherapy. Future directions of IO include exploration in the neoadjuvant/perioperative setting, combination strategies, and optimizing patient selection through improved biomarkers.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Qiang Shan
- Department of General Surgery, Haining People's Hospital, Haining, 314400, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Patrick Forde
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Mays Cancer Center at the University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Mays Cancer Center at the University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
21
|
Lu D, Li H, Sun P, Tian J, Jiao K, Cao Q, Wang Y, Jia J, He Q, Peng S, Zhang D, Dong Z, Wang D, Li T. Systemic therapy plus HAIC versus systemic therapy for hepatocellular carcinoma: a systematic review and meta-analysis. Int J Surg 2025; 111:3494-3507. [PMID: 40143751 DOI: 10.1097/js9.0000000000002326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy (HAIC) exhibits synergistic anticancer effects with systemic therapy in treating hepatocellular carcinoma (HCC). The approach combining systemic therapy and HAIC is likely to establish a new survival benchmark for advanced HCC. However, related evidence is still lacking. METHOD PubMed, Embase, Cochrane Library, and Web of Science were searched from January 1990 to July 2024. The extracted data were pooled using fixed- or random-effects models and expressed as hazard ratios (HRs) or risk ratios (RRs) with corresponding 95% confidence intervals (CIs). Meta-regression, subgroup analysis, prognostic factor analysis, correlation analysis, as well as trial sequential analysis were further conducted. RESULT Seventeen trials involving 3070 participants were included. Patients receiving HAIC combined systemic therapy displayed superior overall survival (OS) (HR, 0.52; 95% CI, 0.48-0.58), progression-free survival (PFS) (HR, 0.54; 95% CI, 0.46-0.63), objective response rate (ORR) (RR, 2.20; 95% CI, 1.77-2.72) and disease control rate (RR, 1.21; 95% CI, 1.14-1.29) over systemic therapy. Combining HAIC resulted in higher incidences of grade ≥3 manageable adverse events. Subgroup analyses showed that HAIC could bring significant survival improvement for almost all specific populations; however, patients without portal vein tumor thrombosis might not benefit from it (HR, 0.74; 95% CI, 0.53-1.03). Prognostic factor analyses found extra HAIC was a protective factor for both OS (HR, 0.42; 95% CI, 0.34-0.51) and PFS (HR, 0.44; 95% CI, 0.36-0.53). Correlation analyses demonstrated a robust association between ORR and OS when applying systemic therapy with HAIC ( P -value = 0.031). In addition, trial sequential analyses visually showed the present data were compelling to draw reliable conclusions. CONCLUSION With manageable toxicity, integrating HAIC with systemic therapy could bring favorable survival benefits for HCC patients. Further evidence is necessary to standardize the integration of HAIC with first-line systemic therapy.
Collapse
Affiliation(s)
- Donghai Lu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Han Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Pengfei Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jincheng Tian
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Jiao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qihang Cao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxuan Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jisen Jia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qiao He
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shengxuan Peng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Daolin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dongxu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
22
|
Piñero F, Anders M, Bermudez C, Arufe D, Varón A, Palazzo A, Rodriguez J, Beltrán O, Simian D, da Fonseca LG, Ridruejo E, Tamagnone N, Cheinquer H, Bejarano D, Marín JI, Orozco F, Pages J, Poniachik J, Marciano S, Reggiardo V, Silva M, Mendizabal M. Hepatic Recompensation Before Systemic Therapy for Hepatocellular Carcinoma Yields Comparable Survival to Compensated Cirrhosis. Liver Int 2025; 45:e70092. [PMID: 40208044 DOI: 10.1111/liv.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND AIMS The survival outcomes associated with hepatic recompensation in patients with advanced hepatocellular carcinoma (HCC) treated with first-line systemic therapies remain unclear. We compared survival from the initiation of first-line systemic treatments for advanced HCC among patients with compensated, decompensated, and recompensated cirrhosis. METHODS A Latin American multicenter, prospective cohort study was conducted from 2018 to 2024, involving patients with HCC and Child-Pugh class A or B who received systemic therapy. At the time of first-line therapy, patients with cirrhosis were categorised as compensated (never decompensated), decompensated, or recompensated. Cox proportional hazards models were estimated. RESULTS Among 306 patients receiving first-line systemic therapy (sorafenib: 60.5%, atezolizumab + bevacizumab: 29.7%, lenvatinib: 9.1%), 240 had cirrhosis, with 30.4% having a history of hepatic decompensation. Of these, 57.5% (95% CI 45.4%-69.0%) achieved hepatic recompensation over a median period of 12 months. At the time of first-line therapy, 69.6% were compensated, 17.5% recompensated, and 12.9% decompensated. Metabolic-associated steatotic liver disease (MASLD) was the most common underlying aetiology in the recompensated group. Median survival was significantly shorter in the decompensated group (8.6 months) compared to the compensated group (17.2 months) [aHR 1.91 (95% CI 1.04-3.5); p = 0.03], without a significant difference between the recompensated and compensated groups [aHR 1.28 (95% CI 0.79-2.1); p = 0.31]. Tumour progression was the primary reason for treatment discontinuation, and similar access to second-line therapies was observed between the compensated and recompensated groups. CONCLUSION Patients with cirrhosis and advanced HCC who achieved hepatic recompensation might benefit from systemic therapies after a cautious observation period.
Collapse
Affiliation(s)
| | | | - Carla Bermudez
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Arufe
- Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | | | | | | | - Daniela Simian
- Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Leonardo Gomes da Fonseca
- Instituto Do Cancer do Estado de São Paulo, Hospital das Clínicas Universidade São Paulo, São Paulo, Brazil
| | - Ezequiel Ridruejo
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | | | - Hugo Cheinquer
- Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Bejarano
- Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | | | - Jaime Poniachik
- Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
23
|
Yonemoto T, Ogasawara S, Kanogawa N, Miwa C, Fujiya M, Tsuchiya T, Sawada M, Akatsuka T, Izai R, Yumita S, Nakagawa M, Okubo T, Koroki K, Inoue M, Nakamura M, Kondo T, Nakamoto S, Itokawa N, Atsukawa M, Itobayashi E, Moriguchi M, Kato N. Evaluating two rechallenge strategies of immune checkpoint inhibitors: Durvalumab plus tremelimumab in advanced hepatocellular carcinoma. Hepatol Res 2025; 55:718-729. [PMID: 40317555 DOI: 10.1111/hepr.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 05/07/2025]
Abstract
AIM This study aimed to evaluate the safety and efficacy of durvalumab plus tremelimumab in patients with advanced hepatocellular carcinoma who have previously received atezolizumab plus bevacizumab (Atez/Bev). Additionally, it seeks to assess the feasibility of administering immunotherapy after the occurrence of immune-mediated adverse events (imAEs) in real-world clinical practice. METHODS This retrospective study analyzed data from patients with advanced hepatocellular carcinoma treated with durvalumab plus tremelimumab at four Japanese institutions. Clinical outcomes, adverse events, tumor dynamics, and serum cytokine and chemokine levels were evaluated, with a focus on efficacy following prior Atez/Bev treatment. RESULTS Durvalumab plus tremelimumab was administered to 68 patients. The objective response rate was 10.3%, and the disease control rate was 58.8%. Median progression-free survival was 3.1 months (95% confidence interval 2.0-4.9). imAEs occurred in 50.0% of patients, with colitis being the most common (22.1%). Durvalumab was safely readministered to 14 patients after imAE resolution, although five experienced recurrence. Among 33 patients (48.5%) previously treated with Atez/Bev, improved responses were noted, including two partial responses. Tumor growth dynamics decreased in 60.0% of patients receiving sequential therapy. Common adverse events included elevated liver enzymes (aspartate aminotransferase 50.0%, alanine aminotransferase 48.5%), pruritus (45.6%), and rash (44.1%). CONCLUSIONS Durvalumab plus tremelimumab therapy is feasible with proper imAE management and patient selection. Sequential treatment following Atez/Bev offers clinical benefit in advanced hepatocellular carcinoma, although some may experience rapid progression. Further biomarker research is needed to optimize immunotherapy strategies.
Collapse
Affiliation(s)
- Takuya Yonemoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chihiro Miwa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makoto Fujiya
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Tsuchiya
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Midori Sawada
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Teppei Akatsuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Izai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sae Yumita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyuki Nakagawa
- Department of Gastroenterology, Asahi General Hospital, Chiba, Japan
| | - Tomomi Okubo
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Inoue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norio Itokawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Chiba, Japan
| | - Michihisa Moriguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Dobrosotskaya IY, Kumar R, Frankel TL. Role of Immunotherapy in the Treatment of Hepatocellular Carcinoma. Curr Oncol 2025; 32:264. [PMID: 40422523 DOI: 10.3390/curroncol32050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Hepatocellular carcinoma is the most common primary liver tumor and is strongly related to underlying liver cirrhosis. Common etiologies include viral hepatitis, elevated alcohol consumption and metabolic diseases, all of which result in liver inflammation and scarring. Previously, systemic therapies for locally advanced or metastatic disease were limited to tyrosine kinase inhibitors with poor efficacy and rare cures. Recent advances have harnessed the power of the immune system to combat disease, resulting in improved outcomes and occasional cures. Here, we describe the recent clinical trials in immunotherapies for the treatment of hepatocellular carcinoma as first- and second-line therapies and in combination with other drug classes.
Collapse
Affiliation(s)
- Irina Y Dobrosotskaya
- Section of Medical Oncology, Department of Medicine, Ann Arbor Veterans Healthcare System, Ann Arbor, MI 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rashmi Kumar
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy L Frankel
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Cheng S, Li B, Tang L, Liu S, Xiao J. Tremelimumab plus durvalumab versus sorafenib in first-line treatment of unresectable hepatocellular carcinoma: a cost-effectiveness analysis from the US payer perspective. BMJ Open 2025; 15:e090992. [PMID: 40306910 PMCID: PMC12049948 DOI: 10.1136/bmjopen-2024-090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE In a recently published 4-year overall survival (OS) update from the phase III clinical trial named HIMALAYA (NCT03298451), single tremelimumab plus regular interval durvalumab (a regimen termed STRIDE) demonstrated significantly improved OS compared with sorafenib in the first-line setting of unresectable hepatocellular carcinoma (uHCC). Although dual immunotherapy represents a novel treatment option for uHCC, the economic implications of these high-priced drugs require further exploration. This study aimed to evaluate the cost-effectiveness of STRIDE in uHCC to inform first-line treatment decisions and help allocate medical resources most effectively. DESIGN Using a partitioned survival model, we conducted a cost-effectiveness analysis comparing STRIDE to sorafenib in the first-line treatment of uHCC. Clinical information was gathered from the phase III HIMALAYA trial. Costs and health state utilities data were derived from previous literature. Uncertainty of the model was assessed through one-way sensitivity analysis and probabilistic sensitivity analysis. OUTCOME MEASURES Total costs, life years, quality-adjusted life years (QALYs), incremental QALYs and incremental cost-effectiveness ratio (ICER). SETTING US payer perspective. PARTICIPANTS 393 participants in the STRIDE group and 389 participants in the sorafenib group who were diagnosed with uHCC and had no previous systemic treatment. INTERVENTIONS Single-dose tremelimumab plus monthly durvalumab (STRIDE) versus sorafenib. RESULTS Treatment with STRIDE provided an additional 0.51 QALYs at an incremental total cost of United States dollar ($)9812. The ICER of STRIDE was $19 239 per QALY compared with sorafenib, which falls below the willingness-to-pay threshold of $150 000 per QALY. Sensitivity analyses indicated that our results were robust to the variation ranges of key inputs. CONCLUSION In this economic evaluation comparing two first-line systemic therapies for uHCC patients, STRIDE was cost-effective compared with sorafenib from a US payer perspective. Our study is the first to demonstrate that immunotherapy can provide both survival benefits and economic viability in uHCC.
Collapse
MESH Headings
- Female
- Humans
- Male
- Antibodies, Monoclonal/economics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/economics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/economics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/economics
- Cost-Benefit Analysis
- Cost-Effectiveness Analysis
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/economics
- Quality-Adjusted Life Years
- Sorafenib/economics
- Sorafenib/therapeutic use
- Sorafenib/administration & dosage
- United States
- Clinical Trials, Phase III as Topic
Collapse
Affiliation(s)
- Shuqiao Cheng
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Bin Li
- Department of Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Wang Y, Pan S, Tian J, Wang J, Yu Y, Wang S, Li F, Yang L, Liu X, Shen Y, Qiu Q, Luan J, Jia M, Xiong C, Duan X, Wang FS, Meng F. Cadonilimab, a PD-1/CTLA-4 bispecific antibody in unresectable hepatocellular carcinoma: a real-world study. Cancer Immunol Immunother 2025; 74:186. [PMID: 40293533 PMCID: PMC12037968 DOI: 10.1007/s00262-025-04038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE This study retrospectively evaluated the safety and efficacy of cadonilimab combined with tyrosine kinase inhibitors (TKI) for the treatment of unresectable hepatocellular carcinoma (uHCC). PATIENTS AND METHODS Seventy-eight patients who received cadonilimab + TKI were included; 42 and 36 received it as first-line (1 L) and second-line and above (≥ 2 L) systemic treatment, respectively. Besides, ninety-five patients who received PD-1 inhibitor + TKI as first-line treatments were included. Safety was the primary endpoint; secondary endpoints were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). RESULTS Treatment-related adverse events (TRAEs) of any grade occurred in 84.6% of the patients, with grade ≥ 3 in 20.5%. In patients with a Child-Pugh score of ≥ 8 (CP ≥ 8), any grade TRAEs occurred in 88.2%, and grade ≥ 3 in 20.6%. The overall cohort's median progression-free survival (mPFS) was 3.6 months, whereas the median overall survival (mOS) was 8.8 months. In the 1 L group, mPFS was 6.7 months versus 2.3 months in ≥ 2 L. In the 1 L group, mOS was 13.7 months versus 3.2 months in ≥ 2 L. For CP < 8, 1 L mPFS was 7.6 months, mOS not reached; CP ≥ 8 had mPFS of 5.2 months, mOS of 5.6 months. For CP < 8 in ≥ 2 L, mPFS was 3.1 months, mOS 8.8 months; CP ≥ 8 had mPFS of 1.4 months, mOS of 2.2 months. After propensity score matching (PSM), the incidence of TRAEs of any grade was 77.1%, with grade ≥ 3 accounting for 17.1% in the PD-1 group. In the PD-1/CTLA-4 group, the incidence of TRAEs of any grade was 80.0%, and that of grade ≥ 3 TRAEs was 17.1%. The mPFS was 6.7 months in the PD-1/CTLA-4 group versus 3.3 months in the PD-1 group. The mOS was 13.7 months in the PD-1/CTLA-4 group versus 6.7 months in the PD-1 group. CONCLUSION Cadonilimab + TKI showed a favorable trend in safety and efficacy, especially when applied as first-line systemic therapy for uHCC. This study offers a clinical reference for its use in systemic uHCC therapy, particularly in patients with advanced liver dysfunction.
Collapse
Affiliation(s)
- Yilin Wang
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing, 100853, China
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Shida Pan
- Capital Medical University, Beijing, 100069, China
| | - Jiahe Tian
- Peking University 302 Clinical Medical School, Beijing, 100191, China
| | - Jianing Wang
- Peking University 302 Clinical Medical School, Beijing, 100191, China
| | - Yingying Yu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Siyu Wang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Fengyi Li
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Luo Yang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Xiaomeng Liu
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Yingjuan Shen
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Qin Qiu
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Junqing Luan
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China
| | - Mengdie Jia
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing, 100853, China
| | - Chuyue Xiong
- Peking University 302 Clinical Medical School, Beijing, 100191, China
| | - Xuanxuan Duan
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing, 100853, China
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing, 100853, China.
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China.
| | - Fanping Meng
- Medical School of Chinese PLA, No. 28, Fuxing Road, Beijing, 100853, China.
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, 100853, China.
| |
Collapse
|
27
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
28
|
Rimassa L, Chan SL, Sangro B, Lau G, Kudo M, Reig M, Breder V, Ryu MH, Ostapenko Y, Sukeepaisarnjaroen W, Varela M, Tougeron D, Crysler OV, Bouattour M, Van Dao T, Tam VC, Faccio A, Furuse J, Jeng LB, Kang YK, Kelley RK, Paskow MJ, Ran D, Xynos I, Kurland JF, Negro A, Abou-Alfa GK. Five-year overall survival update from the HIMALAYA study of tremelimumab plus durvalumab in unresectable HCC. J Hepatol 2025:S0168-8278(25)00226-0. [PMID: 40222621 DOI: 10.1016/j.jhep.2025.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND & AIMS In the phase III HIMALAYA study (NCT03298451), STRIDE (Single Tremelimumab Regular Interval Durvalumab) significantly improved overall survival (OS) versus sorafenib in unresectable HCC (uHCC) and demonstrated long-term survival benefits. We report an updated exploratory analysis of OS with 5 years of follow-up, including survival by multiple tumour response measures. METHODS Participants were randomised to STRIDE (tremelimumab plus durvalumab), durvalumab or sorafenib. OS, depth of response and serious adverse events (AEs) were assessed. Extended long-term survivors (eLTS; ≥48 months beyond randomisation) were described. Updated data cut-off: 01 March 2024. RESULTS Median (95% CI) follow-up durations were 62.49 (59.47-64.79) months (STRIDE) and 59.86 (58.32-61.54) months (sorafenib). The OS HR (95% CI) for STRIDE versus sorafenib was 0.76 (0.65-0.89). OS rates at 60 months for STRIDE versus sorafenib were 19.6% versus 9.4% overall, 28.7% versus 12.7% in participants achieving disease control per RECIST v1.1 and 50.7% versus 26.3% in participants achieving >25% tumour shrinkage. No late-onset treatment-related serious AEs were reported for STRIDE. There were more eLTS with STRIDE (83/393, 21.1%) than sorafenib (45/389, 11.6%), and extended long-term survival occurred across all clinically relevant subgroups. CONCLUSIONS At 5 years, STRIDE sustained an OS benefit versus sorafenib and maintained a manageable safety profile. OS benefit with STRIDE was improved in participants with disease control. Data suggest that any degree of tumour shrinkage with STRIDE can be associated with improved OS, indicating that conventional response measures may not fully capture STRIDE benefits. Nevertheless, participants experiencing deep responses appear to have the greatest benefit. STRIDE continues to set new benchmarks in uHCC with 1 in 5 patients alive at 5 years. IMPACT AND IMPLICATIONS The phase III HIMALAYA study showed that STRIDE (Single Tremelimumab Regular Interval Durvalumab) improved overall survival (OS) versus sorafenib in participants with unresectable HCC (uHCC), including after 4 years of follow-up. Understanding the efficacy and safety of STRIDE over the longer term is important for healthcare providers; here, we demonstrate that STRIDE sustained an OS benefit versus sorafenib and maintained a manageable safety profile after 5 years of follow-up. OS benefit with STRIDE was improved in participants with disease control and any degree of tumour shrinkage, indicating that conventional response measures may not fully capture the benefits of STRIDE. These findings are important as they set new benchmarks in uHCC and may help guide clinical decisions in the future.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Pamplona - Madrid, Spain
| | - George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong SAR, China
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Maria Reig
- Barcelona Clinic Liver Cancer (BCLC), Liver Unit, Hospital Clinic de Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Valeriy Breder
- Department of Chemotherapy, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yuriy Ostapenko
- Department of Minimally Invasive and Endoscopic Surgery, Interventional Radiology, National Cancer Institute, Kyiv, Ukraine
| | | | - Maria Varela
- Liver Unit, Hospital Universitario Central de Asturias, IUOPA, ISPA, FINBA, Universidad de Oviedo, Oviedo, Spain
| | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Oxana V Crysler
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Tu Van Dao
- Cancer Research and Clinical Trials Center, Department of Optimal Therapy, National Cancer Hospital, Hanoi, Vietnam
| | - Vincent C Tam
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Adilson Faccio
- Department of Oncology, CEON - Centro Especializado em Oncologia, Ribeirao Preto, Brazil
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Long-Bin Jeng
- Department of Surgery, China Medical University and Hospital, Taichung, Taiwan, Republic of China
| | - Yoon Koo Kang
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Robin K Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Michael J Paskow
- Global Medical Affairs, AstraZeneca, Gaithersburg, Maryland, USA
| | - Di Ran
- Statistics, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ioannis Xynos
- Oncology R&D, Late-Stage Development, AstraZeneca, Cambridge, UK
| | - John F Kurland
- Oncology R&D, Late-Stage Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Alejandra Negro
- Oncology R&D, Late-Stage Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Cornell University, New York, New York, USA; Weill Medical College, Cornell University, New York, New York, USA; Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Honma Y, Shibata M, Ikemi M, Yoshitomi K, Shinohara N, Ogino N, Oe S, Miyagawa K, Abe S, Harada M. Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab. Cancers (Basel) 2025; 17:1274. [PMID: 40282450 PMCID: PMC12025802 DOI: 10.3390/cancers17081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Durvalumab plus Tremelimumab (Dur/Tre) therapy is expected to have good therapeutic efficacy for patients with advanced hepatocellular carcinoma (HCC). However, the predictors of clinical response and prognosis have not been established. Here, we retrospectively investigated the predictors for therapeutic response and clinical prognosis of Dur/Tre therapy. METHODS This retrospective single-center study, which included 30 patients, aimed to evaluate predictors of treatment efficacy of Dur/Tre therapy for advanced HCC. Factors associated with an objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and immune-mediated adverse events (imAEs) were examined. We especially focused on the initial change in peripheral lymphocyte count at 2 weeks after Dur/Tre introduction from baseline (Δlymphocyte). RESULTS Seventeen patients (56.7%) diagnosed with HCC BCLC stage C were enrolled. The median observational period was 11 months. The ORR and disease control rate (DCR) were 30.0% and 53.3%, respectively. The median PFS was 3.7 months and OS was not reached. The high Δlymphocyte was an independent predictor of objective response (hazard ratio [HR], 1.004; p = 0.016). The high Δlymphocyte (above +245/µL) was an independent predictive factor for better PFS (HR, 0.308; 95% CI, 0.095-0.998; p = 0.049), and the median PFS was significantly prolonged in the high Δlymphocyte (above +245/µL) compared to low Δlymphocyte (less than +245/µL) (not reached vs. 1.96 months, log-rank p = 0.003). CONCLUSIONS In Dur/Tre therapy, the early increase in peripheral blood lymphocyte count was useful for predicting clinical response and prognosis.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (M.S.); (M.I.); (K.Y.); (N.S.); (N.O.); (S.O.); (K.M.); (S.A.); (M.H.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie D, Liu Y, Xu F, Dang Z, Li M, Zhang Q, Dang Z. Immune microenvironment and immunotherapy in hepatocellular carcinoma: mechanisms and advances. Front Immunol 2025; 16:1581098. [PMID: 40242773 PMCID: PMC12000014 DOI: 10.3389/fimmu.2025.1581098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally. The tumor microenvironment (TME) plays a pivotal role in HCC progression, characterized by dynamic interactions between stromal components, immune cells, and tumor cells. Key immune players, including tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), MDSCs, dendritic cells (DCs), and natural killer (NK) cells, contribute to immune evasion and tumor progression. Recent advances in immunotherapy, such as immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell therapy (ACT), and combination therapies, have shown promise in enhancing anti-tumor responses. Dual ICI combinations, ICIs with molecular targeted drugs, and integration with local treatments or radiotherapy have demonstrated improved outcomes in HCC patients. This review highlights the evolving understanding of the immune microenvironment and the therapeutic potential of immunotherapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Dong Xie
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Fangbiao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhibo Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengge Li
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Qinsheng Zhang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
31
|
Mauro E, Rodríguez‐Perálvarez M, D'Alessio A, Crespo G, Piñero F, De Martin E, Colmenero J, Pinato DJ, Forner A. New Scenarios in Liver Transplantation for Hepatocellular Carcinoma. Liver Int 2025; 45:e16142. [PMID: 39494583 PMCID: PMC11891387 DOI: 10.1111/liv.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Despite liver transplantation (LT) is considered the optimal treatment for hepatocellular carcinoma (HCC), particularly in patients with impaired liver function, the shortage of donors has forced the application of very restrictive criteria for selecting ideal candidates for whom LT can offer the best outcome. With the evolving LT landscape due to the advent of direct-acting antivirals (DAAs) and the steady increase in donors, major efforts have been made to expand the transplant eligibility criteria for HCC. In addition, the emergence of immune checkpoint inhibitors (ICIs) for the treatment of HCC, with demonstrated efficacy in earlier stages, has revolutionized the therapeutic approach for these patients, and their integration in the setting of LT is challenging. Management of immunological compromise from ICIs, including the wash-out period before LT and post-LT immunosuppression adjustments, is crucial to balance the risk of graft rejection against HCC recurrence. Additionally, the effects of increased immunosuppression on non-hepatic complications must be understood to prevent them from becoming obstacles to long-term OS. METHODS AND RESULTS In this review, we will evaluate the emerging evidence and its implications for the future of LT in HCC. Addressing these novel challenges and opportunities, while integrating the current clinical evidence with predictive algorithms, would ensure a fair balance between individual patient needs and the overall population benefit in the LT system.
Collapse
Affiliation(s)
- Ezequiel Mauro
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPSUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| | - Manuel Rodríguez‐Perálvarez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Hepatology and Liver Transplantation, Hospital Universitario Reina SofíaUniversidad de Córdoba, IMIBIC, CIBERehdCórdobaSpain
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
- Division of Oncology, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Gonzalo Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | - Federico Piñero
- School of MedicineHospital Universitario Austral, Austral UniversityBuenos AiresArgentina
| | - Eleonora De Martin
- AP‐HP Hôpital Paul‐Brousse, Centre Hépato‐Biliaire, INSERM Unit 1193Université Paris‐Saclay, FHU HepatinovVillejuifFrance
| | - Jordi Colmenero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
- Division of Oncology, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Alejandro Forner
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPSUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| |
Collapse
|
32
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
33
|
Dalbeni A, Cattazzo F, Natola LA, Zoncapè M, Faccincani D, Stefanini B, Ravaioli F, Villani R, Auriemma A, Sacerdoti D. What can real-world data teach us about treating patients with unresectable hepatocellular carcinoma? Expert Rev Gastroenterol Hepatol 2025; 19:389-398. [PMID: 40042586 DOI: 10.1080/17474124.2025.2476541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) remains a major global health concern, as it is the most common primary liver cancer and the fourth leading cause of cancer-related mortality. AREAS COVERED Immune checkpoint inhibitors (ICIs) have significantly shifted the treatment paradigm, offering promising survival outcomes. However, the controlled conditions of randomized clinical trials (RCTs) often fail to reflect real-world complexities, emphasizing the necessity for strong real-world evidence (RWE). RWE, in most cases derived from observational studies, provides critical insights into the effectiveness, safety, and tolerability of systemic therapies across diverse populations and settings. The authors searched MEDLINE, Ovid Embase, and Scopus for full-text published articles in any language from the inception to 30 June 2024.This review evaluates RWE on systemic therapies for advanced HCC, including tyrosine kinase inhibitors (TKIs) like sorafenib and lenvatinib, ICIs such as nivolumab and pembrolizumab, and combination therapies like atezolizumab/bevacizumab and durvalumab/tremelimumab. EXPERT OPINION Studies reveal discrepancies in treatment efficacy and adverse event profiles between RCTs and routine clinical practice, underscoring the need for individualized treatment strategies. RWE highlights the influence of liver disease etiology, liver function, and tumor burden on treatment outcomes, guiding therapy selection.
Collapse
Affiliation(s)
- A Dalbeni
- Unit of General Medicine C, Medicine Department, University of Verona and Hospital Trust (AOUI) of Verona, Verona, Italy
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - F Cattazzo
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - L A Natola
- Unit of General Medicine C, Medicine Department, University of Verona and Hospital Trust (AOUI) of Verona, Verona, Italy
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - M Zoncapè
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - D Faccincani
- Unit of General Medicine C, Medicine Department, University of Verona and Hospital Trust (AOUI) of Verona, Verona, Italy
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - B Stefanini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - F Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - R Villani
- Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - A Auriemma
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - D Sacerdoti
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| |
Collapse
|
34
|
Pinato DJ. Tertiary lymphoid structure dynamics at the centre of immunotherapy response in hepatocellular carcinoma. J Hepatol 2025; 82:769-770. [PMID: 39843298 DOI: 10.1016/j.jhep.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Affiliation(s)
- David J Pinato
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, W120NN, London, UK; Department of Translational Medicine (DIMET), University of Piemonte Orientale "A. Avogadro", Novara, Italy.
| |
Collapse
|
35
|
Li Y, Hamad M, Elkord E. Cancer-associated fibroblasts in hepatocellular carcinoma: heterogeneity, mechanisms and therapeutic targets. Hepatol Int 2025; 19:325-336. [PMID: 39979756 DOI: 10.1007/s12072-025-10788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant cancers worldwide. Although immunotherapy has improved the treatment outcome in HCC, a significant percentage of patients with advanced HCC still cannot benefit from immunotherapy. Therefore, developing new targets or combination therapeutic strategies to improve the efficacy of immunotherapy is urgently needed. A deeper understanding of the mechanisms underlying immune regulation may help in this regard. The tumor microenvironment (TME) consists of a diverse set of components modulating the efficacy of immunotherapy. Cancer-associated fibroblasts (CAFs) are critical components of the TME and can regulate both tumor and immune cells through secreted cytokines and exosomes that impact various signaling pathways in target cells. CAF-derived cytokines can also participate in extracellular matrix (ECM) remodeling, thereby impacting cancer progression and tumor responsiveness to immunotherapy among other effects. A thorough understanding of the phenotypic and functional profile dynamism of CAFs may lead the way for new treatment strategies and/or better treatment outcomes in HCC patients. In this review, we outline the biomarkers and functional heterogeneity of CAFs in HCC and elaborate on molecular mechanisms of CAFs, including anti-programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immunotherapy. We also examine current clinical implications of CAFs-related targets as potential therapeutic candidates in HCC.
Collapse
Affiliation(s)
- Yutong Li
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mawieh Hamad
- College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
36
|
Long X, Kwong TT, Cheng ASL, Chan SL. Targeting tumour endothelial cells in liver cancer: The end of beginning. J Hepatol 2025; 82:553-555. [PMID: 39725355 DOI: 10.1016/j.jhep.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Xiaohang Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Zhu W, Fan C, Zhao Y, Liu Y, Cheng Y, Zhou W. Breaking bottlenecks: the future of hepatocellular carcinoma clinical trials and therapeutic targets. Hepatol Int 2025:10.1007/s12072-025-10799-2. [PMID: 40156659 DOI: 10.1007/s12072-025-10799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND To provide a reference for hepatocellular carcinoma (HCC) clinical trials, we analyzed HCC clinical trials and therapeutic targets. METHODS Using the Informa database, we analyzed the global and China HCC clinical trials. We then explored TACE, Apatinib, and emerging strategies (CAR T/NK). Additionally, we analyzed the oncogenic biomarkers and therapeutic targets. We conducted a joint analysis of therapeutic target safety using HPA-RNA, HPA-Proteins, and GTEx-RNA datasets. Finally, we analyzed the specificity and prospects of therapeutic targets using HPA pathology data and CPTAC data. RESULTS HCC clinical trials have developed rapidly over the past decade but have now reached a bottleneck, with most breakthroughs focusing on combination therapies. China and the USA dominate in the number of trials. TACE combined with systemic therapy has become an effective treatment strategy for intermediate to advanced HCC. Apatinib and TACE combined with systemic therapy are characteristic of China, while the latter is also mainly conducted in Japan and the USA. Currently, targeted immune therapies dominate the field, and CAR T/NK still in the early stages. Most therapeutic targets are related to the VEGF pathway, which indirectly confirms the predominant role of TKI-ICI combination therapy in HCC treatment. Most targets have low safety and poor specificity. However, RRM2, KDR, and AURKA have strong safety and specificity, showing excellent prospects for targeted HCC therapy. CONCLUSIONS This study analyzed and summarized the overview of HCC clinical trials and the safety and specificity of therapeutic targets, providing a reference for HCC clinical research.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- Department of Gastrointestinal Surgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yongqing Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Youtao Liu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yusheng Cheng
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
38
|
Chan LL, Chan SL. Future perspectives on immunotherapy for hepatocellular carcinoma. Ther Adv Med Oncol 2025; 17:17588359251323199. [PMID: 40144682 PMCID: PMC11938898 DOI: 10.1177/17588359251323199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, several global phase III trials have shown that combinations of immune checkpoint inhibitors (ICIs) offer superior efficacy and survival compared to multi-kinase inhibitors, establishing them as the gold standard for treating patients with advanced hepatocellular carcinoma (HCC). This success has led to investigations into expanding the use of immunotherapy into various other settings and populations, including neoadjuvant and adjuvant therapies, patients with decompensated liver function and those awaiting liver transplantation. Despite its proven efficacy, a significant number of patients still develop resistance to immunotherapy, highlighting the need for innovative strategies to address this challenge. Approaches aimed at enhancing tumour immunogenicity, such as combining immunotherapy with transarterial chemoembolization or radiation therapies, show significant promise. Additionally, novel immunotherapeutics - such as triplet therapy, bispecific antibodies, adoptive T-cell therapy and cancer vaccines - are in early development for HCC. These agents have demonstrated potential for synergistic effects with existing ICIs, with initial studies yielding positive outcomes. In this review, we offer our future perspective on immunotherapy, emphasizing emerging indications, novel combination strategies and the development of new immunotherapeutic agents. Overall, the future of immunotherapy in HCC is brimming with extraordinary potential, set to transform the treatment landscape and redefine the possibilities for managing this challenging disease.
Collapse
Affiliation(s)
- Landon L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, Hong Kong, China
| |
Collapse
|
39
|
Ye L, Yue WR, Shi H, Li JR, Qun YY. Case Report: Successful immune checkpoint inhibitor rechallenge after sintilimab-induced Guillain-Barré syndrome. Front Immunol 2025; 16:1546886. [PMID: 40176803 PMCID: PMC11961408 DOI: 10.3389/fimmu.2025.1546886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized hepatocellular carcinoma (HCC) treatment, while immune-related adverse events (IRAEs) pose significant challenges. We report a 60-year-old male with unresectable HCC who developed Guillain-Barré syndrome (GBS), a rare but severe neurologic complication, after three cycles of sintilimab plus bevacizumab biosimilar and conventional transarterial chemoembolization (c-TACE). The patient presented with progressive ascending weakness, reaching symmetric quadriparesis with proximal muscle strength of 2/5 in upper limbs and 1/5 in lower limbs. Following sintilimab discontinuation, treatment with intravenous immunoglobulin (2 g/kg) and oral prednisone (30 mg/day) achieved complete neurological recovery within one month. Given the patient's favorable initial tumor response and strong request, immunotherapy was cautiously reinstated using tislelizumab after thorough clinical evaluation. Following four cycles of treatment, significant tumor response enabled successful conversion surgery with major pathological response (necrosis rate >70%). With 26-month survival and no evidence of recurrence, this case demonstrates the potential feasibility of ICI rechallenge with an alternative PD-1 inhibitor following sintilimab-induced GBS. Our experience suggests that ICI-related neurological adverse events may be drug-specific rather than class-specific, potentially providing valuable treatment options for patients showing favorable tumor response despite experiencing severe IRAEs, though larger studies are needed for validation.
Collapse
Affiliation(s)
- Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wan Rong Yue
- Department of Pathology, Guilin People's Hospital, Guilin, China
| | - Hao Shi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Ren Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yu Ya Qun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
40
|
de Mattos AA, Tovo CV, Bombassaro IZ, Ferreira LF. Current impact in the treatment of advanced hepatocellular carcinoma: The challenge remains. World J Gastrointest Oncol 2025; 17:102932. [PMID: 40092951 PMCID: PMC11866258 DOI: 10.4251/wjgo.v17.i3.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 02/14/2025] Open
Abstract
Hepatocellular carcinoma remains a significant cause of mortality worldwide, particularly among patients with liver cirrhosis. In most cases, surveillance in cirrhotic patients is neglected, leading to a diagnosis when the neoplasm is at an advanced stage. Within this context, Zhou et al carried out a network meta-analysis to demonstrate the effectiveness of hepatic arterial infusion chemotherapy, concluding that it is a superior approach compared to sorafenib and transarterial chemoembolization in the treatment of advanced hepatocellular carcinoma. Unfortunately, the meta-analysis in question lacks methodological rigor, preventing the authors from making more definitive assertions. Additionally, we understand that transarterial chemoembolization, when properly indicated, is a highly effective therapeutic option, and that sorafenib, given the results of new therapies based on immune checkpoint inhibitors, is no longer the recommended drug for the treatment of these patients. Therefore, we believe the use of hepatic arterial infusion chemotherapy is increasingly limited and lacks strong scientific support.
Collapse
Affiliation(s)
- Angelo A de Mattos
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Cristiane V Tovo
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Isadora Z Bombassaro
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Luis F Ferreira
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- School of Electronics, Electrical Engineering and Computer Science, Queen’s University of Belfast, Belfast BT9 5BN, Belfast, United Kingdom
| |
Collapse
|
41
|
Goodsell KE, Tao AJ, Park JO. Neoadjuvant therapy for hepatocellular carcinoma-priming precision innovations to transform HCC treatment. Front Surg 2025; 12:1531852. [PMID: 40115081 PMCID: PMC11922951 DOI: 10.3389/fsurg.2025.1531852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence globally, and cure remains limited with non-operative treatment. Surgical intervention, through resection or transplantation, offers a potential for cure for select patients. However, many patients present with advanced or unresectable disease, and recurrence rates remain high. Recent advances in systemic therapies, particularly immune checkpoint inhibitors, have demonstrated promise in treating unresectable HCC and as adjuvant therapy. Evidence from adjuvant trials highlights the synergistic potential of combined liver-directed and systemic therapies. These findings have ignited growing interest in neoadjuvant therapy across various scenarios: (1) as a bridging strategy while awaiting transplantation, (2) for downstaging disease to enable transplantation, (3) for converting unresectable disease to a resectable state, or (4) as neoadjuvant treatment in operable cases. Early-stage trials of neoadjuvant therapy in resectable HCC have reported promising outcomes. To realize the potential of neoadjuvant treatment for HCC, thoughtfully designed, adequately powered, multi-center clinical trials are essential.
Collapse
Affiliation(s)
- Kristin E Goodsell
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Alice J Tao
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, United States
- Department of Surgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
42
|
Moeckli B, Wassmer CH, El Hajji S, Kumar R, Rodrigues Ribeiro J, Tabrizian P, Feng H, Schnickel G, Kulkarni AV, Allaire M, Asthana S, Karvellas CJ, Meeberg G, Wei L, Chouik Y, Kumar P, Gartrell RD, Martinez M, Kang E, Sogbe M, Sangro B, Schwacha-Eipper B, Schmiderer A, Krendl FJ, Goossens N, Lacotte S, Compagnon P, Toso C. Determining safe washout period for immune checkpoint inhibitors prior to liver transplantation: An international retrospective cohort study. Hepatology 2025:01515467-990000000-01187. [PMID: 40042053 DOI: 10.1097/hep.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS Immune checkpoint inhibitors (ICIs) are increasingly used in patients with advanced HCC patients awaiting liver transplantation (LT). However, concerns about the risk of posttransplant rejection persist. APPROACH AND RESULTS We conducted an international retrospective cohort study including 119 HCC patients who received ICIs prior to LT. We analyzed the incidence of allograft rejection, graft loss, and posttransplant recurrence with a particular focus on the washout period between the last ICI dose and LT. In this study, 24 of the 119 (20.2%) patients experienced allograft rejection with a median time to rejection of 9 days (IQR 6-10) post-LT. A linear relationship was observed between shorter washout periods and higher rejection risk. Washout periods <30 days (OR: 21.3, 95% CI: 5.93-103, p< 0.001) and between 30 and 50 days (OR: 9.48, 95% CI 2.47-46.8, p =0.002) were significantly associated with higher rejection rates in the univariate analysis compared to the washout period above 50 days. Graft loss as a result of rejection occurred in 6 patients (25%) with rejection. No factors related to grafts were associated with rejection. A longer washout period was not associated with a lower recurrence-free survival posttransplantation at 36 months (71% vs. 67%, p =0.71). CONCLUSIONS Our findings suggest that a washout period longer than 50 days for ICIs before LT appears to be safe with respect to rejection risk. While these results may help guide clinical decision-making, future prospective studies are essential to establish definitive guidelines.
Collapse
Affiliation(s)
- Beat Moeckli
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Sofia El Hajji
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Rohan Kumar
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Parissa Tabrizian
- Recanati/Miller Institute, Mount Sinai Medical Center, New York, USA
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, Shanghai, China
| | - Gabriel Schnickel
- Division of Transplant and Hepatobiliary Surgery, Department of Surgery, University of California San Diego, San Diego, California, USA
| | | | - Manon Allaire
- AP-HP Sorbonne Université, Hôpital Universitaire Pitié-Salpêtrière, Service d'Hépato-gastroentérologie, Paris, France
| | - Sonal Asthana
- Department of Hepatobiliary Surgery and Transplantation, Aster Hospitals, Bangalore, India
| | - Constantine J Karvellas
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Glenda Meeberg
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Wuhan, China
| | - Yasmina Chouik
- Department of Hepatology, Croix-Rousse Hospital, Lyon, France
| | - Pramod Kumar
- Department of Hepatology, BGS Gleneagles Global Hospital, Bengaluru, India
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Elise Kang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Miguel Sogbe
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Bruno Sangro
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | | | - Andreas Schmiderer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Goossens
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Stephanie Lacotte
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Philippe Compagnon
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Christian Toso
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| |
Collapse
|
43
|
Xiong X, Guo JJ. Cost Effectiveness of Tremelimumab Plus Durvalumab for Unresectable Hepatocellular Carcinoma in the USA. PHARMACOECONOMICS 2025; 43:271-282. [PMID: 39546248 DOI: 10.1007/s40273-024-01453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Treating unresectable hepatocellular carcinoma (uHCC) is challenging. Clinical trials have shown that Single Tremelimumab Regular Interval Durvalumab (STRIDE) offers clinical benefits as a first-line treatment for uHCC, but its cost effectiveness remains unknown in the USA. OBJECTIVE We aimed to assess the cost effectiveness of STRIDE (tremelimumab plus durvalumab) versus sorafenib and durvalumab monotherapy as the first-line treatment for uHCC in the USA. METHODS A partitioned survival model was constructed to assess the cost effectiveness of STRIDE compared to sorafenib and durvalumab monotherapy as the first-line treatment for uHCC from the US societal perspective. The time horizon was 48 months with 1-month cycles. Seven parametric survival functions replicated survival curves from clinical trials, with the best-fitting model used to calculate survival probabilities. Costs, health utilities, and adverse events were included, with quality-adjusted life-years (QALYs) as the primary effectiveness measure. Both costs and effectiveness were discounted at 3%. In the base-case analysis, the incremental cost-effectiveness ratio was compared to a willingness-to-pay threshold of $150,000 per QALY gained. Deterministic and probabilistic sensitivity analyses were conducted to examine the uncertainty of the model. RESULTS In the base-case analysis, STRIDE was cost effective compared to sorafenib, with an incremental cost-effectiveness ratio of $97,995.51 per QALY gained, based on a willingness-to-pay threshold of $150,000 per QALY gained. However, STRIDE was not cost effective compared to durvalumab monotherapy at the same threshold, with an incremental cost-effectiveness ratio of $754,408.92 per QALY gained. Deterministic sensitivity analyses were consistent with the base-case analysis. A probabilistic sensitivity analysis indicated that STRIDE was more likely to be cost effective than sorafenib and durvalumab monotherapy when the willingness-to-pay exceeded $101,000 and $713,000, respectively. CONCLUSIONS The STRIDE regimen appears to be cost effective compared to sorafenib but not compared to durvalumab for first-line uHCC treatment in the USA. However, durvalumab has not yet been approved for uHCC in the USA. Future research should focus on long-term data and economic evaluations of other recommended biologics.
Collapse
MESH Headings
- Humans
- Cost-Benefit Analysis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/economics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/mortality
- Liver Neoplasms/drug therapy
- Liver Neoplasms/economics
- Liver Neoplasms/pathology
- Liver Neoplasms/mortality
- United States
- Quality-Adjusted Life Years
- Antibodies, Monoclonal, Humanized/economics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Sorafenib/economics
- Sorafenib/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/economics
- Antineoplastic Combined Chemotherapy Protocols/economics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Models, Economic
- Cost-Effectiveness Analysis
Collapse
Affiliation(s)
- Xiaomo Xiong
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, 3255 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Jeff Jianfei Guo
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, 3255 Eden Ave, Cincinnati, OH, 45267, USA
| |
Collapse
|
44
|
Gramantieri L, Montagner A, Arleo A, Suzzi F, Bassi C, Tovoli F, Bruccoleri M, Alimenti E, Fornari F, Iavarone M, Negrini M, Piscaglia F, Giovannini C. Early CTLA4 increase in CD45+ blood cells: an emerging biomarker of atezolizumab-bevacizumab resistance and worse survival in advanced hepatocarcinoma. ESMO Open 2025; 10:104289. [PMID: 40048814 PMCID: PMC11928801 DOI: 10.1016/j.esmoop.2025.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Advanced hepatocellular carcinoma (HCC) has a dismal prognosis; however, the introduction of atezolizumab-bevacizumab combination has improved overall survival and novel immune checkpoint inhibitors are entering the clinics. Despite more therapeutic options being available, no biomarker guides treatment choice. Indeed, tissue-based analyses and complex analytical procedures hinder clinical translation. We explored the informativeness of a simple, non-invasive, repeatable cytofluorimetric assay on peripheral blood to predict response and survival in HCC patients treated with atezolizumab-bevacizumab. MATERIALS AND METHODS Twenty-five cirrhotic patients, 50 HCC patients undergoing atezolizumab-bevacizumab and an independent validation cohort of 25 HCC patients were subjected to a cytofluorimetric study of peripheral white blood cells (WBCs) to assess baseline programmed death-ligand 1-positive (PD-L1+) and cytotoxic T-lymphocyte antigen 4-positive (CTLA4+) cell percentage in the different populations and their early on-treatment variations. Immunophenotypes were evaluated against treatment response. RNA sequencing followed by RT-PCR validation were used to elucidate the molecular correlates of immunophenotypic observations. RESULTS PD-L1+ cell percentage did not predict response either at baseline or when evaluating treatment-induced early changes. Conversely, the percentage of CTLA4+ lymphocytes at baseline showed a predictive significance (35.37 in responders versus 31.5 in non-responders, P = 0.03). More interestingly, the early CTLA4+ changes during treatment in lymphocytes (responders 0.95 versus non-responders 1.08, P = 0.05), monocytes (responders 0.95 versus non-responders 1.04, P = 0.03), granulocytes (responders 0.94 versus non-responders 1.14, P = 0.001) and, even stronger, the early CTLA4+ percentage change in the whole WBCs displayed a predictive significance in terms of time to progression (TTP) (P < 0.0001) and overall survival (OS) (P = 0.005). The immunophenotypic findings correlated with transcriptional modulation of CTLA4 target genes and genes involved in immune response. CONCLUSIONS A repeatable, easy, non-invasive blood test predicts response to immunotherapy in patients with HCC, both in terms of TTP and OS. CTLA4+ cell percentage increase in non-responders suggests a possible resistance mechanism which deserves attention as a druggable target.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/blood
- Liver Neoplasms/pathology
- Male
- CTLA-4 Antigen/blood
- CTLA-4 Antigen/metabolism
- Female
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Middle Aged
- Bevacizumab/therapeutic use
- Bevacizumab/pharmacology
- Biomarkers, Tumor/blood
- Aged
- Drug Resistance, Neoplasm
- Leukocyte Common Antigens/metabolism
- Leukocyte Common Antigens/blood
Collapse
Affiliation(s)
- L Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - A Montagner
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - A Arleo
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - F Suzzi
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - C Bassi
- Department of Translational Medicine and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - F Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - M Bruccoleri
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - E Alimenti
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - F Fornari
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - M Iavarone
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - M Negrini
- Department of Translational Medicine and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - F Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - C Giovannini
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy.
| |
Collapse
|
45
|
Wang Y. Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. Appl Biochem Biotechnol 2025; 197:1773-1789. [PMID: 39607471 DOI: 10.1007/s12010-024-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Medical Oncology, Xinglongtai District, Panjin Central Hospital, No.32, Liaohe Middle RoadLiaoning Province 124010, Panjin City, China.
| |
Collapse
|
46
|
Fung AKY, Chok KSH. Hepatic artery infusion chemotherapy: A resurgence. World J Gastrointest Oncol 2025; 17:99612. [PMID: 39958544 PMCID: PMC11755999 DOI: 10.4251/wjgo.v17.i2.99612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
In this manuscript, we comment on the article by Zhou et al, who assessed the efficacy of hepatic arterial infusion chemotherapy (HAIC) and its combination strategies for advanced hepatocellular carcinoma (HCC) using network meta-analysis methodology. We focus specifically on the potential advantages and role of HAIC in the treatment algorithm for advanced HCC. However, there remains numerous knowledge gaps before the role of HAIC can be established. There is significant heterogeneity of HAIC regimes with difficult interpretation of the clinical outcomes. Additionally, there is a lack of direct comparative data between HAIC, systemic chemotherapy, novel immunotherapies and targeted therapies. The underlying biochemical mechanisms that might explain the efficacy of HAIC and its effect on the HCC microenvironment requires further research. In the developing era of nanotechnology and targeted drug delivery systems, there is potential for integration of HAIC with novel technologies to effectively treat advanced HCC whilst minimising systemic complications.
Collapse
Affiliation(s)
- Andrew Kai-Yip Fung
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| | - Kenneth Siu Ho Chok
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong 999077, China
| |
Collapse
|
47
|
Magyar CTJ, O'Kane GM, Aceituno L, Li Z, Vogel A, Bruix J, Mazzaferro V, Sapisochin G. Liver Transplantation for Hepatocellular Carcinoma: An Expanding Cornerstone of Care in the Era of Immunotherapy. J Clin Oncol 2025; 43:589-604. [PMID: 39680821 DOI: 10.1200/jco.24.00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 12/18/2024] Open
Abstract
Liver transplantation (LT) has been accepted as a cornerstone of care in hepatocellular carcinoma (HCC) for almost three decades. In recent years, its role has been evolving to include patients with disease burden beyond the widely used Milan criteria. The integration of dynamic biomarkers such as alpha-fetoprotein together with downstaging approaches and tumor evolution after enlistment has allowed the selection of patients most likely to benefit, resulting in 5-year survival rates greater that 70%. With the increasing use of immune checkpoint inhibitors (ICIs) across all stages of disease, alone or in combination with locoregional therapies, there is now the potential to further expand the patient population with HCC who may benefit from LT. This brings challenges, given the global shortage of organs and the need to better understand the optimal use of ICIs before transplantation. Furthermore, the field of transplant oncology awaits additional biomarkers that can predict those likely to benefit from ICIs. More than ever, a multidisciplinary approach for liver cancer management is critical to ensure all patients are considered for LT where appropriate, and do not miss the opportunity for long-term survival.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grainne Mary O'Kane
- University of Toronto, Toronto, ON, Canada
- St Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Laia Aceituno
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zhihao Li
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Arndt Vogel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Toronto General Hospital, Toronto, ON, Canada
- Department of Hepatology, Gastroenterology, Endocrinology & Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jordi Bruix
- BCLC Group, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Vincenzo Mazzaferro
- Istituto Nazionale Tumori IRCCS, Hepato Pancreatic Biliary Surgery & Liver Transplantation Unit, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gonzalo Sapisochin
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Sherpally D, Manne A. Advancing Immunotherapy in Pancreatic Cancer: A Brief Review of Emerging Adoptive Cell Therapies. Cancers (Basel) 2025; 17:589. [PMID: 40002184 PMCID: PMC11853216 DOI: 10.3390/cancers17040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate (13%) among major cancers and is the third leading cause of cancer-related deaths in the United States. The high lethality of this cancer is attributed to its insidious onset, late-stage diagnosis, rapid progression, and limited treatment options. Addressing these challenges requires a deeper understanding of the complex tumor microenvironment to identify novel therapeutic targets. Newer approaches like adoptive cell therapy have shown remarkable success in treating hematological malignancies, but their application in solid tumors, particularly pancreatic cancer, is still in the early stages of development. ACT broadly involves isolating immune cells (T lymphocytes, Natural Killer cells, and macrophages) from the patient, followed by genetic engineering to enhance and mount a specific anti-tumor response. Various ACT modalities are under investigation for pancreatic cancer, including chimeric antigen receptor T cells (CAR-T), chimeric antigen receptor NK cells (CAR-NK), tumor-infiltrating lymphocytes (TIL), T-cell receptor (TCR)-engineered T cells, and cytokine-induced killer cells (CIK). Major hurdles have been identifying actionable tumor antigens and delivering focused cellular therapies to overcome the immunosuppressive and dense fibrotic stroma surrounding the pancreatic cancer. Further studies are needed to explore the limitations faced by cellular therapy in pancreatic cancer and identify novel combination treatment approaches in order to improve clinical outcomes.
Collapse
Affiliation(s)
- Deepak Sherpally
- Department of Internal Medicine, New York Medical College, Metropolitan, New York, NY 10029, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| |
Collapse
|
49
|
Chan LL, Kwong TT, Yau JCW, Chan SL. Treatment for hepatocellular carcinoma after immunotherapy. Ann Hepatol 2025; 30:101781. [PMID: 39929474 DOI: 10.1016/j.aohep.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy has revolutionized the treatment landscape for advanced HCC, resulting in prolonged response and improved survival. With these results, a pressing question arises: what is the optimal treatment following first-line immunotherapy? Despite the benefits of immunotherapy, most patients will experience disease progression within six months and will require subsequent therapies. International guidelines recommend second-line multi-kinase inhibitors following progression on immunotherapy; however, this recommendation is primarily based on expert consensus rather than high-quality evidence. Nevertheless, real-world data indicate that these agents demonstrate similar efficacy and safety when used as first-line treatments. Conversely, it remains unclear whether continuing immunotherapy after progression is beneficial. In some cases, adding anti-CTLA-4 as salvage therapy has shown effectiveness. Molecular-directed therapies have also been tested, showing some initial promise, but further data is needed to confirm the benefits of this approach. Emerging evidence suggests that patients experiencing oligoprogression may benefit from local or locoregional therapies while continuing immunotherapy. In this review, we will discuss treatment strategies following progression after first-line immunotherapy.
Collapse
Affiliation(s)
- Landon L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Tung Kwong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Johnny C W Yau
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
50
|
Xu D, Wang H, Bao Q, Jin K, Liu M, Liu W, Yan X, Wang L, Zhang Y, Wang G, Ma Y, Ma Z, Zhang C, Tang J, Wang S, Pang J, Xu T, Wang K, Xing B. The anti-PD-L1/CTLA-4 bispecific antibody KN046 plus lenvatinib in advanced unresectable or metastatic hepatocellular carcinoma: a phase II trial. Nat Commun 2025; 16:1443. [PMID: 39920148 PMCID: PMC11806070 DOI: 10.1038/s41467-025-56537-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
This open-label phase II trial (NCT04542837) aimed to evaluate the efficacy and safety of KN046 combined with lenvatinib in patients with advanced hepatocellular carcinoma (HCC), and explore the potential response biomarkers. Participants received KN046 5 mg/kg every 3 weeks and lenvatinib 12 or 8 mg once daily. The primary endpoints were safety, tolerability, dose-limiting toxicity (DLT), and objective response rate (ORR) according to RECIST v1.1. A total of fifty-five participants were enrolled. The results meet the pre-specified primary endpoints. No DLT was observed in the safety run-in period. The incidence of serious adverse events and grade ≥3 treatment-related adverse events (TRAEs) was 30.9% and 47.3%, respectively. Grade ≥3 immunotherapy-related adverse events occurred in 3 (5.5%) participants. Five (9.1%) participants discontinued treatment due to TRAEs, all of which were grade 1-2. The ORR was 45.5% (95% CI, 31.97-59.45). The median progression-free survival was 11.0 (95% CI, 8.21-15.24) months. The median overall survival (OS) was 16.4 (95% CI, 11.20-not estimable) months, and 12-month OS rate was 60.0% (95% CI, 45.87-71.55). Circulating tumor DNA status before the third cycle of treatment was associated with prognosis. In conclusion, First-line KN046 plus lenvatinib shows promising efficacy for advanced unresectable or metastatic HCC.
Collapse
Affiliation(s)
- Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongwei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quan Bao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kemin Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoluan Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lijun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhigang Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jiebing Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Ting Xu
- Jiangsu Alphamab Biopharmaceuticals Co. Ltd, Suzhou, China
| | - Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|