1
|
Park H, Noll A, Kim S, Nussbaum MA. Passive arm-support and back-support exoskeletons have distinct phase-dependent effects on physical demands during cart pushing and pulling: An exploratory study. APPLIED ERGONOMICS 2025; 126:104510. [PMID: 40117782 DOI: 10.1016/j.apergo.2025.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Arm-support exoskeletons (ASEs) and back-support exoskeletons (BSEs) can be effective in reducing physical demands during various occupational tasks, yet evidence of their effects in pushing and pulling tasks remains limited. We examined the effects of using a passive ASE and a BSE on task completion time, shoulder and trunk kinematics, and muscle activity in the shoulder and back while pushing and pulling a moderately loaded (100 kg) cart. Forty volunteers (24 M and 16 F) completed the study. Using the BSE substantially reduced thoracic and lumbar erector spinae muscle activity for males, especially during the initial and ending phases of pushing (by up to ∼31.4 %) and pulling (by up to ∼25.4 %) compared to the No Device (ND) condition. In contrast, using the ASE showed no significant benefits, with females experiencing an increase in anterior deltoid muscle activity (by up to ∼46.3 %) compared to ND. Findings from this study help to understand the effects of BSEs and ASEs in pushing and pulling tasks and support the development of more versatile exoskeletons.
Collapse
Affiliation(s)
- Hanjun Park
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alex Noll
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Panero E, Pastorelli S, Gastaldi L. Kinematic effects of a back-assistance exoskeleton during human locomotion. APPLIED ERGONOMICS 2025; 126:104502. [PMID: 40086101 DOI: 10.1016/j.apergo.2025.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
In the last years, Industry 5.0 has proposed a sustainable and resilient industry model, where the human-centric approach places human needs at the center of the production process. Wearable robots have been designed to assist users, providing support for the entire body or specific regions during task performance. Ergonomic investigations are necessary to test the effects, advantages and possible drawbacks of occupational wearable devices. The present study focuses on the biomechanics of locomotion while wearing the Laevo V2.5 exoskeleton. Experimental tests involved twelve healthy volunteers. Spatio-temporal parameters, human 3D kinematics and exoskeleton 3D kinematics were compared in three settings (without exoskeleton, wearing the exoskeleton without and with passive support). These comparisons aimed to quantify the effects and the possible restrictions on user kinematics due to the interaction with the exoskeleton. Results highlighted a significant reduction in the gait speed (1.14 m/s no-exo, 1.07 m/s exo-no-support, 1.05 m/s exo-with-support) and the stride length (1.29 m no-exo, 1.24 m exo-no-support, 1.23 m exo-with-support) when wearing the exoskeleton. Human angular kinematics showed significant reductions in the range of motion for all joints when wearing the exoskeleton. However, results pointed out no significant differences between the no-support and support configurations, indicating that the primary effect is due to the exoskeleton structure rather than the support provided. Further assessment is essential to determine whether these changes in human kinematics align with ergonomic standards and reflect user adaptation, or if they fulfill acceptable limits, potentially leading to long-term negative effects.
Collapse
Affiliation(s)
- Elisa Panero
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy.
| | - Stefano Pastorelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PIC4Ser, Politecnico di Torino, Turin, Italy
| | - Laura Gastaldi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| |
Collapse
|
3
|
Caimmi M, Maugliani N, Malosio M, Airoldi F, Dinon T, Borro D, Eizaguirre M, Díaz I, Ausejo S, Puzzo G, Fraboni F, Pietrantoni L, Maccarini M, Shahid AA, Roveda L. Design and showcase of a stairs-based testbed for the benchmark of exoskeleton devices: The STEPbySTEP project. WEARABLE TECHNOLOGIES 2025; 6:e17. [PMID: 40297059 PMCID: PMC12034579 DOI: 10.1017/wtc.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 04/30/2025]
Abstract
Wearable exoskeletons hold the potential to provide valuable physical assistance across a range of tasks, with applications steadily expanding across different scenarios. However, the lack of universally accepted testbeds and standardized protocols limits the systematic benchmarking of these devices. In response, the STEPbySTEP project, funded within the Eurobench framework, proposes a modular, sensorized, reconfigurable staircase testbed designed as a novel evaluation approach within the first European benchmarking infrastructure for robotics. This testbed, to be incorporated into the Eurobench testing facility, focuses on stairs as common yet challenging obstacles in daily life that provide a unique benchmark for exoskeleton assessment. The primary aim of STEPbySTEP is to propose a modular framework - including a specialized staircase design, tentative metrics, and testing protocols - to aid in evaluating and comparing exoskeleton performance. Here, we present the testbed and protocols developed and validated in preliminary trials using three exoskeletons: two lower-limb exoskeletons (LLEs) and one back-support exoskeleton. The results offer initial insights into the adaptability of the staircase testbed across devices, showcasing example metrics and protocols that underscore its benchmarking potential.
Collapse
Affiliation(s)
- Marco Caimmi
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of Italian National Research Council (CNR), Milan, Italy
| | - Nicole Maugliani
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of Italian National Research Council (CNR), Milan, Italy
| | - Matteo Malosio
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of Italian National Research Council (CNR), Milan, Italy
| | - Francesco Airoldi
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of Italian National Research Council (CNR), Milan, Italy
| | - Tito Dinon
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of Italian National Research Council (CNR), Milan, Italy
| | - Diego Borro
- CEIT-Basque Research and Technology Alliance (BRTA) and Tecnun (University of Navarra), Donostia-San Sebastian, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| | - Martxel Eizaguirre
- CEIT-Basque Research and Technology Alliance (BRTA) and Tecnun (University of Navarra), Donostia-San Sebastian, Spain
| | - Iñaki Díaz
- CEIT-Basque Research and Technology Alliance (BRTA) and Tecnun (University of Navarra), Donostia-San Sebastian, Spain
| | - Sergio Ausejo
- CEIT-Basque Research and Technology Alliance (BRTA) and Tecnun (University of Navarra), Donostia-San Sebastian, Spain
| | - Gabriele Puzzo
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | | | - Marco Maccarini
- Department of Innovative Technologies, University of Applied Science and Arts of Southern Switzerland (SUPSI), Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA), Lugano, Switzerland
| | - Asad Ali Shahid
- Department of Innovative Technologies, University of Applied Science and Arts of Southern Switzerland (SUPSI), Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA), Lugano, Switzerland
| | - Loris Roveda
- Department of Innovative Technologies, University of Applied Science and Arts of Southern Switzerland (SUPSI), Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA), Lugano, Switzerland
- Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
| |
Collapse
|
4
|
Drees T, Ralfs L, Reimeir B, Lemmerz K, Weidner R, Kuhlenkötter B. Methodology for the knowledge-based selection of occupational exoskeletons. PRODUCTION ENGINEERING : RESEARCH AND DEVELOPMENT 2025; 19:763-780. [PMID: 40438633 PMCID: PMC12118543 DOI: 10.1007/s11740-025-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/24/2025] [Indexed: 06/01/2025]
Abstract
Occupational exoskeletons for industrial workplaces hold significant promise for improving worker ergonomics and safety. However, the successful selection of an exoskeleton depends on informed decision-making processes that consider various factors ranging from biomechanical performance to usability and compatibility with work tasks. This paper presents a methodology that aims to develop a co-simulation-based selection tool for selecting an exoskeleton for specific industrial work tasks. It integrates multidisciplinary knowledge from biomechanics, human factors engineering, and industrial ergonomics for assessing the suitability of exoskeletons across diverse industrial applications. The methodology is designed as a stage-gate process with five main stages corresponding to the product development process. It describes the main tasks in each phase, their results, and the gates between the stages. The tasks and results are derived and detailed from the current literature and preliminary work. The gates include the specification of the simulation and decision-relevant input and output parameters, the design of the co-simulation model consisting of task and biomechanical simulation, the weighting of the individual decision criteria, and the subsequent implementation of the multi-criteria decision analysis to create a ranking of suitable exoskeletons. This work concludes by elaborating on the impact of the novel co-simulation methodology on research and industry. Research implications include advanced simulation methods for exoskeleton evaluation, the systematic comparison of different exoskeletons, and the development of decision analysis models. Benefits to the industry include improved compatibility, informed selection processes, reduced investment risks, and increased technology adoption.
Collapse
Affiliation(s)
- Tobias Drees
- Chair of Production Systems (LPS), Ruhr-University Bochum, Industriestraße 38c, 44894 Bochum, Germany
| | - Lennart Ralfs
- Chair of Production Technology, Institute of Mechatronics, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| | - Benjamin Reimeir
- Chair of Production Technology, Institute of Mechatronics, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| | - Kai Lemmerz
- RIF Institut für Forschung und Transfer e.V., Joseph-von-Fraunhofer Straße 20, 44227 Dortmund, Germany
| | - Robert Weidner
- Chair for Automated and Autonomous Systems (AAS), TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany
- Laboratory of Manufacturing Technology, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Bernd Kuhlenkötter
- Chair of Production Systems (LPS), Ruhr-University Bochum, Industriestraße 38c, 44894 Bochum, Germany
| |
Collapse
|
5
|
Rossini M, De Bock S, Ducastel V, Van De Velde G, De Pauw K, Verstraten T, Lefeber D, Geeroms J, Rodriguez-Guerrero C. Design and evaluation of AE4W: An active and flexible shaft-driven shoulder exoskeleton for workers. WEARABLE TECHNOLOGIES 2025; 6:e12. [PMID: 40071239 PMCID: PMC11896670 DOI: 10.1017/wtc.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 03/14/2025]
Abstract
The wide adoption of occupational shoulder exoskeletons in industrial settings remains limited. Passive exoskeletons were proved effective in a limited amount of application scenarios, such as (quasi-)static overhead handling tasks. Quasi-active devices, albeit representing an improved version of their passive predecessors, do not allow full modulation of the amount of assistance delivered to the user, lacking versatility and adaptability in assisting various dynamic tasks. Active occupational shoulder exoskeletons could overcome these limitations by controlling the shape of the delivered torque profile according to the task they aim to assist. However, most existing active devices lack compactness and wearability. This prevents their implementation in working environments. In this work, we present a new active shoulder exoskeleton, named Active Exo4Work (AE4W). It features a new flexible shaft-driven remote actuation unit that allows the positioning of the motors close to the wearer's center of mass while it maintains a kinematic structure that is compatible with the biological motion of the shoulder joint. in vitro and in vivo experiments have been conducted to investigate the performance of AE4W. Experimental results show that the exoskeleton is kinematically compatible with the user's workspace since it does not constrain the natural range of motion of the shoulder joint. Moreover, this device can effectively provide different types of assistance while the user executes various dynamic tasks, without altering perceived comfort.
Collapse
Affiliation(s)
- Marco Rossini
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- Flanders Make, Lommel, Belgium
| | - Sander De Bock
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Vincent Ducastel
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- IMEC, Leuven, Belgium
| | - Gabriël Van De Velde
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- Flanders Make, Lommel, Belgium
| | - Kevin De Pauw
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tom Verstraten
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- Flanders Make, Lommel, Belgium
| | - Dirk Lefeber
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- Flanders Make, Lommel, Belgium
| | - Joost Geeroms
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit Brussel, Brussel, Belgium
- Flanders Make, Lommel, Belgium
| | - Carlos Rodriguez-Guerrero
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussel, Belgium
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Arjmand N, Larivière C. Effect of a back-support exoskeleton on internal forces and lumbar spine stability during low load lifting task. APPLIED ERGONOMICS 2025; 123:104407. [PMID: 39489061 DOI: 10.1016/j.apergo.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
This study assessed the effect of a small-torque generating passive back-support exoskeleton during a low demanding occupational task, namely a repetitive lifting/lowering of an empty crate between the knee and shoulder heights. A comprehensive set of outcomes was considered, ranging from the measured trunk muscle activation and trunk movement to the estimated muscle group forces/coordination, spine loading and spine stability, using a dynamic subject-specific EMG-assisted musculoskeletal model. The exoskeleton decreased back muscle activation and corresponding muscle forces in the lowering phase and reduced spinal loading at larger trunk flexion angles (decreased peak compression and shear forces by ∼ 15%). However, the effect sizes were small (ηG2 < .06), questioning the usefulness of this type of exoskeleton, even for light tasks. On the other hand, the unique results of the present study showed that coordination between the main muscle groups as well as spinal stability remained unchanged with low effect sizes, suggesting that the use of this exoskeleton is safe.
Collapse
Affiliation(s)
- Amir Hossein Eskandari
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada
| | - Farshid Ghezelbash
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada.
| |
Collapse
|
7
|
Di Natali C, Poliero T, Sposito M, Fanti V, Leggieri S, Caldwell DG. From the idea to the user: a pragmatic multifaceted approach to testing occupational exoskeletons. WEARABLE TECHNOLOGIES 2025; 6:e5. [PMID: 39935597 PMCID: PMC11810522 DOI: 10.1017/wtc.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025]
Abstract
Assessment of occupational exoskeletons should ideally include longitudinal and multistage studies in real working scenarios to prove their effectiveness and sustainability in real in-field contexts and to help generalize the findings for specific scenarios. This work presents a comprehensive assessment methodology implemented as a multistage experimental campaign for rail industry workers using a back-support exoskeleton (StreamEXO). This work demonstrates that a sector/task-specific exoskeleton developed to address work task-specific requirements generates beneficial performance and user experience results. The experimental work in this paper involves collecting data from nine workers over multiple days of testing. During this testing, workers did not report hindrances to their work operations, with an acceptance rate of 86%. In addition, worker fatigue was reduced by 16.9% as measured through metabolic consumption, and 51% when assessed by perceived effort. This work supports the hypothesis that sector/task-specific exoskeletons when tailored to meet the needs of workers and the work tasks can produce demonstrable benefits in real industrial sectors.
Collapse
Affiliation(s)
- Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
| | - Tommaso Poliero
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
| | - Matteo Sposito
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
| | - Vasco Fanti
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Universita’ degli Studi di Genova (UniGe), Genova, Italy
| | - Sergio Leggieri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, XoLab, Genoa, Italy
| |
Collapse
|
8
|
Fanti V, Leggieri S, Poliero T, Sposito M, Caldwell DG, Di Natali C. Multi-Exoskeleton Performance Evaluation: Integrated Muscle Energy Indices to Determine the Quality and Quantity of Assistance. Bioengineering (Basel) 2024; 11:1231. [PMID: 39768049 PMCID: PMC11673727 DOI: 10.3390/bioengineering11121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
The assessment of realistic work tasks is a critical aspect of introducing exoskeletons to work environments. However, as the experimental task's complexity increases, the analysis of muscle activity becomes increasingly challenging. Thus, it is essential to use metrics that adequately represent the physical human-exoskeleton interaction (pHEI). Muscle activity analysis is usually reduced to a comparison of point values (average or maximum muscle contraction), neglecting the signals' trend. Metrics based on single values, however, lack information about the dynamism of the task and its duration. Their meaning can be uncertain, especially when analyzing complex movements or temporally extended activities, and it is reduced to an overall assessment of the interaction on the whole task. This work proposes a method based on integrated EMGs (iEMGs) to evaluate the pHEI by considering task dynamism, temporal duration, and the neural energy associated with muscle activity. The resulting signal highlights the task phases in which the exoskeleton reduces or increases the effort required to accomplish the task, allowing the calculation of specific indices that quantify the energy exchange in terms of assistance (AII), resistance (RII), and overall interaction (OII). The method provides an analysis tool that enables developers and controller designers to receive insights into the exoskeleton performances and the quality of the user-robot interaction. The application of this method is provided for passive and two active back support exoskeletons: the Laevo, XoTrunk, and StreamEXO.
Collapse
Affiliation(s)
- Vasco Fanti
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli Studi di Genova (UniGe), 16145 Genova, Italy
| | - Sergio Leggieri
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
| | - Tommaso Poliero
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
| | - Matteo Sposito
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
| | - Darwin G. Caldwell
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
| | - Christian Di Natali
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (S.L.); (T.P.); (M.S.); (D.G.C.); (C.D.N.)
| |
Collapse
|
9
|
Riemer J, Wischniewski S, Jaitner T. Quantifying the biomechanical effects of back-support exoskeletons on work movements using statistical parametric mapping. JOURNAL OF SAFETY RESEARCH 2024; 91:492-504. [PMID: 39998548 DOI: 10.1016/j.jsr.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION In response to physically demanding industrial environments, back-support exoskeletons (BSEs) have emerged as assistive devices. However, their functional interaction with body structures and potential in preventing musculoskeletal disorders (MSDs) remain unclear. The objective of this study was to analyze biomechanical motion sequences throughout the entire process of different work movements and provide a comprehensive assessment of the influence of BSE. METHOD Using statistical parametric mapping (SPM) methodology, we examined and quantify the magnitude of significant effects of BSEs on muscle activity (MA) and kinematic movement patterns during lifting, carrying, walking, and static bending in a standardized manner. RESULTS Significant changes with large effect sizes were identified during the downward phase of the lifting task, indicating decreased MA in the musculus (M.) biceps femoris and a reduced hip flexion. The usage of BSEs during carrying and walking resulted in a decreased MA of M. biceps femoris during the legs' pre- and mid-swing phases, accompanied by an increased knee and ankle flexion. These changes in MA and kinematics, especially when the BSEs exert pressure on the leg shells through their supporting function, may be indicative of strain in other body regions due to the BSEs. PRACTICAL APPLICATIONS We suggest that the evaluated effects may lead to the non-use of BSEs in the workplace and should therefore be considered in the development of alternative BSE designs.
Collapse
Affiliation(s)
- Julia Riemer
- Institute for Sport and Sport Science, TU Dortmund University, 44227 Dortmund, Germany.
| | - Sascha Wischniewski
- Federal Institute for Occupational Safety and Health, 44149 Dortmund, Germany
| | - Thomas Jaitner
- Institute for Sport and Sport Science, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Grazi L, Trigili E, Fiore M, Giovacchini F, Sabatini AM, Vitiello N, Crea S. Passive shoulder occupational exoskeleton reduces shoulder muscle coactivation in repetitive arm movements. Sci Rep 2024; 14:27843. [PMID: 39537722 PMCID: PMC11561117 DOI: 10.1038/s41598-024-78090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Humans naturally employ muscle coactivation to facilitate a broad range of movements, enhancing joint stability and movement accuracy. However, excessive muscle coactivation can become unfavorable or even detrimental. This phenomenon is often observed in industrial workers who endure repetitive or prolonged joint stress, particularly in areas such as the shoulders. Prolonged stress can result in soft tissue damage and the onset of work-related musculoskeletal disorders (MSDs). In recent years, there have been efforts to mitigate the emergence of work-related MSDs among industrial workers through the implementation of upper-limb occupational exoskeletons (OEs). While previous research has demonstrated their effectiveness in reducing shoulder muscle activation, particularly in static and overhead work activities, there has been a lack of studies examining the impact of upper-limb OEs on muscle coactivation during repetitive arm movements. To bridge this gap in knowledge, our study systematically assesses the influence of a passive exoskeleton's anti-gravitational support on shoulder muscle coactivation during repetitive arm movements. Results show that peak and mean coactivation levels linearly decrease with the increase of the amount of anti-gravitational support provided by the upper-limb OE, reaching approximately 51% and 54%, respectively. Conversely, the percentage of the movement cycle corresponding to the coactivation peak appears unaffected by the level of assistance. This study marks the first instance in which a passive upper-limb OE has been shown to reduce shoulder muscle coactivations, potentially paving the way for a novel methodology in their evaluation.
Collapse
Affiliation(s)
- Lorenzo Grazi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
| | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Michele Fiore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
| | | | - Angelo Maria Sabatini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| |
Collapse
|
11
|
Gao G, C L So B, Cheng ASK, Man SS, Ng SSM. Effect of exoskeleton devices on work-related musculoskeletal disorders (WMSDs) among healthcare workers: a scoping review. ERGONOMICS 2024:1-13. [PMID: 39396223 DOI: 10.1080/00140139.2024.2413150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024]
Abstract
Work-related musculoskeletal disorders (WMSDs) have been a concern among healthcare workers, impacting their well-being and patient safety. Exoskeleton technologies have gained a growing interest as an ergonomic intervention for WMSDs. This scoping review explores exoskeleton effects on WMSDs among healthcare workers. A comprehensive search identified 9 eligible studies published in English between 2013 and 2023. Exoskeletons showed promising effects on objective measures, selectively reducing muscle activation in a task-dependent manner. They also improved force exertion and body posture parameters in specific scenarios. Subjectively, exoskeletons reduced discomfort, pain, fatigue, and received positive perceptions with acceptable usability. However, the impact on perceived exertion varied with tasks. While exoskeletons have shown potential in enhancing healthcare workers' well-being and performance, more work is required to refine their effectiveness and maximise benefits in different healthcare settings. The study revealed the need for standardised methodologies, consideration of participant characteristics, and optimisation of exoskeleton design.
Collapse
Affiliation(s)
- Grace Gao
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Billy C L So
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Andy S K Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- School of Health Sciences, Western Sydney University, Penrith, Australia
| | - Siu Shing Man
- School of Design, South China University of Technology, Guangzhou, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Sergazin G, Zhetenbayev N, Tursunbayeva G, Uzbekbayev A, Sarina A, Nurgizat Y, Nussibaliyeva A. Design, Simulation and Functional Testing of a Novel Ankle Exoskeleton with 3DOFs. SENSORS (BASEL, SWITZERLAND) 2024; 24:6160. [PMID: 39409200 PMCID: PMC11479133 DOI: 10.3390/s24196160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
This paper presents a study on developing a new exoskeleton for ankle joint rehabilitation with three degrees of freedom (3 DOFs). The primary attention is paid to the process of designing and modelling the device aimed at restoring the lost functions of joint mobility. The authors conducted a complex analysis of the functional requirements of the exoskeleton based on research into the potential user's needs, which allowed for the development of a conceptual model of the proposed device. In this study, a prototype of the exoskeleton is designed using modern additive technologies. The prototype underwent virtual testing in conditions maximally close to reality, which confirmed its effectiveness and comfort of use. The main results of this study indicate the promising potential of the proposed solution for application in rehabilitation practices, especially for patients with ankle joint injuries and diseases.
Collapse
Affiliation(s)
- Gani Sergazin
- Global Education & Training, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Information Security, Eurasian National University, Astana 10000, Kazakhstan
| | - Nursultan Zhetenbayev
- LARM2: Laboratory of Robot Mechatronics, University of Rome Tor Vergata, 00173 Rome, Italy
- Department of Electronics and Robotics, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan
| | - Gulzhamal Tursunbayeva
- Department of Information Security, Eurasian National University, Astana 10000, Kazakhstan
| | - Arman Uzbekbayev
- Research Institute of Applied Science and Technologies, Almaty 050013, Kazakhstan
| | - Aizada Sarina
- Global Education & Training, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Yerkebulan Nurgizat
- Research Institute of Applied Science and Technologies, Almaty 050013, Kazakhstan
| | - Arailym Nussibaliyeva
- Department of Electronics and Robotics, Almaty University of Power Engineering and Telecommunications, Almaty 050013, Kazakhstan
| |
Collapse
|
13
|
Kuber PM, Kulkarni AR, Rashedi E. How Effective Are Forecasting Models in Predicting Effects of Exoskeletons on Fatigue Progression? SENSORS (BASEL, SWITZERLAND) 2024; 24:5971. [PMID: 39338720 PMCID: PMC11435710 DOI: 10.3390/s24185971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Forecasting can be utilized to predict future trends in physiological demands, which can be beneficial for developing effective interventions. This study implemented forecasting models to predict fatigue level progression when performing exoskeleton (EXO)-assisted tasks. Specifically, perceived and muscle activity data were utilized from nine recruited participants who performed 45° trunk flexion tasks intermittently with and without assistance until they reached medium-high exertion in the low-back region. Two forecasting algorithms, Autoregressive Integrated Moving Average (ARIMA) and Facebook Prophet, were implemented using perceived fatigue levels alone, and with external features of low-back muscle activity. Findings showed that univariate models without external features performed better with the Prophet model having the lowest mean (SD) of root mean squared error (RMSE) across participants of 0.62 (0.24) and 0.67 (0.29) with and without EXO-assisted tasks, respectively. Temporal effects of BSIE on delaying fatigue progression were then evaluated by forecasting back fatigue up to 20 trials. The slope of fatigue progression for 20 trials without assistance was ~48-52% higher vs. with assistance. Median benefits of 54% and 43% were observed for ARIMA (with external features) and Prophet algorithms, respectively. This study demonstrates some potential applications for forecasting models for workforce health monitoring, intervention assessment, and injury prevention.
Collapse
Affiliation(s)
- Pranav Madhav Kuber
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Abhineet Rajendra Kulkarni
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ehsan Rashedi
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
14
|
Kuber PM, Rashedi E. Training and Familiarization with Industrial Exoskeletons: A Review of Considerations, Protocols, and Approaches for Effective Implementation. Biomimetics (Basel) 2024; 9:520. [PMID: 39329542 PMCID: PMC11430590 DOI: 10.3390/biomimetics9090520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Effective training programs are essential for safely integrating exoskeletons (EXOs) in industrial workplaces. Since the effects of wearable systems depend highly upon their proper use, lack of training of end-users may cause adverse effects on users. We reviewed articles that incorporated training and familiarization protocols to train novices on proper operation/use of EXOs. Findings showed variation in training methods that were implemented to train study participants in EXO evaluation studies. Studies also indicate that multiple (up to four) sessions may be needed for novice EXO wearers to match movement patterns of experts, and training can offer benefits in enhancing motor learning in novices. Biomechanical assessments and ergonomic evaluations can be helpful in developing EXO-specific training protocols by determining training parameters (duration/number of sessions and task difficulty). Future directions include development of personalized training approaches by assessing user behavior/performance through integration of emerging sensing technologies. Application of simulators and use of data-driven approaches for customizing training protocols to individuals, tasks, and EXO design are provided along with a comprehensive training framework. Discussed elements in this article can be helpful to exoskeleton researchers in familiarizing novice users to EXOs prior to evaluation, and to practitioners in developing protocols for training workforce.
Collapse
Affiliation(s)
| | - Ehsan Rashedi
- Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA;
| |
Collapse
|
15
|
Camardella C, Lippi V, Porcini F, Bassani G, Lencioni L, Mauer C, Haverkamp C, Avizzano CA, Frisoli A, Filippeschi A. User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. SENSORS (BASEL, SWITZERLAND) 2024; 24:5358. [PMID: 39205050 PMCID: PMC11359171 DOI: 10.3390/s24165358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Using lower limb exoskeletons provides potential advantages in terms of productivity and safety associated with reduced stress. However, complex issues in human-robot interactions are still open, such as the physiological effects of exoskeletons and the impact on the user's subjective experience. In this work, an innovative exoskeleton, the Wearable Walker, is assessed using the EXPERIENCE benchmarking protocol from the EUROBENCH project. The Wearable Walker is a lower-limb exoskeleton that enhances human abilities, such as carrying loads. The device uses a unique control approach called Blend Control that provides smooth assistance torques. It operates two models simultaneously, one in the case in which the left foot is grounded and another for the grounded right foot. These models generate assistive torques combined to provide continuous and smooth overall assistance, preventing any abrupt changes in torque due to model switching. The EXPERIENCE protocol consists of walking on flat ground while gathering physiological signals, such as heart rate, its variability, respiration rate, and galvanic skin response, and completing a questionnaire. The test was performed with five healthy subjects. The scope of the present study is twofold: to evaluate the specific exoskeleton and its current control system to gain insight into possible improvements and to present a case study for a formal and replicable benchmarking of wearable robots.
Collapse
Affiliation(s)
- Cristian Camardella
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| | - Vittorio Lippi
- Institute of Digitalization in Medicine, Faculty of Medicine and Medical Center—University of Freiburg, 79106 Freiburg, Germany; (V.L.); (C.H.)
- Clinic of Neurology and Neurophysiology, Medical Centre—University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg im Breisgau, Germany
| | - Francesco Porcini
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| | - Giulia Bassani
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| | | | - Christoph Mauer
- Clinic of Neurology and Neurophysiology, Medical Centre—University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg im Breisgau, Germany
| | - Christian Haverkamp
- Institute of Digitalization in Medicine, Faculty of Medicine and Medical Center—University of Freiburg, 79106 Freiburg, Germany; (V.L.); (C.H.)
| | - Carlo Alberto Avizzano
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| | - Antonio Frisoli
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| | - Alessandro Filippeschi
- Institute of Mechanical Intelligence and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (F.P.); (G.B.); (C.A.A.); (A.F.); (A.F.)
| |
Collapse
|
16
|
Sposito M, Fanti V, Poliero T, Caldwell DG, Di Natali C. Field assessment of active BSE: Trends over test days of subjective indicators and self-reported fatigue for railway construction workers. Heliyon 2024; 10:e33055. [PMID: 39021938 PMCID: PMC11252747 DOI: 10.1016/j.heliyon.2024.e33055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The research community has conducted several controlled "in -lab" assessments on the effectiveness of industrial exoskeletons, paving the way for their adoption. However, field testing, focusing on ergonomics and the user experience, could serve to enhance both end-users' awareness and address open doubts concerning true effectiveness of industrial exoskeletons. This study presents an analysis of qualitative data regarding the use of back-support exoskeletons during field trials in harsh civil engineering environments. This work evaluates the StreamEXO's (an active back-support exoskeleton) efficacy in reducing fatigue and the evolution of its perceived usefulness. This is achieved using qualitative data collection tools, during real scenarios testing over multiple-day trials. Collected data shows a positive correlation between self-reported fatigue, measured on a four verbal anchors-based Borg CR10 scale, and the use of the exoskeleton during physically demanding movements. Moreover, the evolution of scores throughout the testing sessions (90 minutes of exoskeleton use for three nonconsecutive days) suggests a trend due to the adaptation and learning curve of workers during the exoskeleton experience. The analysis of the open-ended answers highlights that the adaptation to physical interaction has a negative oscillation on day two to rise back during the third day, possibly correlated to a change in muscle pattern. The main critical factors affecting comfort during the exoskeleton experience are weight balance, body pressure, and thermal comfort, which can strongly affect device acceptance.
Collapse
Affiliation(s)
- Matteo Sposito
- Istituto Italiano di Tecnologia, Advanced Robotics, Italy
| | - Vasco Fanti
- Istituto Italiano di Tecnologia, Advanced Robotics, Italy
- University of Genoa, Department of Informatics, Bioengineering, Robotics and System Engineering, Italy
| | | | | | | |
Collapse
|
17
|
Cooper RA, Smolinski G, Candiotti JL, Satpute S, Grindle GG, Sparling TL, Nordstrom MJ, Yuan X, Symsack A, Dae Lee C, Vitiello N, Knezevic S, Sugar TG, Schneider U, Kopp V, Holl M, Gaunaurd I, Gailey R, Bonato P, Poropatich R, Adet DJ, Clemente F, Abbas J, Pasquina PF. Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. ACTUATORS 2024; 13:10.3390/act13070236. [PMID: 39246296 PMCID: PMC11378964 DOI: 10.3390/act13070236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Despite advances in wearable robots across various fields, there is no consensus definition or design framework for the application of this technology in rehabilitation or musculoskeletal (MSK) injury prevention. This paper aims to define wearable robots and explore their applications and challenges for military rehabilitation and force protection for MSK injury prevention. We conducted a modified Delphi method, including a steering group and 14 panelists with 10+ years of expertise in wearable robots. Panelists presented current wearable robots currently in use or in development for rehabilitation or assistance use in the military workforce and healthcare. The steering group and panelists met to obtain a consensus on the wearable robot definition applicable for rehabilitation or primary injury prevention. Panelists unanimously agreed that wearable robots can be grouped into three main applications, as follows: (1) primary and secondary MSK injury prevention, (2) enhancement of military activities and tasks, and (3) rehabilitation and reintegration. Each application was presented within the context of its target population and state-of-the-art technology currently in use or under development. Capturing expert opinions, this study defines wearable robots for military rehabilitation and MSK injury prevention, identifies health outcomes and assessment tools, and outlines design requirements for future advancements.
Collapse
Affiliation(s)
- Rory A. Cooper
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System and University of Pittsburgh, Pittsburgh, PA 15026, USA
| | - George Smolinski
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jorge L. Candiotti
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System and University of Pittsburgh, Pittsburgh, PA 15026, USA
| | - Shantanu Satpute
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System and University of Pittsburgh, Pittsburgh, PA 15026, USA
| | - Garrett G. Grindle
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System and University of Pittsburgh, Pittsburgh, PA 15026, USA
| | - Tawnee L. Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Michelle J. Nordstrom
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xiaoning Yuan
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Allison Symsack
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chang Dae Lee
- Department of Occupational Therapy, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Nicola Vitiello
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pontedera, PI, Italy
| | - Steven Knezevic
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Thomas G. Sugar
- Barrett, The Honors College, ASU Polytechnic, Mesa, AZ 85281, USA
| | - Urs Schneider
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Verena Kopp
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Mirjam Holl
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Ignacio Gaunaurd
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL 33146, USA
- Bruce W. Carter VA Medical Center, Miami, FL 33125, USA
| | - Robert Gailey
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL 33146, USA
| | - Paolo Bonato
- Harvard School of Medicine, Boston, MA 02115, USA
| | - Ron Poropatich
- Center for Military Medicine Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David J. Adet
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA
| | | | - James Abbas
- Institute for Integrative and Innovative Research (I3R) and the Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Paul F. Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Li L, Yuan P, Tang Y, Cooper G, Thurlbeck S, Cheung CM, Manu P, Yunusa-Kaltungo A, Weightman A. The potential of construction robotics to reduce airborne virus transmission in the construction industry in the UK and China. Heliyon 2024; 10:e29697. [PMID: 38694123 PMCID: PMC11061700 DOI: 10.1016/j.heliyon.2024.e29697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024] Open
Abstract
This paper aims to identify construction robotics' potential to reduce airborne virus transmission, review factors limiting the technology's adoption and highlight how similar barriers have been addressed in other industries. Construction robotics were identified and classified into 8 themes with 25 categories through a critical literature review. We undertook interviews with 4 construction contractors and conducted an online questionnaire with 32 experts from the UK (n=14) and China (n=18) who reviewed the robotic systems we identified and ranked the potential ability of each to reduce airborne virus transmission within the construction industry. The results of this study showed that construction robotics is not only beneficial to reduce airborne virus transmission, but may also help to reduce the spread of future contagious viruses. We found no significant difference (P>0.05) in practical usage and implementation barriers to construction robotics between the UK and China. Cost, training and limited awareness of robotic technologies were the main implementation barriers we identified in both countries. Both the UK and China may need to adopt strategies such as providing more financial support to small construction industries and skill training which are utilised successfully in other sectors to realise the potential of construction robotic technologies.
Collapse
Affiliation(s)
- Lutong Li
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Pu Yuan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yuan Tang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Simon Thurlbeck
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Clara Man Cheung
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Patrick Manu
- School of Architecture and Environment, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Akilu Yunusa-Kaltungo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
19
|
Govaerts R, De Bock S, Provyn S, Vanderborght B, Roelands B, Meeusen R, De Pauw K. The impact of an active and passive industrial back exoskeleton on functional performance. ERGONOMICS 2024; 67:597-618. [PMID: 37480301 DOI: 10.1080/00140139.2023.2236817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Due to differences in actuation and design, active and passive industrial back exoskeletons could influence functional performance, i.e., work performance, perceived task difficulty, and discomfort, differently. Therefore, this study investigated and compared the impact of the active CrayX (7 kg) and passive Paexo Back (4.5 kg) on functional performance. Eighteen participants performed twelve work-related tasks with both types of exoskeletons and without (NoExo). The CrayX hindered work performance up to 22% in multiple tasks, compared to the Paexo Back and NoExo, while work performance between NoExo and the Paexo Back condition was more comparable, except for stair climbing (13% hindrance). Perceived task difficulty and discomfort seldomly varied between both exoskeletons. Although the CrayX shows promise to benefit workers, limitations in hindrance and comfort should first be addressed. The Paexo Back has demonstrated an advantage in certain static tasks. However, increasing its potential across a broader range of tasks seems warranted.Practitioner Summary: Differences between industrial back exoskeletons with regard to functional performance, i.e. work performance, discomfort and perceived task difficulty, were investigated by evaluating the active CrayX and passive Paexo Back back exoskeletons. The CrayX significantly hindered functional performance, while the Paexo Back seldomly affected functional performance.Abbreviations: WMSD: Work-related musculoskeletal disorder; NoExo: No Exoskeleton; GD: General discomfort; PTD: Perceived task difficulty; BMI: Body Mass Index.
Collapse
Affiliation(s)
- Renée Govaerts
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander De Bock
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Bram Vanderborght
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and IMEC, Brussels, Belgium
| | - Bart Roelands
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Coccia A, Capodaglio EM, Amitrano F, Gabba V, Panigazzi M, Pagano G, D’Addio G. Biomechanical Effects of Using a Passive Exoskeleton for the Upper Limb in Industrial Manufacturing Activities: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:1445. [PMID: 38474980 PMCID: PMC10935392 DOI: 10.3390/s24051445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
This study investigates the biomechanical impact of a passive Arm-Support Exoskeleton (ASE) on workers in wool textile processing. Eight workers, equipped with surface electrodes for electromyography (EMG) recording, performed three industrial tasks, with and without the exoskeleton. All tasks were performed in an upright stance involving repetitive upper limbs actions and overhead work, each presenting different physical demands in terms of cycle duration, load handling and percentage of cycle time with shoulder flexion over 80°. The use of ASE consistently lowered muscle activity in the anterior and medial deltoid compared to the free condition (reduction in signal Root Mean Square (RMS) -21.6% and -13.6%, respectively), while no difference was found for the Erector Spinae Longissimus (ESL) muscle. All workers reported complete satisfaction with the ASE effectiveness as rated on Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST), and 62% of the subjects rated the usability score as very high (>80 System Usability Scale (SUS)). The reduction in shoulder flexor muscle activity during the performance of industrial tasks is not correlated to the level of ergonomic risk involved. This preliminary study affirms the potential adoption of ASE as support for repetitive activities in wool textile processing, emphasizing its efficacy in reducing shoulder muscle activity. Positive worker acceptance and intention to use ASE supports its broader adoption as a preventive tool in the occupational sector.
Collapse
Affiliation(s)
- Armando Coccia
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| | - Edda Maria Capodaglio
- Occupational Therapy and Ergonomics Unit of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, PV, Italy;
| | - Federica Amitrano
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| | - Vittorio Gabba
- Department of Clinical-Surgical, Diagnostic and Pediatrics, University of Pavia, 27100 Pavia, PV, Italy;
| | - Monica Panigazzi
- Occupational Therapy and Ergonomics Unit of Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, PV, Italy;
| | - Gaetano Pagano
- Bioengineering Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, BA, Italy;
| | - Giovanni D’Addio
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| |
Collapse
|
21
|
Mohamed Refai MI, Moya-Esteban A, van Zijl L, van der Kooij H, Sartori M. Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. WEARABLE TECHNOLOGIES 2024; 5:e6. [PMID: 38510984 PMCID: PMC10952052 DOI: 10.1017/wtc.2024.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user's perception of comfort and exertion. Ten participants performed four lifting tasks (Static hold, Asymmetric, Squat, and Stoop), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the Dynamic tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.
Collapse
Affiliation(s)
| | - Alejandro Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Lynn van Zijl
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
22
|
Govaerts R, Turcksin T, Vanderborght B, Roelands B, Meeusen R, De Pauw K, De Bock S. Evaluating cognitive and physical work performance: A comparative study of an active and passive industrial back-support exoskeleton. WEARABLE TECHNOLOGIES 2023; 4:e27. [PMID: 38487761 PMCID: PMC10936324 DOI: 10.1017/wtc.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024]
Abstract
Occupational back-support exoskeletons, categorized as active or passive, hold promise for mitigating work-related musculoskeletal disorders. However, their impact on combined physical and cognitive aspects of industrial work performance remains inadequately understood, especially regarding potential differences between exoskeleton categories. A randomized, counterbalanced cross-over study was conducted, comparing the active CrayX, passive Paexo Back, and a no exoskeleton condition. A 15-min dual task was used to simulate both cognitive and physical aspects of industrial work performance. Cognitive workload parameters included reaction time, accuracy, and subjective measures. Physical workload included movement duration, segmented in three phases: (1) walking to and grabbing the box, (2) picking up, carrying, and putting down the box, and (3) returning to the starting point. Comfort of both devices was also surveyed. The Paexo significantly increased movement duration in the first segment compared to NoExo (Paexo = 1.55 ± 0.19 s; NoExo = 1.32 ± 0.17 s; p < .01). Moreover, both the Paexo and CrayX increased movement duration for the third segment compared to NoExo (CrayX = 1.70 ± 0.27 s; Paexo = 1.74 ± 0.27 s, NoExo = 1.54 ± 0.23 s; p < .01). No significant impact on cognitive outcomes was observed. Movement Time 2 was not significantly affected by both exoskeletons. Results of the first movement segment suggest the Paexo may hinder trunk bending, favoring the active device for dynamic movements. Both devices may have contributed to a higher workload as the movement duration in the third segment increased compared to NoExo.
Collapse
Affiliation(s)
- Renée Govaerts
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Turcksin
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Flanders Make AugmentX, Brussels, Belgium
| | - Bram Vanderborght
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and IMEC, Brussels, Belgium
| | - Bart Roelands
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander De Bock
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Mohammed El Husaini M, Maberry A, Martin AE. Validation of a modified visual analogue scale to measure user-perceived comfort of a lower-limb exoskeleton. Sci Rep 2023; 13:20484. [PMID: 37993504 PMCID: PMC10665473 DOI: 10.1038/s41598-023-47430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
User perceived exoskeleton comfort is likely important for device acceptance, but there is currently no validated instrument to measure it. The Visual Analogue Scale (VAS) is an existing tool to measure subjective human feedback by asking the user to mark a point on a line with each end of the line representing an opposing anchor statement. It can be modified to show the previous response, allowing the subject to directly indicate if the current condition is better or worse than the previous one. The goal of this study was to determine how well the modified VAS could measure user-perceived comfort as the exoskeleton control parameters were varied. To validate the survey, 14 healthy subjects walked in a pair of ankle exoskeletons with approximately ten distinct sets of control parameters tested in a prescribed order. Each set of control parameters was tested twice. After each trial, user-perceived comfort was measured using a two-question VAS survey. The repeatability coefficient was approximately 40 mm, similar to the total range of responses. The results were also inconsistent, with relative rankings between consecutive pairs of conditions matching for approximately 50% of comparisons. Thus, as tested, the VAS was not repeatable or consistent. It is possible that subject adaptation within the trial and over the course of the experiment may have impacted the results. Additional work is needed to develop a repeatable method to measure comfort and to determine how perceived comfort varies as subjects' gain exoskeleton experience.
Collapse
Affiliation(s)
| | - Axl Maberry
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Anne E Martin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
24
|
Brunner A, van Sluijs R, Luder T, Camichel C, Kos M, Bee D, Bartenbach V, Lambercy O. Effect of passive shoulder exoskeleton support during working with arms over shoulder level. WEARABLE TECHNOLOGIES 2023; 4:e26. [PMID: 38510589 PMCID: PMC10952051 DOI: 10.1017/wtc.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 03/22/2024]
Abstract
Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% (p < 0.001) in the Trapezius Descendens and up to 64% (p < 0.001) in the Deltoideusmedius. Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.
Collapse
Affiliation(s)
- Annina Brunner
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | | | - Tobias Luder
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Cherilyn Camichel
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Melanie Kos
- Research and Development, Auxivo AG, Schwerzenbach, Switzerland
| | - Dario Bee
- Research and Development, Auxivo AG, Schwerzenbach, Switzerland
| | | | - Olivier Lambercy
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| |
Collapse
|
25
|
Sterke BT, Poggensee KL, Ribbers GM, Lemus D, Vallery H. Light-Weight Wearable Gyroscopic Actuators Can Modulate Balance Performance and Gait Characteristics: A Proof-of-Concept Study. Healthcare (Basel) 2023; 11:2841. [PMID: 37957986 PMCID: PMC10647239 DOI: 10.3390/healthcare11212841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Falling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the influence of our wearable robotic gyroscopic actuator "GyroPack" on the balance performance and gait characteristics of non-impaired individuals (seven female/eight male, 30 ± 7 years, 68.8 ± 8.4 kg). Participants performed a series of balance and walking tasks with and without wearing the GyroPack. The device displayed various control modes, which were hypothesised to positively, negatively, or neutrally impact postural control. When configured as a damper, the GyroPack increased mediolateral standing time and walking distance, on a balance beam, and decreased trunk angular velocity variability, while walking on a treadmill. When configured as a negative damper, both peak trunk angular rate and trunk angular velocity variability increased during treadmill walking. This exploratory study shows that gyroscopic actuators can influence balance and gait kinematics. Our results mirror the findings of our earlier studies; though, with more than 50% mass reduction of the device, practical and clinical applicability now appears within reach.
Collapse
Affiliation(s)
- Bram T. Sterke
- Department of Rehabilitation Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (K.L.P.); (G.M.R.); (H.V.)
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;
| | - Katherine L. Poggensee
- Department of Rehabilitation Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (K.L.P.); (G.M.R.); (H.V.)
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (K.L.P.); (G.M.R.); (H.V.)
- Rijndam Revalidatie, Westersingel 300, 3015 LJ Rotterdam, The Netherlands
| | - Daniel Lemus
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;
| | - Heike Vallery
- Department of Rehabilitation Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (K.L.P.); (G.M.R.); (H.V.)
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;
- Faculty of Mechanical Engineering, Rhine-Westphalia Technical University of Aachen, 52062 Aachen, Germany
| |
Collapse
|
26
|
Mitterlehner L, Li YX, Wolf M. Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks. WEARABLE TECHNOLOGIES 2023; 4:e24. [PMID: 38487776 PMCID: PMC10936295 DOI: 10.1017/wtc.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/28/2023] [Accepted: 07/06/2023] [Indexed: 03/17/2024]
Abstract
Musculoskeletal disorders remain the most common work-related health problem in the European Union. The most common work-related musculoskeletal disorder reported by workers is backache, especially in the logistics sector. Thus, this article aims to evaluate the effects of a commercial passive low-back exoskeleton during simulated logistics tasks. Thirty participants were recruited for this study. Typical logistics tasks were simulated in a laboratory environment. Cross-over research design was utilized to assess the effects of the exoskeleton on heart rate, trunk inclination, trunk acceleration, throughput, and perceived exertion. Also, usability and acceptance were obtained using a custom questionnaire. We found mostly non-significant differences. Effects on throughput varied widely between workplaces. Usability ratings were poor and acceptance moderate. The study suggests that a holistic evaluation and implementation approach for industrial exoskeletons is necessary. Further, prior to exoskeleton implementation, workplace adaptation might be required.
Collapse
Affiliation(s)
- Lukas Mitterlehner
- Institute of Innovation and Industrial Management, Graz University of Technology, Graz, Austria
| | - Yasmin Xinyue Li
- Institute of Innovation and Industrial Management, Graz University of Technology, Graz, Austria
| | - Matthias Wolf
- Institute of Innovation and Industrial Management, Graz University of Technology, Graz, Austria
| |
Collapse
|
27
|
Elprama SA, De Bock S, Meeusen R, De Pauw K, Vanderborght B, Jacobs A. The Dynamic Adoption Journey: A Typology for Users and Non-Users of Occupational Exoskeletons. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941288 DOI: 10.1109/icorr58425.2023.10304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Various barriers prevent the adoption of occupational exoskeletons. It is therefore important to understand why some people are willing to use occupational exoskeletons, while others are not. To identify why people use or do not use exoskeletons, we created a typology describing different types of users and non-users. These types were created based on existing literature on internet adoption and social robots. Next, literature and empirical data were used to identify reasons why some people use exoskeletons and others do not use them (yet). The typology includes users with pain and users without work-related musculoskeletal disorders, but also non-users: resisters, rejecters, discontinuers, excluded or expelled non-users. It can be used by companies interested in implementing exoskeletons to identify possible early adopters. For exoskeleton designers, it can be used as a tool to identify non-users and focus on design strategies to enable non-users to become users (such as making exoskeletons that would fit people with a wide range of body shapes). Future research can use these types to identify users and non-users in field trials or pilot projects.
Collapse
|
28
|
Refai MIM, Sridar S, Govaerts R, Chini G, Varrecchia T, Del Ferraro S, Falcone T, De Bock S, Molinaro V, Elprama SA, Jacobs A, Ranavolo A, De Pauw K, van der Kooij H, Sartori M. Does a Soft Actuated Back Exosuit Influence Multimodal Physiological Measurements and User Perception During an Industry Inspired Task? IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941262 DOI: 10.1109/icorr58425.2023.10304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Back support soft exosuits are promising solutions to reduce risk of musculoskeletal injuries at workplaces resulting from physically demanding and repetitive lifting tasks. Design of novel active exosuits address the impact on the muscle activity and metabolic costs but do not consider other critical aspects such as comfort and user perception during the intended tasks. Thus, in this study, we describe a novel soft active exosuit in line with its impact on physiological and subjective measures during lifting. We tested four healthy participants who performed repetitive lifting tasks with and without this exosuit. The exosuit provided assistance proportional to the lumbar flexion angle measured using an inertial measurement unit. We measured the participant's multimodal physiological measures including surface electromyography, metabolic cost, heart rate, and skin temperature. We also measured subjective scores on user exertion, task load, and device acceptability. All participants perceived a reduction in task load when using the exosuit. Three participants showed reduction of muscle activity for the erector spinae muscles. The metabolic costs and heart rate reserve reduced for two participants, with similar trends for skin temperature. For future development of workplace exosuits, we recommend incorporating assessments of both physiological and subjective measures, considering the user-dependent response to the exosuit.
Collapse
|
29
|
Govaerts R, De Bock S, Stas L, El Makrini I, Habay J, Van Cutsem J, Roelands B, Vanderborght B, Meeusen R, De Pauw K. Work performance in industry: The impact of mental fatigue and a passive back exoskeleton on work efficiency. APPLIED ERGONOMICS 2023; 110:104026. [PMID: 37060653 DOI: 10.1016/j.apergo.2023.104026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Mental fatigue (MF) is likely to occur in the industrial working population. However, the link between MF and industrial work performance has not been investigated, nor how this interacts with a passive lower back exoskeleton used during industrial work. Therefore, to elucidate its potential effect(s), this study investigated the accuracy of work performance and movement duration through a dual task paradigm and compared results between mentally fatigued volunteers and controls, with and without the exoskeleton. No main effects of MF and the exoskeleton were found. However, when mentally fatigued and wearing the exoskeleton, movement duration significantly increased compared to the baseline condition (βMF:Exo = 0.17, p = .02, ω2 = .03), suggesting an important interaction between the exoskeleton and one's psychobiological state. Importantly, presented data indicate a negative effect on production efficiency through increased performance time. Further research into the cognitive aspects of industrial work performance and human-exoskeleton interaction is therefore warranted.
Collapse
Affiliation(s)
- Renée Govaerts
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Sander De Bock
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Lara Stas
- Biostatistics and Medical Informatics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Support for Quantitative and Qualitative Research, Core Facility of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Ilias El Makrini
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Jelle Habay
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Pleinlaan 2, B-1050, Belgium.
| | - Bart Roelands
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Bram Vanderborght
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and IMEC, Pleinlaan 2, B-1050, Belgium.
| | - Romain Meeusen
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Kevin De Pauw
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
30
|
Novak VD, Song Y, Gorsic M, Dai B. Effects of a Passive Back Support Exoskeleton when Lifting and Carrying Lumber Boards. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083667 DOI: 10.1109/embc40787.2023.10340289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Passive back support exoskeletons, which support the human trunk using elements like springs and elastic bands, have demonstrated positive results in laboratory-based studies, but have seen significantly less field testing. As an intermediate step between generic lab evaluations and field tests, we conducted a single-session lab evaluation of the HeroWear Apex exoskeleton with mockup construction tasks: 20 adult men (without extensive construction experience) lifted, carried and raised lumber boards (265 cm length, up to 18 kg total load). The exoskeleton significantly reduced mean erector spinae electromyograms, with effect sizes (Cohen's d) ranging from -0.2 to -0.55 - corresponding to reductions of 5-25% relative to noexoskeleton electromyogram values. In asymmetric carrying tasks, the exoskeleton provided more assistance to the more heavily loaded erector spinae muscle. Additionally, in lifting tasks, the exoskeleton decreased trunk/hip flexion/extension range of motion and increased knee range of motion, indicating changes in lifting strategy. These results indicate potential exoskeleton benefits for lumber board carrying and will serve as the basis for further evaluations with workers in the field.Clinical Relevance- This study establishes that a passive back exoskeleton reduces erector spinae electromyograms by 525% when lifting and carrying lumber boards used in construction work.
Collapse
|
31
|
Kuber PM, Alemi MM, Rashedi E. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions. Ann Biomed Eng 2023:10.1007/s10439-023-03242-w. [PMID: 37248409 DOI: 10.1007/s10439-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wearable Chair (WC) and Squat-assist (SA) exoskeletons. Evaluations mainly included assessment of muscular demands in the thigh, shank, and upper/lower back regions. Both types of devices were found to lessen muscular demands in the lower body by 30-90%. WCs also reduced low-back demands (~ 37%) and plantar pressure (54-80%) but caused discomfort/unsafe feeling in participants. To generalize outcomes, we suggest standardizing approaches used for evaluating the devices. Along with addressing low adoption through design upgrades (e.g., ground and body supports/attachments), we recommend that researchers thoroughly evaluate temporal effects on muscle fatigue, metabolic rate, and stability of wearers. Although lower-limb exoskeletons were found to be beneficial, discrepancies in experimental protocols (posture/task/measures) were discovered. We also suggest simulating more realistic conditions, such as walking/sitting interchangeability for WCs and lifting loads for SA devices. The presented outcomes could help improve the design/evaluation approaches, and implementation of lower limb wearable devices across industries.
Collapse
Affiliation(s)
- Pranav Madhav Kuber
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA
| | - Mohammad Mehdi Alemi
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
- Training Services, MathWorks, Natick, MA, USA
| | - Ehsan Rashedi
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA.
| |
Collapse
|
32
|
Farah L, Roll D, Sorais A, Vallée A. Assessment of Exoskeletons on Nurses' Quality of Work Life: A Pilot Study at Foch Hospital. NURSING REPORTS 2023; 13:780-791. [PMID: 37218949 DOI: 10.3390/nursrep13020068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The prevention of occupational risks is part of the quality of work life and it is a component that improves the physical work environment. The purpose of the present study was to investigate how to maintain posture and to reduce pain and fatigue for nurses, with an exoskeleton adapted to the work at hospital. METHODS The exoskeleton was used between 2022 to 2023 at Foch Hospital, France. Phase 1 consisted of the selection of the exoskeleton, and Phase 2 included the testing of the device by the nurses and a questionnaire to assess it. RESULTS The "active" ATLAS model from JAPET, ensuring lumbar protection, was selected because it corresponds to all the specification criteria to tackle the nurses' unmet need. Among the 14 healthcare professionals, 86% were women; the age of the nurses was between 23 years old and 58 years old. The global median satisfaction score of the nurses relative to the use of the exoskeleton was 6/10. The median impact of the exoskeleton on nurses' fatigue was 7/10. CONCLUSIONS The implementation of the exoskeleton received global positive qualitative feedback from the nurses concerning the improvement of posture and the reduction in fatigue and pain.
Collapse
Affiliation(s)
- Line Farah
- Innovation Center for Medical Devices, Foch Hospital, 92150 Suresnes, France
| | - Dorota Roll
- Quality of Work Life Department, Foch Hospital, 92150 Suresnes, France
| | - Amrei Sorais
- Quality of Work Life Department, Foch Hospital, 92150 Suresnes, France
| | - Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
33
|
A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task. J Appl Biomech 2023; 39:22-33. [PMID: 36649717 DOI: 10.1123/jab.2022-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023]
Abstract
This study assessed the effectiveness of a passive back support exoskeleton during a mechanical loading task. Fifteen healthy participants performed a simulated patient transfer task while wearing the Laevo (version 2.5) passive back support exoskeleton. Collected metrics encompassed L5-S1 joint moments, back and abdominal muscle activity, lower body and back kinematics, center of mass displacement, and movement smoothness. A statistical parametric mapping analysis approach was used to overcome limitations from discretization of continuous data. The exoskeleton reduced L5-S1 joint moments during trunk flexion, but wearing the device restricted L5-S1 joint flexion when flexing the trunk as well as hip and knee extension, preventing participants from standing fully upright. Moreover, wearing the device limited center of mass motion in the caudal direction and increased its motion in the anterior direction. Therefore, wearing the exoskeleton partly reduced lower back moments during the lowering phase of the patient transfer task, but there were some undesired effects such as altered joint kinematics and center of mass displacement. Statistical parametric mapping analysis was useful in determining the benefits and hindrances produced by wearing the exoskeleton while performing the simulated patient transfer task and should be utilized in further studies to inform design and appropriate usage.
Collapse
|
34
|
van Sluijs RM, Rodriguez-Cianca D, Sanz-Morère CB, Massardi S, Bartenbach V, Torricelli D. A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons. WEARABLE TECHNOLOGIES 2023; 4:e2. [PMID: 38487768 PMCID: PMC10936298 DOI: 10.1017/wtc.2022.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 03/17/2024]
Abstract
Cumulative back muscle fatigue plays a role in the occurrence of low-back injuries in occupations that require repetitive lifting of heavy loads and working in forward leaning postures. Lift-support exoskeletons have the potential to reduce back and hip muscle activity, thereby delaying the onset of fatigue in these muscles. Therefore, exoskeletons are being considered a potentially important tool to further reduce workload-related injuries. However, today no standards have been established on how to benchmark the support level of lift-support exoskeletons. This work proposes an experimental protocol to quantify the support level of a lift-support exoskeletons on instant changes in muscle activity and fatigue development while maintaining a static forward leaning posture. It then applies the protocol to experimentally assess the effect of the support provided by a commercially available lift-support exoskeleton, the LiftSuit 2.0 (Auxivo AG, Schwerzenbach, Switzerland), on the user. In a sample of 14 participants, the amplitude of the muscle activity of the back muscles and hip muscles () was significantly reduced. Wearing the exoskeleton significantly reduced the amount of fatigue developed during the task (). Changes in muscle fatigue can be objectively recorded and correlated with relevant changes for exoskeleton users: the time a task can be performed and perceived low-back fatigue. Thus, including such measures of fatigue in standardized benchmarking procedures will help quantify the benefits of exoskeletons for occupational use.
Collapse
Affiliation(s)
| | | | | | - Stefano Massardi
- Cajal Institute, Spanish National Research Council, Madrid, Spain
| | | | - Diego Torricelli
- Cajal Institute, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
35
|
Mahmud D, Bennett ST, Zhu Z, Adamczyk PG, Wehner M, Veeramani D, Dai F. Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces. SENSORS (BASEL, SWITZERLAND) 2022; 22:9987. [PMID: 36560355 PMCID: PMC9785667 DOI: 10.3390/s22249987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/31/2023]
Abstract
Exoskeletons and exosuits (collectively termed EXOs) have the potential to reduce the risk of work-related musculoskeletal disorders (WMSDs) by protecting workers from exertion and muscle fatigue due to physically demanding, repetitive, and prolonged work in construction workplaces. However, the use of EXOs in construction is in its infancy, and much of the knowledge required to drive the acceptance, adoption, and application of this technology is still lacking. The objective of this research is to identify the facilitators, barriers, and corresponding solutions to foster the adoption of EXOs in construction workplaces through a sequential, multistage Delphi approach. Eighteen experts from academia, industry, and government gathered in a workshop to provide insights and exchange opinions regarding facilitators, barriers, and potential solutions from a holistic perspective with respect to business, technology, organization, policy/regulation, ergonomics/safety, and end users (construction-trade professionals). Consensus was reached regarding all these perspectives, including top barriers and potential solution strategies. The outcomes of this study will help the community gain a comprehensive understanding of the potential for EXO use in the construction industry, which may enable the development of a viable roadmap for the evolution of EXO technology and the future of EXO-enabled workers and work in construction workplaces.
Collapse
Affiliation(s)
- Dilruba Mahmud
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sean T. Bennett
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhenhua Zhu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter G. Adamczyk
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Wehner
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dharmaraj Veeramani
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Dai
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
36
|
Moulart M, Olivier N, Giovanelli Y, Marin F. Subjective assessment of a lumbar exoskeleton's impact on lower back pain in a real work situation. Heliyon 2022; 8:e11420. [DOI: 10.1016/j.heliyon.2022.e11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
|
37
|
Influence of Exoskeleton Use on Cardiac Index. HEARTS 2022. [DOI: 10.3390/hearts3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study aims to assess the whole-body physiological effects of wearing an exoskeleton during a one-hour standardized work task, utilizing the Cardiac Index (CI) as the target parameter. N = 42 young and healthy subjects with welding experience took part in the study. The standardized and abstracted one-hour workflow consists of simulated welding and grinding in constrained body positions and was completed twice by each subject, with and without an exoskeleton, in a randomized order. The CI was measured by Impedance Cardiography (ICG), an approved medical method. The difference between the averaged baseline measurement and the averaged last 10 min was computed for the conditions with and without an exoskeleton for each subject to result in ∆CIwithout exo and ∆CIwith exo. A significant difference between the conditions with and without an exoskeleton was found, with the reduction in CI when wearing an exoskeleton amounting to 10.51%. This result corresponds to that of previous studies that analyzed whole-body physiological load by means of spiroergometry. These results suggest a strong positive influence of exoskeletons on CI and, therefore, physiological load. At the same time, they also support the hypothesis that ICG is a suitable measurement instrument to assess these effects.
Collapse
|
38
|
Grazi L, Trigili E, Caloi N, Ramella G, Giovacchini F, Vitiello N, Crea S. Kinematics-Based Adaptive Assistance of a Semi-Passive Upper-Limb Exoskeleton for Workers in Static and Dynamic Tasks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3188402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lorenzo Grazi
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Emilio Trigili
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Noemi Caloi
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Giulia Ramella
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | | | - Nicola Vitiello
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Simona Crea
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
39
|
Gillette JC, Saadat S, Butler T. Electromyography-based fatigue assessment of an upper body exoskeleton during automotive assembly. WEARABLE TECHNOLOGIES 2022; 3:e23. [PMID: 38486890 PMCID: PMC10936263 DOI: 10.1017/wtc.2022.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to assess an upper body exoskeleton during automotive assembly processes that involve elevated arm postures. Sixteen team members at Toyota Motor Manufacturing Canada were fitted with a Levitate Airframe, and each team member performed between one and three processes with and without the exoskeleton. A total of 16 assembly processes were studied. Electromyography (EMG) data were collected on the anterior deltoid, biceps brachii, upper trapezius, and erector spinae. Team members also completed a usability survey. The exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p = .01, Δ = -3.2 %MVC, d = 0.56 medium effect) and fatigue risk value (p < .01, Δ = -5.1 %MVC, d = 0.62 medium effect) across the assembly processes, with no significant changes for the other muscles tested. A subset of nine assembly processes with a greater amount of time spent in arm elevations at or above 90° (30 vs. 24%) and at or above 135° (18 vs. 9%) appeared to benefit more from exoskeleton usage. For these processes, the exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p < .01, Δ = -5.1 %MVC, d = 0.95 large effect) and fatigue risk value (p < .01, Δ = -7.4 %MVC, d = 0.96 large effect). Team members responded positively about comfort and fatigue benefits, although there were concerns about the exoskeleton hindering certain job duties. The results support quantitative testing to match exoskeleton usage with specific job tasks and surveying team members for perceived benefits/drawbacks.
Collapse
Affiliation(s)
| | - Shekoofe Saadat
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Terry Butler
- Lean Steps Consulting Inc., West Des Moines, IA, USA
| |
Collapse
|
40
|
Kopp V, Holl M, Schalk M, Daub U, Bances E, García B, Schalk I, Siegert J, Schneider U. Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons. WEARABLE TECHNOLOGIES 2022; 3:e22. [PMID: 38486909 PMCID: PMC10936367 DOI: 10.1017/wtc.2022.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 03/17/2024]
Abstract
Industrial exoskeletons have recently gained importance as ergonomic interventions for physically demanding work activities. The growing demand for exoskeletons is leading to a need for new knowledge on the effectiveness of these systems. The Exoworkathlon, as a prospective study approach, aims to assess exoskeletons in realistic use cases and to evaluate them neutrally in their entirety. For this purpose, a first set of four realistic Parcours was developed with experts from relevant industries, the German Social Accident Insurance, and the Federal Institute for Occupational Safety and Health. In addition, a set of ratings was defined to assess subjective user feedback, work quality, and objective physiological parameters. Exoworkathlon aims to bring together developers, researchers, and end-users, strengthen collaborative exchanges, and promote a platform for the prospective holistic data collection for exoskeleton evaluation. In this article, the focus is on the background and methodology of Exoworkathlon.
Collapse
Affiliation(s)
- Verena Kopp
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Mirjam Holl
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Marco Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urban Daub
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Enrique Bances
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Braulio García
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Ines Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Jörg Siegert
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urs Schneider
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| |
Collapse
|
41
|
A Systematic Review on Evaluation Strategies for Field Assessment of Upper-Body Industrial Exoskeletons: Current Practices and Future Trends. Ann Biomed Eng 2022; 50:1203-1231. [PMID: 35916980 DOI: 10.1007/s10439-022-03003-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
With rising manual work demands, physical assistance at the workplace is crucial, wherein the use of industrial exoskeletons (i-EXOs) could be advantageous. However, outcomes of numerous laboratory studies may not be directly translated to field environments. To explore this discrepancy, we conducted a systematic review including 31 studies to identify and compare the approaches, techniques, and outcomes within field assessments of shoulder and back support i-EXOs. Findings revealed that the subjective approaches [i.e., discomfort (23), usability (22), acceptance/perspectives (21), risk of injury (8), posture (3), perceived workload (2)] were reported more common (27) compared to objective (15) approaches [muscular demand (14), kinematics (8), metabolic costs (5)]. High variability was also observed in the experimental methodologies, including control over activity, task physics/duration, sample size, and reported metrics/measures. In the current study, the detailed approaches, their subject-related factors, and observed trends have been discussed. In sum, a new guideline, including tools/technologies has been proposed that could be utilized for field evaluation of i-EXOs. Lastly, we discussed some of the common technical challenges experimenters face in evaluating i-EXOs in field environments. Efforts presented in this study seek to improve the generalizability in testing and implementing i-EXOs.
Collapse
|
42
|
Moeller T, Krell-Roesch J, Woll A, Stein T. Effects of Upper-Limb Exoskeletons Designed for Use in the Working Environment—A Literature Review. Front Robot AI 2022; 9:858893. [PMID: 35572378 PMCID: PMC9099018 DOI: 10.3389/frobt.2022.858893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Many employees report high physical strain from overhead work and resulting musculoskeletal disorders. The consequences of these conditions extend far beyond everyday working life and can severely limit the quality of life of those affected. One solution to this problem may be the use of upper-limb exoskeletons, which are supposed to relieve the shoulder joint in particular. The aim of this literature review was to provide an overview of the use and efficacy of exoskeletons for upper extremities in the working environment.Methods: A literature review was conducted using the PICO scheme and the PRISMA statement. To this end, a systematic search was performed in the PubMed, Web of Science and Scopus databases in May 2020 and updated in February 2022. The obtained studies were screened using previously defined inclusion and exclusion criteria and assessed for quality. Pertinent data were then extracted from the publications and analyzed with regard to type of exoskeleton used as well as efficacy of exoskeleton use.Results: 35 suitable studies were included in the review. 18 different exoskeletons were examined. The majority of the exoskeletons only supported the shoulder joint and were used to assist individuals working at or above shoulder level. The main focus of the studies was the reduction of muscle activity in the shoulder area. Indeed, 16 studies showed a reduced activity in the deltoid and trapezius muscles after exoskeleton use. Kinematically, a deviation of the movement behavior could be determined in some models. In addition, study participants reported perceived reduction in exertion and discomfort.Discussion: Exoskeletons for upper extremities may generate significant relief for the intended tasks, but the effects in the field (i.e., working environment) are less pronounced than in the laboratory setting. This may be due to the fact that not only overhead tasks but also secondary tasks have to be performed in the field. In addition, currently available exoskeletons do not seem to be suitable for all overhead workplaces and should always be assessed in the human-workplace context. Further studies in various settings are required that should also include more females and older people.
Collapse
|
43
|
Missiroli F, Lotti N, Tricomi E, Bokranz C, Alicea R, Xiloyannis M, Krzywinski J, Crea S, Vitiello N, Masia L. Rigid, Soft, Passive, and Active: A Hybrid Occupational Exoskeleton for Bimanual Multijoint Assistance. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3142447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Dillen A, Steckelmacher D, Efthymiadis K, Langlois K, De Beir A, Marušič U, Vanderborght B, Nowé A, Meeusen R, Ghaffari F, Romain O, De Pauw K. Deep learning for biosignal control: insights from basic to real-time methods with recommendations. J Neural Eng 2022; 19. [PMID: 35086076 DOI: 10.1088/1741-2552/ac4f9a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Biosignal control is an interaction modality that allows users to interact with electronic devices by decoding the biological signals emanating from the movements or thoughts of the user. This manner of interaction with devices can enhance the sense of agency for users and enable persons suffering from a paralyzing condition to interact with everyday devices that would otherwise be challenging for them to use. It can also improve control of prosthetic devices and exoskeletons by making the interaction feel more natural and intuitive. However, with the current state of the art, several issues still need to be addressed to reliably decode user intent from biosignals and provide an improved user experience over other interaction modalities. One solution is to leverage advances in Deep Learning (DL) methods to provide more reliable decoding at the expense of added computational complexity. This scoping review introduces the basic concepts of DL and assists readers in deploying DL methods to a real-time control system that should operate under real-world conditions. The scope of this review covers any electronic device, but with an emphasis on robotic devices, as this is the most active area of research in biosignal control. We review the literature pertaining to the implementation and evaluation of control systems that incorporate DL to identify the main gaps and issues in the field, and formulate suggestions on how to mitigate them. Additionally, we formulate guidelines on the best approach to designing, implementing and evaluating research prototypes that use DL in their biosignal control systems.
Collapse
Affiliation(s)
- Arnau Dillen
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | | | | | - Kevin Langlois
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Albert De Beir
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Uroš Marušič
- Alma Mater Europaea - Evropski Center Maribor, Slovenska ulica 17, Maribor, Maribor, 2000, SLOVENIA
| | - Bram Vanderborght
- Vrije Universiteit Brussel, Faculty of Applied Sciences, Brussel, Brussel, 1050, BELGIUM
| | - Ann Nowé
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Romain Meeusen
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| | - Fakhreddine Ghaffari
- Equipe Traitement de l'Information et Systèmes, CY Cergy Paris University, 6 Rue du Ponceau, Cergy-Pontoise, 95000 , FRANCE
| | - Olivier Romain
- Equipe Traitement de l'Information et Systèmes, CY Cergy Paris University, 6 Rue du Ponceau, Cergy-Pontoise, 95000 , FRANCE
| | - Kevin De Pauw
- Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM
| |
Collapse
|