1
|
Tezanos P, Trejo JL. Why are threatening experiences remembered so well? Insights into memory strengthening from protocols of gradual aversive learning. Neurosci Biobehav Rev 2025; 174:106145. [PMID: 40250543 DOI: 10.1016/j.neubiorev.2025.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Aversive experiences often result in strong and persistent memory traces, which can sometimes lead to conditions such as Post-Traumatic Stress Disorder or phobias. Aversive stimulation tests are key tools in psychology and neuroscience for studying learning and memory. These tests typically use electric shocks as the unconditioned stimulus, allowing for precise control over the aversive content of the learning event. This feature has led to extensive research applying these tests with varying shock intensities to examine differences in learning, behavior, and memory formation between low- and high-aversive experiences. This line of research is particularly valuable for understanding the neurobiology underlying memory strengthening, but, to our knowledge, no review has yet compiled and organized the findings from this specific methodology. In this comprehensive review, we focus primarily on animal studies that have employed the same aversive test (i.e. Fear Conditioning, Passive Avoidance, Active Avoidance or Operant boxes) at different intensities. We will first outline and briefly describe the main aversive learning paradigms used in this field. Next, we will examine the relationship between aversiveness and memory strength. Finally, we will explore the neurobiological insights these studies have revealed over the years. Our aim is to gain a better understanding of how the nervous system gradually strengthens memory, while also addressing the remaining gaps and challenges in this area of research.
Collapse
Affiliation(s)
- Patricia Tezanos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid 28002, Spain
| | - José Luis Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| |
Collapse
|
2
|
Ameen-Ali KE, Allen C. The 3Rs in zebrafish research. Zebrafish 2024:225-250. [DOI: 10.1079/9781800629431.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Sladky KK. Treatment of Pain in Fish. Vet Clin North Am Exot Anim Pract 2023; 26:11-26. [PMID: 36402477 DOI: 10.1016/j.cvex.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter provides an overview of our current understanding of clinical analgesic use in fish. Recently, the efficacy and pharmacokinetics of several analgesic drugs for use in fish have been investigated, and the most important data indicates that μ-opioid agonist drugs (e.g, morphine) are consistently effective as analgesics across fish species. In addition, bath application of some analgesic drugs may be useful, which affords multiple methods for delivering analgesics to fish. Although few published studies of non-steroidal anti-inflammatory drugs administered to fish show promise, we have much to learn about the analgesic efficacy of most drugs in this class.
Collapse
Affiliation(s)
- Kurt K Sladky
- University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53705 USA.
| |
Collapse
|
4
|
Dung L. Assessing tests of animal consciousness. Conscious Cogn 2022; 105:103410. [PMID: 36115312 DOI: 10.1016/j.concog.2022.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Which animals have conscious experiences? Many different, diverse and unrelated behaviors and cognitive capacities have been proposed as tests of the presence of consciousness in an animal. It is unclear which of these tests, if any, are valid. To remedy this problem, I develop a list consisting of eight desiderata which can be used to assess putative tests of animal consciousness. These desiderata are based either on detailed analogies between consciousness-linked human behavior and non-human behavior, on theories of consciousness or on methods from human consciousness science. If a test or set of tests satisfies more of these desiderata, passing it provides stronger evidence of consciousness. Moreover, one can design future tests of animal consciousness with the intention of satisfying these desiderata to ensure their evidential strength.
Collapse
Affiliation(s)
- Leonard Dung
- Institute of Philosophy II, Ruhr-University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
5
|
Balaban-Feld J, Vijayan S, Mitchell WA, Kotler BP, Badichi S, Abramsky Z. High risk of predation suppresses behavioural differences among bold and shy social prey individuals. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Prey animals must attempt to optimize foraging success while reducing the probability of being captured. Within social prey groups, intrinsic differences in bold-shy personality among individuals influence their respective risk-taking tendencies. We examined the foraging and refuge use behaviour of mixed groups of goldfish (Carassius auratus) containing half bold individuals and half shy individuals under variable levels of predation risk from a live avian predator (Egretta garzetta). At the group level, the fish groups significantly decreased their foraging time by spending more time under the refuge when the predator spent more time at the focal pool. As expected, the bold fish tended to be the first to leave the refuge, and foraged outside the refuge more often than shy fish under control conditions and at lower risk levels. However, the behavioural differences between bold and shy fish disappeared under higher risk conditions. In terms of mortality, the predator captured significantly more bold fish than shy fish. Our study illustrates how bold individuals in social groups often take greater risks to achieve foraging success, but demonstrates that innate differences in boldness can be diminished in times of elevated predation risk.
Collapse
Affiliation(s)
- Jesse Balaban-Feld
- Department of Biology, University of Saint Joseph, West Hartford, CT 06117, USA
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Sundararaj Vijayan
- Cesar Kleberg Wildlife Research Institute, Texas A&M University, Kingsville, TX 78363, USA
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - William A. Mitchell
- Department of Life Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | - Burt P. Kotler
- The Jacob Blaustein Institute for Desert Research, Mitriani Department of Desert Ecology, Ben-Gurion University, Sde Boker 84990, Israel
| | - Shamir Badichi
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Zvika Abramsky
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| |
Collapse
|
6
|
Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA. Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.80542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) are major drivers of global biodiversity loss, and the poorly regulated international pet trade is a source of emerging and future invaders. Predictions of the likely ecological impacts and risks of such IAS have been significantly enhanced in recent years with new metrics, which require application to many more actual and potential IAS. Hence, this study assesses the potential ecological impacts and risks of two readily available pet trade species: goldfish, Carassius auratus, a species with non-native populations worldwide; and white cloud mountain minnow, Tanichthys albonubes, a species with a limited invasion history to date. First, we compared the per capita feeding rates of these non-native species with two European trophically analogous natives – the stone loach, Barbatula barbatula, and the common minnow, Phoxinus phoxinus – using the Comparative Functional Response method. Second, we used foraging experiments in conspecific pairs to determine synergistic, neutral or antagonistic intraspecific interactions. Third, we performed novel object experiments using the two pet trade species to assess boldness, a known “dispersal enhancing trait”. Goldfish had the highest maximum feeding rates of the four species, while white cloud mountain minnows had the lowest. Neutral interactions were observed for all four species in the paired foraging experiments, with goldfish having the highest consumption and white cloud mountain minnows having the lowest. Goldfish demonstrated greater boldness, being more active during the experimental trials and more likely to approach a novel object than white cloud mountain minnows. Further, combining maximum feeding rates, boldness and species availabilities from our survey of pet shops, we assessed the relative invasion risks (RIR) of the two non-natives. This highlighted goldfish as the higher risk and most worthy of management prioritisation, mirroring its more extensive invasion history. We propose that such metrics have potential to direct future IAS policy decisions and management towards the ever-increasing rates of biological invasions worldwide.
Collapse
|
7
|
Mason GJ, Lavery JM. What Is It Like to Be a Bass? Red Herrings, Fish Pain and the Study of Animal Sentience. Front Vet Sci 2022; 9:788289. [PMID: 35573409 PMCID: PMC9094623 DOI: 10.3389/fvets.2022.788289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Debates around fishes' ability to feel pain concern sentience: do reactions to tissue damage indicate evaluative consciousness (conscious affect), or mere nociception? Thanks to Braithwaite's discovery of trout nociceptors, and concerns that current practices could compromise welfare in countless fish, this issue's importance is beyond dispute. However, nociceptors are merely necessary, not sufficient, for true pain, and many measures held to indicate sentience have the same problem. The question of whether fish feel pain - or indeed anything at all - therefore stimulates sometimes polarized debate. Here, we try to bridge the divide. After reviewing key consciousness concepts, we identify "red herring" measures that should not be used to infer sentience because also present in non-sentient organisms, notably those lacking nervous systems, like plants and protozoa (P); spines disconnected from brains (S); decerebrate mammals and birds (D); and humans in unaware states (U). These "S.P.U.D. subjects" can show approach/withdrawal; react with apparent emotion; change their reactivity with food deprivation or analgesia; discriminate between stimuli; display Pavlovian learning, including some forms of trace conditioning; and even learn simple instrumental responses. Consequently, none of these responses are good indicators of sentience. Potentially more valid are aspects of working memory, operant conditioning, the self-report of state, and forms of higher order cognition. We suggest new experiments on humans to test these hypotheses, as well as modifications to tests for "mental time travel" and self-awareness (e.g., mirror self-recognition) that could allow these to now probe sentience (since currently they reflect perceptual rather than evaluative, affective aspects of consciousness). Because "bullet-proof" neurological and behavioral indicators of sentience are thus still lacking, agnosticism about fish sentience remains widespread. To end, we address how to balance such doubts with welfare protection, discussing concerns raised by key skeptics in this debate. Overall, we celebrate the rigorous evidential standards required by those unconvinced that fish are sentient; laud the compassion and ethical rigor shown by those advocating for welfare protections; and seek to show how precautionary principles still support protecting fish from physical harm.
Collapse
Affiliation(s)
- G. J. Mason
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
8
|
McMahon TA, Hill MN, Lentz GC, Scott EF, Tenouri NF, Rohr JR. Amphibian species vary in their learned avoidance response to the deadly fungal pathogen
Batrachochytrium dendrobatidis. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taegan A. McMahon
- Department of Biology University of Tampa Tampa FL USA
- Department of Biology Connecticut College New London CT USA
| | - Megan N. Hill
- Department of Biology University of Tampa Tampa FL USA
| | - Garrett C. Lentz
- Department of Integrative Biology University of South Florida Tampa FL USA
- School of Geography University of Otago Dunedin NZ USA
| | | | - Nadia F. Tenouri
- Department of Integrative Biology University of South Florida Tampa FL USA
- School of Geography University of Otago Dunedin NZ USA
| | - Jason R. Rohr
- Department of Integrative Biology University of South Florida Tampa FL USA
- Biological Sciences University of Notre Dame Notre Dame IN USA
| |
Collapse
|
9
|
PHARMACOKINETIC, PHARMACODYNAMIC, AND TOXICOLOGY STUDY OF ROBENACOXIB IN RAINBOW TROUT ( ONCORHYNCHUS MYKISS). J Zoo Wildl Med 2021; 52:529-537. [PMID: 34130395 DOI: 10.1638/2020-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
Postoperative antinociception control in fish is currently suboptimal, as commonly used antiinflammatory drugs last for only a few hours at tested temperatures. Therefore, long-acting anti-inflammatory drugs, such as robenacoxib, could improve the welfare of fish. The pharmacokinetics, duration of antinociceptive action, and potential adverse effects of robenacoxib were evaluated through two prospective randomized blinded trials in rainbow trout (Oncorhynchus mykiss). Six healthy rainbow trout received a single IM administration of robenacoxib (2 mg/kg), and two control fish received the same volume of saline IM. Blood samples were collected at predetermined time points for 5 d. Plasma robenacoxib concentrations were measured using high-performance liquid chromatography-high-resolution hybrid orbitrap mass spectrometry and noncompartmental pharmacokinetic analysis. Ten additional rainbow trout received an intralabial injection of 0.05 ml of 2% acetic acid following a previously validated nociceptive model. The treated group (n = 6) received 2 mg/kg of robenacoxib IM and the control group (n = 4) received an equivalent volume of saline IM. The behavior, appetite, and opercular rate of the fish were evaluated every hour for 5 h, then once daily for 3 d. All 12 treated trout and 6 controls underwent histopathologic evaluation. Average maximum plasma concentration (Cmax) was 329.9 ± 137.3 ng/ml observed at 2.1 ± 0.7 h (Tmax) and terminal half-life was 12.6 ± 2.27 h. Plasma concentrations described as antinociceptive in domestic carnivores were measured for 3-4 d. This dose was associated with a significant decrease in rocking behavior (P = 0.017). No adverse effects were detected clinically nor on histopathology. Robenacoxib administered IM at 2 mg/kg appears to be safe and may provide an antinociceptive effect in rainbow trout. This study presents a new therapeutic option to provide long-lasting antinociception in rainbow trout.
Collapse
|
10
|
Elwood RW. Potential Pain in Fish and Decapods: Similar Experimental Approaches and Similar Results. Front Vet Sci 2021; 8:631151. [PMID: 33959648 PMCID: PMC8093373 DOI: 10.3389/fvets.2021.631151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
I review studies that examined the possibility of pain experience in fish and note how they provided guidance on general methods that could be applied to other animals such as decapod crustaceans. The fish studies initially reported the occurrence of prolonged rocking movements in trout and rubbing of their lips if they were injected with acetic acid. Subsequent studies examined the role of morphine in reducing these activities and examined shifts in attention when responding to noxious stimuli. Various studies take up these themes in decapods. The results reported for the two taxonomic groups are remarkably similar and indicate that responses of both go beyond those expected of mere nociceptive reflex. Thus, the idea of pain cannot be dismissed by the argument that fish and decapods respond only by reflex. The responses of both clearly involve central processing, and pain experience, although not proven for either, is a distinct possibility. These studies have been the subjects of highly critical opinion pieces and these are examined and rebutted. The conclusion is that both fish and decapods should be awarded consideration for their welfare.
Collapse
Affiliation(s)
- Robert W Elwood
- School of Biological Sciences, Queen's University, Belfast, United Kingdom
| |
Collapse
|
11
|
Salena MG, Turko AJ, Singh A, Pathak A, Hughes E, Brown C, Balshine S. Understanding fish cognition: a review and appraisal of current practices. Anim Cogn 2021; 24:395-406. [PMID: 33595750 DOI: 10.1007/s10071-021-01488-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023]
Abstract
With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Andy J Turko
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Angad Singh
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Avani Pathak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Emily Hughes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Campos-Sánchez JC, Esteban MÁ. Review of inflammation in fish and value of the zebrafish model. JOURNAL OF FISH DISEASES 2021; 44:123-139. [PMID: 33236349 DOI: 10.1111/jfd.13310] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/28/2023]
Abstract
Inflammation is a crucial step in the development of chronic diseases in humans. Understanding the inflammation environment and its intrinsic mechanisms when it is produced by harmful stimuli may be a key element in the development of human disease diagnosis. In recent decades, zebrafish (Danio rerio) have been widely used in research, due to their exceptional characteristics, as a model of various human diseases. Interestingly, the mediators released during the inflammatory response of both the immune system and nervous system, after its integration in the hypothalamus, could also facilitate the detection of injury through the register of behavioural changes in the fish. Although there are many studies that give well-defined information separately on such elements as the recruitment of cells, the release of pro- and anti-inflammatory mediators or the type of neurotransmitters released against different triggers, to the best of our knowledge there are no reviews that put all this knowledge together. In the present review, the main available information on inflammation in zebrafish is presented in order to facilitate knowledge about this important process of innate immunity, as well as the stress responses and behavioural changes derived from it.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Greene W, Mylniczenko ND, Storms T, Burns CM, Lewbart GA, Byrd L, Papich MG. Pharmacokinetics of Ketoprofen in Nile Tilapia ( Oreochromis niloticus) and Rainbow Trout ( Oncorhynchus mykiss). Front Vet Sci 2020; 7:585324. [PMID: 33134366 PMCID: PMC7579418 DOI: 10.3389/fvets.2020.585324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to document the pharmacokinetics of ketoprofen following 3 mg/kg intramuscular (IM) and intravenous (IV) injections in rainbow trout (Oncorhynchus mykiss) and 8 mg/kg intramuscular (IM) injection in Nile tilapia (Oreochromis niloticus). Plasma was collected laterally from the tail vein for drug analysis at various time intervals up to 72 h following the injection of ketoprofen. In trout, area under the curve (AUC) levels were 115.24 μg hr/mL for IM and 135.69 μg hr/mL for IV groups with a half-life of 4.40 and 3.91 h, respectively. In both trout and tilapia, there were detectable ketoprofen concentrations in most fish for 24 h post-injection. In tilapia, there was a large difference between the R- and S-enantiomers, suggesting either chiral inversion from R- to S-enantiomer or more rapid clearance of the R-enantiomer. AUC values of the S- and R-enantiomers were 510 and 194 μg hr/Ml, respectively, corresponding to a faster clearance for the R-enantiomer. This study shows that there were very high plasma concentrations of ketoprofen in trout and tilapia with no adverse effects observed. Future studies on the efficacy, frequency of dosing, analgesia, adverse effects, and route of administration are warranted.
Collapse
Affiliation(s)
- Whitney Greene
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | | | | | - Charlene M Burns
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Gregory A Lewbart
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lynne Byrd
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Mark G Papich
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
A standardized battery of tests to measure Octopus vulgaris’ behavioural performance. INVERTEBRATE NEUROSCIENCE 2020; 20:4. [DOI: 10.1007/s10158-020-0237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
15
|
|
16
|
|
17
|
Rodrigues P, Barbosa LB, Bianchini AE, Ferrari FT, Baldisserotto B, Heinzmann BM. Nociceptive-like behavior and analgesia in silver catfish (Rhamdia quelen). Physiol Behav 2019; 210:112648. [PMID: 31408639 DOI: 10.1016/j.physbeh.2019.112648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/01/2022]
Abstract
Fish are useful animal models in research and have been employed in developing new pharmacological approaches. This study aimed to establish the use of silver catfish (Rhamdia quelen) as an animal model to evaluate antinociceptive activity. Initially, different concentrations of acetic acid (2.5-20%), formalin 1% (1-10 μL), menthol 0.5% (1-10 μL) or vehicle were injected in the lips to establish which concentration of each sample promotes nociceptive-like behavior in various parameters. The effect of morphine (0.5-10 mg/kg) on locomotion parameters was also evaluated for antinociceptive concentration determination. Morphine was administered intramuscularly immediately prior to algogen administration. The inhibition was evaluated with the antagonist naloxone (5 mg/kg), which was administered in the same way. Recording time varied according to the algogen used in each test and locomotor activity was evaluated by ANY-maze® software. Acid acetic at 15%, 10 μL of 1% formalin, and 1 μL of 0.5% menthol were chosen since they promoted nociceptive-like behavior in several parameters. Morphine (5 mg/kg) reversed the algogen-induced nociceptive-like behavior and naloxone inhibited this effect. Therefore, the proposed experimental model demonstrated specificity for nociception, since the reversion of the nociceptive-like behavior for a compound with well-described analgesic activity was observed. This new pharmacological model contributes to evaluating compounds with analgesic potential and developing new analgesic drugs, in addition to being a promising alternative to use with rodents.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Adriane Erbice Bianchini
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
18
|
Williams CJA, James LE, Bertelsen MF, Wang T. Analgesia for non-mammalian vertebrates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Michel M. Fish and microchips: on fish pain and multiple realization. PHILOSOPHICAL STUDIES 2019; 176:2411-2428. [DOI: 10.1007/s11098-018-1133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Balaban-Feld J, Mitchell WA, Kotler BP, Vijayan S, Tov Elem LT, Rosenzweig ML, Abramsky Z. Individual willingness to leave a safe refuge and the trade-off between food and safety: a test with social fish. Proc Biol Sci 2019; 286:20190826. [PMID: 31311474 DOI: 10.1098/rspb.2019.0826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Refuges offer prey animals protection from predation, but increased time spent hiding can reduce foraging opportunities. Within social groups, individuals vary in their refuge use and willingness to forage in the presence of a predator. Here, we examine the relative foraging benefits and mortality costs associated with individual refuge use and foraging behaviour within groups of goldfish (Carassius auratus) under predation risk from an avian predator (little egret-Egretta garzetta). We assessed individual order of emergence from the refuge and participation over 15 group foraging outings, and assigned each fish a daily outing index score. The individual fish that emerged from the refuge earlier than the other group members and that participated in more outings received high outing index scores and consumed more food compared with fish that tended to emerge in posterior positions and participate in fewer outings. However, individual fish that attained high outing index scores suffered a higher risk of predation. Furthermore, the amount of time the egret spent at the pool affected group foraging behaviour: as predation risk increased, groups of fish consumed significantly less food. Our results exemplify the trade-off between foraging success and safety from predation that prey species regularly experience.
Collapse
Affiliation(s)
- Jesse Balaban-Feld
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - William A Mitchell
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Burt P Kotler
- The Jacob Blaustein Institute for Desert Research, Mitrani Department of Desert Ecology, Ben-Gurion University, Sde Boker 84990, Israel
| | - Sundararaj Vijayan
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Lotan T Tov Elem
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| | - Michael L Rosenzweig
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Zvika Abramsky
- Department of Life Sciences, Ben-Gurion University, Beer Sheva 8410501, Israel
| |
Collapse
|
21
|
Sloman KA, Bouyoucos IA, Brooks EJ, Sneddon LU. Ethical considerations in fish research. JOURNAL OF FISH BIOLOGY 2019; 94:556-577. [PMID: 30838660 DOI: 10.1111/jfb.13946] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Edward J Brooks
- Cape Eleuthera Island School, Rock Sound, Eleuthera, The Bahamas
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
State-dependent foraging among social fish in a risky environment. Oecologia 2019; 190:37-45. [PMID: 30929073 DOI: 10.1007/s00442-019-04395-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
In the presence of a predator, foraging is a dangerous task. Social individuals can respond to risk by forming groups, benefiting from enhanced collective anti-predator behavior but suffering from increased conspicuousness to predators. Within groups, individuals exhibit variable foraging behavior. One important factor influencing risky foraging behaviour is current energetic state, and individuals must trade off food and safety by deciding when to leave a protected refuge in order to find food. We generated mixed groups of goldfish (Carassius auratus) containing equal numbers of underfed and well-fed individuals and examined individual refuge use and willingness to take risks venturing into risky foraging areas in the presence of an avian predator (little egret-Egretta garzetta). Underfed fish exhibited higher levels of risky behaviour by participating in more foraging outings and emerging from the refuge in frontal group positions, compared with well-fed individuals. As expected, underfed fish benefitted by consuming more food, but surprisingly did not experience higher rates of mortality. This may be due to the fact that the egret predator rarely captured the first fish to emerge from the refuge, preferentially attacked groups of three or more fish, and often captured fish in the chaotic period following a failed initial strike. We demonstrate how differences in energetic condition can influence risk-taking behaviours among social individuals that subsequently influence relative levels of foraging success and group fission-fusion dynamics. Moreover, our results illustrate the risk associated with foraging in larger groups.
Collapse
|
23
|
Social isolation impairs active avoidance performance and decreases neurogenesis in the dorsomedial telencephalon of rainbow trout. Physiol Behav 2019; 198:1-10. [DOI: 10.1016/j.physbeh.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 11/22/2022]
|
24
|
Silva DCVR, Araújo CVM, Marassi RJ, Cardoso-Silva S, Neto MB, Silva GC, Ribeiro R, Silva FT, Paiva TCB, Pompêo MLM. Influence of interspecific interactions on avoidance response to contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:824-831. [PMID: 29925054 DOI: 10.1016/j.scitotenv.2018.06.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have shown the ability of organisms to escape from toxic effects due to contamination, by moving spatially towards less contaminated habitats. However, this issue has been investigated in monospecific scenarios, without considering possible interactions between species during the contamination avoidance process. It is widely known that the spatial distribution of one species can be affected by another one, in different ways. Therefore, the main question addressed in the present study was as follows: Might interspecific interaction between the freshwater fish Danio rerio (zebrafish) and Poecilia reticulata (guppy) change their behavior patterns in terms of avoidance in the presence of a copper gradient? Zebrafish and guppies exposed to a copper gradient were tested for avoidance responses in a free-choice, non-forced, static, multi-compartmented exposure system, using two distinct approaches: (1) monospecific tests, in which only one species was exposed to the copper gradient, at two different population densities; and (2) multispecific tests, in which both species were tested simultaneously. In the control (with no copper) monospecific tests, both species were randomly distributed; however, in the control multispecific test, P. reticulata tended to aggregate. In the monospecific tests with a copper gradient, both species avoided copper in a similar way, with AC50 (concentration triggering avoidance in 50% of the exposed population) values between 15 and 18 μg·L-1, irrespective of the population density. However, in the multispecific tests, P. reticulata displaced D. rerio to previously avoided copper levels, consequently increasing the AC50 of D. rerio to 75 μg·L-1. This study shows the importance of understanding the interactions among species in contaminated areas, and the way that one species can prevent the avoidance behavior of another.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Department of Ecology, University of São Paulo, São Paulo, Brazil; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Rodrigo J Marassi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil; Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Sheila Cardoso-Silva
- Environmental Sciences Program, São Paulo State University - UNESP, Sorocaba campus, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, SP, 18087-180, Brazil
| | - Morun B Neto
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Gilmar C Silva
- Department of Exact Sciences, School of Metallurgical and Industrial Engineering, UFF, Volta Redonda, Rio de Janeiro, Brazil
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
25
|
Influence of predation risk on individual spatial positioning and willingness to leave a safe refuge in a social benthic fish. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2499-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Steenbergen PJ. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening. J Neurosci Methods 2018. [DOI: 10.1016/j.jneumeth.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Thangaleela S, Shanmugapriya V, Mukilan M, Radhakrishnan K, Rajan KE. Alterations in MicroRNA-132/212 Expression Impairs Fear Memory in Goldfish Carassius auratus. Ann Neurosci 2018; 25:90-97. [PMID: 30140120 DOI: 10.1159/000486842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Earlier, we showed that nicotinamide (NAM) treatment impairs spatial memory through the downregulation of CREB-Sirt 1-brain-derived neurotrophic factor (Bdnf) signaling cascade. Purpose In this study, we examine whether NAM treatment alters CREB-regulated genes through -microRNAs. Method To test this hypothesis, goldfish (Carassius auratus) were divided into 2 groups: (i) vehicle group (VEH; double distilled water intra-peritoneally [i.p.]) (ii) nicotinamide group (NAM, 1,000 mg/kg, i.p.) and again divided into VEH untrained/trained, NAM untrained/trained. One hour after receiving VEH or NAM, individuals were subject to contextual fear conditioning (CFC) training. After 24 h, both the groups were tested for contextual fear memory. Subsequently, miR-132/212 levels, regulated immediate-early genes (IEGs: C-fos and EGR-1) and Bdnf but not its receptor. -TrkB1were examined following 0' and 60' min after training, and compared with the untrained group. Results We observed that NAM treatment significantly impaired fear memory. Further, the analysis showed that miR-132 level was not altered, but miR-212 level was significantly upregulated after CFC training only in NAM-treated fish. We also found that NAM treatment downregulated IEGs and Bdnf but not its receptor TrkB1. Conclusions Present study suggests that NAM-treatment impaired fear memory and control IEGs, Bdnf and TrkB1 expression by differentially regulating miR-132 and 212.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vasudevan Shanmugapriya
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
28
|
Vardi R, Abramsky Z, Kotler BP, Altstein O, Rosenzweig ML. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey? Oecologia 2017; 184:597-607. [DOI: 10.1007/s00442-017-3884-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
|
29
|
Maia CM, Ferguson B, Volpato GL, Braithwaite VA. Physical and psychological motivation tests of individual preferences in rainbow trout. J Zool (1987) 2017. [DOI: 10.1111/jzo.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. M. Maia
- Laboratory of Animal Physiology and Behavior IBB UNESP Botucatu Brazil
| | - B. Ferguson
- Department of Ecosystem Science and Management Center for Brain, Behavior & Cognition Penn State University University Park PA USA
| | - G. L. Volpato
- Laboratory of Animal Physiology and Behavior IBB UNESP Botucatu Brazil
| | - V. A. Braithwaite
- Department of Ecosystem Science and Management Center for Brain, Behavior & Cognition Penn State University University Park PA USA
| |
Collapse
|
30
|
Araújo CVM, Rodríguez ENV, Salvatierra D, Cedeño-Macias LA, Vera-Vera VC, Moreira-Santos M, Ribeiro R. Attractiveness of food and avoidance from contamination as conflicting stimuli to habitat selection by fish. CHEMOSPHERE 2016; 163:177-183. [PMID: 27526061 DOI: 10.1016/j.chemosphere.2016.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Habitat selection by fish is the outcome of a choice between different stimuli. Typically, the presence of food tends to attract organisms, while contamination triggers an avoidance response to prevent toxic effects. Given that both food and contaminants are not homogeneously distributed in the environment and that food can be available in contaminated zones, a key question has been put forward in the present study: does a higher availability of food in contaminated areas interfere in the avoidance response to contaminants regardless of the contamination level? Tilapia fry (Oreochromis sp.; 2.5-3.0 cm and 0.5-0.8 g) were exposed to two different effluent samples, diluted along a free-choice, non-forced exposure system simulating a contamination gradient. Initially, avoidance to the effluents was checked during a one hour exposure. Afterwards, food was added to the system so that the availability of food increased with the increase in the level of contamination, and the avoidance response to contamination was checked during another hour. Results clearly showed a concentration-dependent avoidance response for both effluents during the first hour (i.e., with no food). However, in presence of the food, the avoidance pattern was altered: organisms were propelled to intermittently move towards contaminated areas where food availability was higher. The incursions were taken regardless of the potential risk linked to the toxic effects. In conclusion, even when the risk of toxicity was imminent, tilapia fry were more intensively stimulated by the attractiveness of the food than by repulsion to the contamination.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador.
| | - Elizabeth N V Rodríguez
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - David Salvatierra
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Luis A Cedeño-Macias
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Victoria C Vera-Vera
- Central Department of Research (DCI), Ecuadorian Aquatic Ecotoxicology (ECUACTOX) Group, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Ciudadela Universitaria, vía San Mateo, Manta, Ecuador
| | - Matilde Moreira-Santos
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
31
|
Magee B, Elwood RW. No discrimination shock avoidance with sequential presentation of stimuli but shore crabs still reduce shock exposure. Biol Open 2016; 5:883-8. [PMID: 27305928 PMCID: PMC4958278 DOI: 10.1242/bio.019216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insights into the potential for pain may be obtained from examination of behavioural responses to noxious stimuli. In particular, prolonged responses coupled with long-term motivational change and avoidance learning cannot be explained by nociceptive reflex but are consistent with the idea of pain. Here, we placed shore crabs alternately in two halves of a test area divided by an opaque partition. Each area had a dark shelter and in one repeated small electric shocks were delivered in an experimental but not in a control group. Crabs showed no specific avoidance of the shock shelter either during these trials or in a subsequent test in which both were offered simultaneously; however they often emerged from the shock shelter during a trial and thus avoided further shock. More crabs emerged in later trials and took less time to emerge than in early trials. Thus, despite the lack of discrimination learning between the two shelters they used other tactics to markedly reduce the amount of shock received. We note that a previous experiment using simultaneous presentation of two shelters demonstrated rapid discrimination and avoidance learning but the paradigm of sequential presentation appears to prevent this. Nevertheless, the data show clearly that the shock is aversive and tactics, other than discrimination learning, are used to avoid it. Thus, the behaviour is only partially consistent with the idea of pain. Summary: There was no discrimination shock avoidance with sequential presentation of stimuli but, consistent with pain, shore crabs used other tactics to reduce shock exposure.
Collapse
Affiliation(s)
- Barry Magee
- School of Biological Sciences, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Robert W Elwood
- School of Biological Sciences, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
32
|
Wacht Katz M, Abramsky Z, Kotler BP, Rosenzweig ML, Altstein O, Roth I, Klimovitsky C. Comparing the non-lethal and lethal effects of predation risk on goldfish anti-predatory behavior. Isr J Ecol Evol 2016. [DOI: 10.1080/15659801.2015.1059720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Little egrets (Egretta garzetta) and common goldfish (Carassius auratus) interacted in experimental theaters that challenge them with a behavioral game. We studied the behavioral tactics of both players. The experimental theaters consist of three equally spaced pools, each with a shelter in its center. The fish can take shelter in a safe but foodless habitat, or swim exposed in the open that contains food. The egrets can move among the pools to catch the exposed fish. We investigated the importance of non-lethal effects versus lethal effects on predator–prey interactions. We created a variance in predation pressure by keeping the number of egrets fixed but varying the number of pools of the experimental theater between 1 and 3 pools. In all treatments, even when the egret was present, individual goldfish emerged from protected cover occasionally, exposing at least their heads and sometimes their entire bodies in apparent disregard for the possibly lethal consequences. We assumed that this behavior stems from the fish's constant need to collect information about its surroundings. The fish responded appropriately to the variations in predation pressure by changing their activity level outside the cover, i.e., the fish drastically and significantly reduced their exposure outside the cover, as well as the rate of peeping, as predation pressure increased. The results demonstrate the importance role of non-lethal effects, and how they drive the behavior of prey in response to predation risk, which in turn, drives the action of the predator in an asymmetric two-player game of stealth and fear.
Collapse
Affiliation(s)
| | | | | | | | | | - Inbar Roth
- Department of Life Sciences, Ben Gurion University
| | | |
Collapse
|
33
|
Baker TR, Baker BB, Johnson SM, Sladky KK. Comparative analgesic efficacy of morphine sulfate and butorphanol tartrate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. J Am Vet Med Assoc 2016; 243:882-90. [PMID: 24004238 DOI: 10.2460/javma.243.6.882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify pain-related behaviors and assess the effects of butorphanol tartrate and morphine sulfate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. Design-Prospective study. ANIMALS 90 adult male and female koi. PROCEDURES Each fish received saline (0.9% NaCl) solution (which is physiologically compatible with fish) IM, butorphanol (10 mg/kg [4.5 mg/lb], IM), or morphine (5 mg/kg [2.3 mg/lb], IM) as an injection only (6 fish/treatment); an injection with anesthesia and surgery (12 fish/treatment); or an injection with anesthesia but without surgery (12 fish/treatment). Physiologic and behavioral data were recorded 12 hours before and at intervals after treatment. RESULTS Compared with baseline values, the saline solution-surgery group had significantly decreased respiratory rates (at 12 to 24 hours), food consumption assessed as a percentage of floating pellets consumed (at 0 to 36 hours), and activity score (at 0 to 48 hours). Respiratory rate decreased in all butorphanol-treated fish; significant decreases were detected at fewer time points following morphine administration. In the butorphanol-surgery group, the value for food consumption initially decreased but returned to baseline values within 3 hours after treatment; food consumption did not change in the morphine-surgery group. Surgery resulted in decreased activity, regardless of treatment, with the most pronounced effect in the saline solution-surgery group. Changes in location in water column, interactive behavior, and hiding behavior were not significantly different among groups. Butorphanol and morphine administration was associated with temporary buoyancy problems and temporary bouts of excessive activity, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Butorphanol and morphine appeared to have an analgesic effect in koi, but morphine administration caused fewer deleterious adverse effects. Food consumption appeared to be a reliable indicator of pain in koi.
Collapse
Affiliation(s)
- Tracie R Baker
- Department of Surgical Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
34
|
Ruhl T, Moesbauer K, Oellers N, von der Emde G. The endocannabinoid system and associative learning and memory in zebrafish. Behav Brain Res 2015; 290:61-9. [DOI: 10.1016/j.bbr.2015.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/11/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
|
35
|
The goldfish conditioned withdrawal preparation: effects of some basic methodological variables. Learn Behav 2015; 43:313-21. [PMID: 25980375 DOI: 10.3758/s13420-015-0181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Barela (Psychological Reports, 110: 173-186, 2012) presented a novel preparation for the experimental study of classical fear conditioning in goldfish, and successfully employed it in the demonstration of several basic conditioning principles. The present research addressed some basic methodological questions using a modified version of this preparation. Results indicated that the modification made to the visual CS increased its efficacy, and that conditioning to this stimulus was directly related to the number of CS-US trials given, US intensity, and intertrial interval. In addition, conditioning was detected with interstimulus intervals both shorter and longer than those used previously, as well as with an auditory CS. Methodological implications for the future employment of this preparation are discussed.
Collapse
|
36
|
Abstract
Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased.
Collapse
Affiliation(s)
- Mike Corcoran
- VCA Wakefield Animal Hospital, 19 Main Street, Wakefield, MA 01880, USA; American Association of Fish Veterinarians, 4580 Crackersport Road, Allentown, PA 18104, USA; World Aquatic Veterinary Medical Association, 132 Lichfield Road, Stafford, Staffordshire ST17 4LE, UK.
| |
Collapse
|
37
|
Abstract
ABSTRACT
Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered.
Collapse
Affiliation(s)
- Lynne U. Sneddon
- University of Liverpool, Institute of Integrative Biology, The BioScience Building, Liverpool L69 7ZB, UK
| |
Collapse
|
38
|
Key B. Fish do not feel pain and its implications for understanding phenomenal consciousness. BIOLOGY & PHILOSOPHY 2014; 30:149-165. [PMID: 25798021 PMCID: PMC4356734 DOI: 10.1007/s10539-014-9469-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
39
|
|
40
|
McGreevy PD, Henshall C, Starling MJ, McLean AN, Boakes RA. The importance of safety signals in animal handling and training. J Vet Behav 2014. [DOI: 10.1016/j.jveb.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Acute administration of THC impairs spatial but not associative memory function in zebrafish. Psychopharmacology (Berl) 2014; 231:3829-42. [PMID: 24639045 DOI: 10.1007/s00213-014-3522-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023]
Abstract
RATIONALE The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). METHODS First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. RESULTS We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. CONCLUSIONS The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.
Collapse
|
42
|
Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T, Haspel G, Burgess HA. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 2014; 112:834-44. [PMID: 24848468 DOI: 10.1152/jn.00228.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Sadie A Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Eric J Horstick
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Diana C Jordan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Vilma Aho
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland; and
| | | | - Gal Haspel
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Harold A Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland;
| |
Collapse
|
43
|
Emergent runaway into an avoidance area in a swarm of soldier crabs. PLoS One 2014; 9:e97870. [PMID: 24839970 PMCID: PMC4026533 DOI: 10.1371/journal.pone.0097870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Emergent behavior that arises from a mass effect is one of the most striking aspects of collective animal groups. Investigating such behavior would be important in order to understand how individuals interact with their neighbors. Although there are many experiments that have used collective animals to investigate social learning or conflict between individuals and society such as that between a fish and a school, reports on mass effects are rare. In this study, we show that a swarm of soldier crabs could spontaneously enter a water pool, which are usually avoided, by forming densely populated part of a swarm at the edge of the water pool. Moreover, we show that the observed behavior can be explained by the model of collective behavior based on inherent noise that is individuals’ different velocities in a directed group. Our results suggest that inherent noise, which is widely seen in collective animals, can contribute to formation and/or maintenance of a swarm and that the dense swarm can enter the pool by means of enhanced inherent noise.
Collapse
|
44
|
Millot S, Cerqueira M, Castanheira MF, Øverli Ø, Martins CI, Oliveira RF. Use of conditioned place preference/avoidance tests to assess affective states in fish. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Avoidance conditioning in bamboo sharks (Chiloscyllium griseum and C. punctatum): behavioral and neuroanatomical aspects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 199:843-56. [PMID: 23958858 DOI: 10.1007/s00359-013-0847-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Animals face different threats; to survive, they have to anticipate how to react or how to avoid these. It has already been shown in teleosts that selected regions in the telencephalon, i.e., the medial pallium, are involved in avoidance learning strategies. No such study exists for any chondrichthyan. In nature, an avoidance reaction may vary, ranging from a ‘freeze’ reaction to a startling response and quick escape. This study investigated whether elasmobranchs (Chiloscylliumgriseum and C. punctatum) can be conditioned in an aversive classical conditioning paradigm. Upon successful conditioning, the dorsal, medial and lateral pallium were removed (group 1) and performance tested again. In a second group, the same operation was performed prior to training. While conditioning was successful in individuals of both groups, no escape responses were observed. Post-operative performance was assessed and compared between individual and groups to reveal if the neural substrates governing avoidance behavior or tasks learned in a classical conditioning paradigm are located within the telencephalon, as has been shown for teleosts such as goldfish.
Collapse
|
46
|
Ludvigsen S, Stenklev NC, Johnsen HK, Laukli E, Matre D, Aas-Hansen Ø. Evoked potentials in the Atlantic cod following putatively innocuous and putatively noxious electrical stimulation: a minimally invasive approach. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:173-181. [PMID: 23896862 PMCID: PMC3901938 DOI: 10.1007/s10695-013-9834-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
Aspects of peripheral and central nociception have previously been studied through recording of somatosensory evoked potentials (SEPs) to putative noxious stimuli in specific brain regions in a few freshwater fish species. In the present study, we describe a novel, minimally invasive method for recording SEPs from the central nervous system of the Atlantic cod (Gadus morhua). Cutaneous electric stimulation of the tail in 15 fish elicited SEPs at all stimulus intensities (2, 5, 10 and 20 mA) with quantitative properties corresponding to stimulus intensity. In contrast to previous fish studies, the methodological approach used in Atlantic cod in the current study uncovered a number of additional responses that could originate from multiple brain regions. Several of these responses were specific to stimulation at the highest stimulus intensities, possibly representing qualitative differences in central processing between somatosensory and nociceptive stimuli.
Collapse
Affiliation(s)
- Stian Ludvigsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, 9037 Tromsö, Norway
- Present Address: Faculty of Health Sciences, Institute of Medical Biology, University of Tromsø, 9037 Tromsö, Norway
| | - Niels C. Stenklev
- Faculty of Health Sciences, Institute of Clinical Medicine, University of Tromsø, 9037 Tromsö, Norway
| | - Helge K. Johnsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, 9037 Tromsö, Norway
| | - Einar Laukli
- Faculty of Health Sciences, Institute of Clinical Medicine, University of Tromsø, 9037 Tromsö, Norway
| | - Dagfinn Matre
- Department of Work Psychology and Physiology, National Institute of Occupational Health, 0033 Oslo, Norway
| | - Øyvind Aas-Hansen
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Muninbakken 9-13, P.O. Box 6122, 9291 Breivika, Norway
| |
Collapse
|
47
|
Kittilsen S. Functional aspects of emotions in fish. Behav Processes 2013; 100:153-9. [PMID: 24056239 DOI: 10.1016/j.beproc.2013.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
There is an ongoing scientific discussion on whether fish have emotions, and if so how they experience them? The discussion has incorporated important areas such as brain anatomy and function, physiological and behavioural responses, and the cognitive abilities that fish possess. Little attention has however, been directed towards what functional aspects emotions ought to have in fish. If fish have emotions - why? The elucidation of this question and an assessment of the scientific evidences of emotions in fish in an evolutionary and functional framework would represent a valuable contribution in the discussion on whether fish are emotional creatures. Here parts of the vast amount of literature from both biology and psychology relating to the scientific field of emotions, animal emotion, and the functional aspects that emotions fulfil in the lives of humans and animals are reviewed. Subsequently, by viewing fish behaviour, physiology and cognitive abilities in the light of this functional framework it is possible to infer what functions emotions may serve in fish. This approach may contribute to the vital running discussion on the subject of emotions in fish. In fact, if it can be substantiated that emotions are likely to serve a function in fish similar to that of other higher vertebrate species, the notion that fish do have emotions will be strengthened.
Collapse
|
48
|
Wolkers CPB, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A. Stress-induced antinociception in fish reversed by naloxone. PLoS One 2013; 8:e71175. [PMID: 23936261 PMCID: PMC3728202 DOI: 10.1371/journal.pone.0071175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 06/28/2013] [Indexed: 11/23/2022] Open
Abstract
Pain perception in non-mammalian vertebrates such as fish is a controversial issue. We demonstrate that, in the fish Leporinus macrocephalus, an imposed restraint can modulate the behavioral response to a noxious stimulus, specifically the subcutaneous injection of 3% formaldehyde. In the first experiment, formaldehyde was applied immediately after 3 or 5 min of the restraint. Inhibition of the increase in locomotor activity in response to formaldehyde was observed, which suggests a possible restraint-induced antinociception. In the second experiment, the noxious stimulus was applied 0, 5, 10 and 15 min after the restraint, and both 3 and 5 min of restraint promoted short-term antinociception of approximately 5 min. In experiments 3 and 4, an intraperitoneal injection of naloxone (30 mg.kg(-1)) was administered 30 min prior to the restraint. The 3- minute restraint-induced antinociception was blocked by pretreatment with naloxone, but the corresponding 5-minute response was not. One possible explanation for this result is that an opioid and a non-preferential μ-opioid and/or non-opioid mechanism participate in this response modulation. Furthermore, we observed that both the 3- and 5- minutes restraint were severely stressful events for the organism, promoting marked increases in serum cortisol levels. These data indicate that the response to a noxious stimulus can be modulated by an environmental stressor in fish, as is the case in mammals. To our knowledge, this study is the first evidence for the existence of an endogenous antinociceptive system that is activated by an acute standardized stress in fish. Additionally, it characterizes the antinociceptive response induced by stress in terms of its time course and the opioid mediation, providing information for understanding the evolution of nociception modulation.
Collapse
Affiliation(s)
- Carla Patrícia Bejo Wolkers
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | |
Collapse
|
49
|
Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G. The zebrafish as a model for nociception studies. J Cell Physiol 2013; 228:1956-66. [DOI: 10.1002/jcp.24379] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Bruce Bryant
- Monell Chemical Senses Center; Philadelphia, Pennsylvania
| | - William Raffaeli
- Institute for Research on Pain; ISAL-Foundation; Torre Pedrera (RN); Italy
| | | | | |
Collapse
|
50
|
The effect of morphine on changes in behaviour and physiology in intraperitoneally vaccinated Atlantic salmon (Salmo salar). Appl Anim Behav Sci 2013. [DOI: 10.1016/j.applanim.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|