1
|
Ye S, Ma L, Chi Y, Liu N, Liu Y, Wei W, Niu Y, Zheng P, Yu J, Hai D. Targeting neutrophil dysfunction in acute lung injury: Insights from active components of Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156664. [PMID: 40121883 DOI: 10.1016/j.phymed.2025.156664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUNDS Acute lung injury (ALI) is a lethal condition characterized by uncontrolled pulmonary inflammatory responses, with high morbidity and mortality rates that pose a significant threat to patient health. The persistent retention of neutrophils in lung tissue and subsequent inflammatory damage represents a primary mechanism underlying the early onset of ALI disorders. In recent years, pharmaceutical research targeting these pathological processes has garnered considerable attention. Traditional Chinese medicines (TCM) and their active ingredients, known for their safety and stability, show promising potential in treating ALI through their ability to modulate neutrophil function via multiple pathways. PURPOSE This review examines the mechanisms of neutrophil involvement in the pathogenesis of ALI, investigates potential therapeutic targets and pathways through which Chinese medicines and their active ingredients regulate neutrophil function, and provides a theoretical foundation for developing novel clinical treatment strategies. METHODS A comprehensive literature search was conducted using multiple databases, including Science Direct, PubMed, Google Scholar, and Web of Science. Search terms included 'lung injury,' 'acute lung injury,' 'inflammatory lung injury,' 'inflammation,' 'active ingredient,' 'herbal,' 'traditional Chinese medicine,' 'mechanism,' 'drug,' and 'neutrophils.' The selected literature was systematically categorized and analyzed. RESULTS Our review reveals that TCM and active ingredients influence neutrophil function through four primary mechanisms to impede ALI progression: 1) reduction of neutrophil-mediated uncontrolled inflammatory responses by suppressing neutrophil hyperactivation and inhibiting neutrophil migration and infiltration; 2) attenuation of lung tissue inflammatory damage by inhibiting neutrophil-produced cytotoxic substances, including elastase granules, neutrophil extracellular traps (NETs), and reactive oxygen species (ROS); 3) suppression of inflammatory responses by decreasing the secretion of neutrophil-derived cytokines, such as interleukin (IL) -1β, IL-6 and tumor necrosis factor-alpha (TNF-α); and 4) enhancement of neutrophil phagocytosis and accelerate the removal of apoptotic neutrophils to eliminate harmful pathogens and promote late-stage tissue repair. These findings demonstrate that Chinese medicines and their active ingredients exhibit significant therapeutic potential in ALI disorders through the modulation of neutrophil function, providing a robust theoretical framework for their clinical applications. CONCLUSION Traditional Chinese medicines and their active ingredients demonstrate significant anti-inflammatory efficacy through multiple mechanisms of neutrophil function regulation, showing considerable promise for the treatment of ALI with broad clinical applications.
Collapse
Affiliation(s)
- Saiya Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yannan Chi
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China.
| | - Dongmei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China.
| |
Collapse
|
2
|
Zhang L, Xu SY, Shi MY, Wang H, Ding J, Tong JB, Zhu J, Li ZG, Yang QJ. An exploration of the protective effects of Ginsenoside Rb1 against acute lung injury using network pharmacology, molecular docking, molecular dynamics simulations, and in vivo experiments. Int Immunopharmacol 2025; 158:114822. [PMID: 40347881 DOI: 10.1016/j.intimp.2025.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory disorder where neutrophils contribute to inflammation and tissue damage by forming neutrophil extracellular traps (NETs). While Ginsenoside Rb1 (Gs-Rb1) has been shown to offer protective effects in ALI, it remains unclear whether its benefits in Lipopolysaccharide (LPS)-induced ALI involve modulation of NETs. OBJECTIVE The study aimed to assess the protection of Gs-Rb1 against ALI using bioinformatics analyses and animal experiments. METHODS Potential targets of Gs-Rb1 and ALI were identified through several databases and analyzed using protein-protein interaction (PPI) networks, GO and KEGG pathway enrichment, molecular docking, qRT-PCR, and molecular dynamics simulations to pinpoint key targets of Gs-Rb1. The compound's therapeutic effects were further explored in mouse models of LPS-induced ALI. RESULTS A total of 90 proteins were identified as shared targets between Gs-Rb1 and ALI. The top 10 targets were selected based on degree values from PPI networks. GO and KEGG enrichment analyses revealed links to 306 biological processes, 29 molecular functions, 63 cellular components, and 148 signaling pathways, suggesting that NET formation plays a central role in the therapeutic effects of Gs-Rb1 on ALI. Molecular docking showed strong binding affinity between Gs-Rb1 and the core targets, while qRT-PCR confirmed significant changes in AKT1 expression following Gs-Rb1 treatment. Molecular dynamics simulations further supported the binding of AKT1 to Gs-Rb1. In LPS-induced mouse models of ALI, Gs-Rb1 treatment attenuated histological damage, reduced the wet/dry mass ratio, and lowered levels of TNF-α, IL-1β, and IL-6. Furthermore, it decreased the fluorescence intensity and protein expression of CitH3, NE, and MPO and downregulated the protein ratios of p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. CONCLUSION These findings suggest that Gs-Rb1 may alleviate inflammation in ALI by inhibiting NET formation, likely through modulation of the PI3K/AKT/mTOR axis.
Collapse
Affiliation(s)
- Lu Zhang
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Shu-Yu Xu
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Meng-Yao Shi
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hui Wang
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jian Ding
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jia-Bing Tong
- Anhui University of Chinese Medicine, Hefei, 230038, China; Institute of Respiratory Disease Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Jie Zhu
- Anhui University of Chinese Medicine, Hefei, 230038, China; Institute of Respiratory Disease Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Ze-Geng Li
- The First Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; Institute of Respiratory Disease Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Qin-Jun Yang
- Anhui University of Chinese Medicine, Hefei, 230038, China; Institute of Respiratory Disease Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| |
Collapse
|
3
|
Li Z, Yao L, Liu Z, Wang L, Ruan H, Shen Y, Zhang P, Li K, Wang H, Fan L, Tu L, Feng J. Andrographolide Sulfonates and Xiyanping: A Review of Chemical Composition, Pharmacological Activities, Clinical Applications, and Adverse Reactions. Pharmaceuticals (Basel) 2025; 18:183. [PMID: 40005997 PMCID: PMC11859262 DOI: 10.3390/ph18020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Andrographis paniculata is a plant of the Acanthaceae family and its primary bioactive constituent, andrographolide, exhibits a broad spectrum of pharmacological activities and notable clinical efficacy. However, its poor solubility and limited bioavailability pose significant challenges for therapeutic applications. To overcome these limitations, researchers have synthesized andrographolide sulfonates by reacting andrographolide with ethanol and sulfuric acid. This sulfonated derivative significantly enhances water solubility and bioavailability while retaining key pharmacological properties such as anti-inflammatory and antiviral activities. As a representative formulation, Xiyanping injection has been widely employed in the treatment of respiratory infections, pneumonia, and related conditions, playing a critical role during the COVID-19 pandemic. Despite its widespread application, there has yet to be a comprehensive review of its chemical composition and pharmacological mechanisms. Additionally, the safety of Xiyanping injection remains a topic of some debate. This review systematically examines the chemical composition, pharmacological activities, clinical applications, and adverse reactions of andrographolide sulfonates and their formulation in Xiyanping injection to provide a scientific basis for further research and applications, while also offering valuable insights for the development of similar sulfonated drugs.
Collapse
Affiliation(s)
- Zihong Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Lihao Yao
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenjie Liu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Liuping Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Huini Ruan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Yuanle Shen
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Peng Zhang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Kaitong Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Honglan Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| |
Collapse
|
4
|
Dai W, Wu J, Li K, Xu Y, Wang W, Xiao W. Andrographolide: A promising therapeutic agent against organ fibrosis. Eur J Med Chem 2024; 280:116992. [PMID: 39454221 DOI: 10.1016/j.ejmech.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Fibrosis is the terminal pathology of chronic illness in many organs, marked by excessive accumulation of extracellular matrix proteins. These changes influence organ function, ultimately resulting in organ failure. Although significant progress has been achieved in comprehending the molecular pathways responsible for fibrosis in the last decades, effective and approved clinical therapies for the condition are still lacking. Andrographolide is a diterpenoid isolated and purified mainly from the aboveground parts of the Andrographis paniculata plant, which possesses good effects of purging heat, detoxifying, antibacterial and anti-inflammatory. In-depth research has gradually confirmed the anticancer, antioxidant, antiviral and other effects of Andro so that it can play a preventive and therapeutic role in various diseases. Over the past few years, an increasing number of research findings have indicated that Andro exerts antifibrotic effects in various organs by acting on transforming growth factor-β/small mother against decapentaplegic protein, mitogen-activated protein kinases, nuclear factor-E2-related factor 2, nuclear factor kappa-B and other signalling molecules to inhibit inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and collagen buildup. This review presents a compilation of findings regarding the antifibrotic impact of Andro in tissue and cell models in vitro and in vivo. Emphasis is placed on the potential therapeutic benefits of Andro in diseases related to organ fibrosis. Existing studies and cutting-edge technologies on Andro pharmacokinetics, toxicity and bioavailability are briefly discussed to provide evidence for accelerating its clinical conversion and adoption.
Collapse
Affiliation(s)
- Wei Dai
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Yingying Xu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Cao J, Xiu Y, Wang S, Wu F, Li J, Wang D. Development and in vitro-in vivo performances of an inhalable andrographolide dry powder to target pulmonary inflammation. J Drug Deliv Sci Technol 2024; 102:106367. [DOI: 10.1016/j.jddst.2024.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
7
|
Li Y, Huang L, Li J, Li S, Lv J, Zhong G, Gao M, Yang S, Han S, Hao W. Targeting TLR4 and regulating the Keap1/Nrf2 pathway with andrographolide to suppress inflammation and ferroptosis in LPS-induced acute lung injury. Chin J Nat Med 2024; 22:914-928. [PMID: 39428183 DOI: 10.1016/s1875-5364(24)60727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 10/22/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition with a high mortality rate, often precipitated by sepsis. The pathophysiology of ALI involves complex mechanisms, including inflammation, oxidative stress, and ferroptosis, a novel form of regulated cell death. This study explores the therapeutic potential of andrographolide (AG), a bioactive compound derived from Andrographis, in mitigating Lipopolysaccharide (LPS)-induced inflammation and ferroptosis. Our research employed in vitro experiments with RAW264.7 macrophage cells and in vivo studies using a murine model of LPS-induced ALI. The results indicate that AG significantly suppresses the production of pro-inflammatory cytokines and inhibits ferroptosis in LPS-stimulated RAW264.7 cells. In vivo, AG treatment markedly reduces lung edema, decreases inflammatory cell infiltration, and mitigates ferroptosis in lung tissues of LPS-induced ALI mice. These protective effects are mediated via the modulation of the Toll-like receptor 4 (TLR4)/Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Molecular docking simulations identified the binding sites of AG on the TLR4 protein (Kd value: -33.5 kcal·mol-1), and these interactions were further corroborated by Cellular Thermal Shift Assay (CETSA) and SPR assays. Collectively, our findings demonstrate that AG exerts potent anti-inflammatory and anti-ferroptosis effects in LPS-induced ALI by targeting TLR4 and modulating the Keap1/Nrf2 pathway. This study underscores AG's potential as a therapeutic agent for ALI and provides new insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Yichen Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jianzhen Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guoyue Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
8
|
Wang J, Yao N, Chen Y, Li X, Jiang Z. Research progress of cGAS-STING signaling pathway in intestinal diseases. Int Immunopharmacol 2024; 135:112271. [PMID: 38762923 DOI: 10.1016/j.intimp.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Naiqi Yao
- Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
9
|
Ren J, Deng G, Li R, Jin X, Liu J, Li J, Gao Y, Zhang J, Wang X, Wang G. Possible pharmacological targets and mechanisms of sivelestat in protecting acute lung injury. Comput Biol Med 2024; 170:108080. [PMID: 38306776 DOI: 10.1016/j.compbiomed.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening syndrome induced by various diseases, including COVID-19. In the progression of ALI/ARDS, activated neutrophils play a central role by releasing various inflammatory mediators, including elastase. Sivelestat is a selective and competitive inhibitor of neutrophil elastase. Although its protective effects on attenuating ALI/ARDS have been confirmed in several models of lung injury, clinical trials have presented inconsistent results on its therapeutic efficacy. Therefore, in this report, we used a network pharmacology approach coupled with animal experimental validation to unravel the concrete therapeutic targets and biological mechanisms of sivelestat in treating ALI/ARDS. In bioinformatic analyses, we found 118 targets of sivelestat against ALI/ARDS, and identified six hub genes essential for sivelestat treatment of ALI/ARDS, namely ERBB2, GRB2, PTK2, PTPN11, ESR1, and CCND1. We also found that sivelestat targeted several genes expressed in human lung microvascular endothelial cells after lipopolysaccharide (LPS) treatment at 4 h (ICAM-1, PTGS2, RND1, BCL2A1, TNF, CA2, and ADORA2A), 8 h (ICAM-1, PTGS2, RND1, BCL2A1, MMP1, BDKRB1 and SLC40A1), and 24 h (ICAM-1). Further animal experiments showed that sivelestat was able to attenuate LPS-induced ALI by inhibiting the overexpression of ICAM-1, VCAM-1, and PTGS2 and increasing the phosphorylation of PTK2. Taken together, the bioinformatic findings and experimentative data indicate that the therapeutic effects of sivelestat against ALI/ARDS mainly focus on the early stage of ALI/ARDS by pharmacological modulation of inflammatory reaction, vascular endothelial injury, and cell apoptosis-related molecules.
Collapse
Affiliation(s)
- Jiajia Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jueheng Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.
| |
Collapse
|
10
|
Fan C, Zhang Z, Lai Z, Yang Y, Li J, Liu L, Chen S, Hu X, Zhao H, Cui S. Chemical Evolution and Biological Evaluation of Natural Products for Efficient Therapy of Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305432. [PMID: 38126681 PMCID: PMC10870070 DOI: 10.1002/advs.202305432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Acute lung injury (ALI) is one of the most common complications in COVID-19 and also a syndrome of acute respiratory failure with high mortality rates, but lacks effective therapeutic drugs. Natural products provide inspiration and have proven to be the most valuable source for bioactive molecule discovery. In this study, the chemical evolution of the natural product Tanshinone IIA (Tan-IIA) to achieve a piperidine-fused scaffold through a synthetic route of pre-activation, multi-component reaction, and post-modification is presented. Through biological evaluation, it is pinpointed that compound 8b is a standout candidate with remarkable anti-inflammation and anti-oxidative stress properties, coupled with low toxicity. The mechanistic study unveils a multifaceted biological profile of 8b and shows that 8b is highly efficient in vivo for the treatment of ALI. Therefore, this work not only provides an effective strategy for the treatment of ALI, but also offers a distinctive natural product-inspired drug discovery.
Collapse
Affiliation(s)
- Chengcheng Fan
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Zeyi Zhang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Zhencheng Lai
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Yanzi Yang
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Jiaming Li
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Lei Liu
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Siyu Chen
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
| | - Xueping Hu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237China
| | - Huajun Zhao
- College of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhou311402China
| | - Sunliang Cui
- Institute of Drug Discovery and DesignCollege of Pharmaceutical SciencesNational Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang University866 Yuhangtang RoadHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhuaZhejiang321299China
| |
Collapse
|
11
|
Botella-Asunción P, Rivero-Buceta EM, Vidaurre-Agut C, Lama R, Rey-Campos M, Moreno A, Mendoza L, Mingo-Casas P, Escribano-Romero E, Gutierrez-Adan A, Saiz JC, Smerdou C, Gonzalez G, Prosper F, Argemí J, Miguel JS, Sanchez-Cordón PJ, Figueras A, Quesada-Gomez JM, Novoa B, Montoya M, Martín-Acebes MA, Pineda-Lucena A, Benlloch JM. AG5 is a potent non-steroidal anti-inflammatory and immune regulator that preserves innate immunity. Biomed Pharmacother 2023; 169:115882. [PMID: 37984300 DOI: 10.1016/j.biopha.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.
Collapse
Affiliation(s)
- Pablo Botella-Asunción
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain.
| | - Eva M Rivero-Buceta
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain
| | - Carla Vidaurre-Agut
- Institute of Chemical Technology (ITQ), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46022 Valencia, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Alejandro Moreno
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Laura Mendoza
- Molecular Biomedicine Department, BICS Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Juan Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Cristian Smerdou
- DNA & RNA Medicine Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Gloria Gonzalez
- DNA & RNA Medicine Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Felipe Prosper
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Josepmaría Argemí
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Jesus San Miguel
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. Centro de Investigación Biomedica en Red Cancer (CIBERONC) and RICORS TERAV, Madrid, Spain
| | - Pedro J Sanchez-Cordón
- Veterinary Pathology Unit, Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28130 Madrid, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Jose Manuel Quesada-Gomez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - María Montoya
- Molecular Biomedicine Department, BICS Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Antonio Pineda-Lucena
- Enabling Technologies Division, Centro de Investigación Medica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona Spain
| | - Jose María Benlloch
- Institute of Instrumentation for Molecular Imaging (I3M), Universitat Politècnica de Valencia-Spanish National Research Council (CSIC), 46011 Valencia, Spain.
| |
Collapse
|
12
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Ran LS, Wu YZ, Gan YW, Wang HL, Wu LJ, Zheng CM, Ming Y, Xiong R, Li YL, Lei SH, Wang X, Lao XQ, Zhang HM, Wang L, Chen C, Zhao CY. Andrographolide ameliorates hepatic steatosis by suppressing FATP2-mediated fatty acid uptake in mice with nonalcoholic fatty liver disease. J Nat Med 2023; 77:73-86. [PMID: 36115008 PMCID: PMC9810587 DOI: 10.1007/s11418-022-01647-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/07/2022] [Indexed: 01/12/2023]
Abstract
Excessive intrahepatocellular lipid accumulation or steatosis is caused by abnormal lipid metabolism and a common character of nonalcoholic fatty liver disease (NAFLD), which may progress into cirrhosis and hepatocellular cancer. Andrographolide (Andro) is the primary active ingredient extracted from Andrographis paniculata, showing a protective role against dietary steatosis with the mechanism not fully understood. In this study, we showed that administration of Andro (50, 100, and 200 mg/kg/day for 8 weeks, respectively) attenuated obesity and metabolic syndrome in high-fat diet (HFD)-fed mice with improved glucose tolerance, insulin sensitivity, and reduced hyperinsulinemia, hyperglycemia, and hyperlipidemia. HFD-fed mice presented hepatic steatosis, which was significantly prevented by Andro. In vitro, Andro decreased the intracellular lipid droplets in oleic acid-treated LO2 cells. The selected RT-PCR array revealed a robust expression suppression of the fatty acid transport proteins (FATPs) by Andro treatment. Most importantly, we found that Andro consistently reduced the expression of FATP2 in both the oleic acid-treated LO2 cells and liver tissues of HFD-fed mice. Overexpression of FATP2 abolished the lipid-lowering effect of Andro in oleic acid-treated LO2 cells. Andro treatment also reduced the fatty acid uptake in oleic acid-treated LO2 cells, which was blunted by FATP2 overexpression. Collectively, our findings reveal a novel mechanism underlying the anti-steatosis effect of Andro by suppressing FATP2-mediated fatty acid uptake, suggesting the potential therapeutic application of Andro in the treatment of NAFLD.
Collapse
Affiliation(s)
- Li-Sha Ran
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ya-Zeng Wu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi-Wen Gan
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li-Juan Wu
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Mei Zheng
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yao Ming
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ran Xiong
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong-Lin Li
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shi-Hang Lei
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xue Wang
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Qing Lao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong-Min Zhang
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, 4067, Australia.
| | - Chang-Ying Zhao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Liu Y, Zhu Y, Wang L, Li K, Du N, Pan X, Li Y, Cao R, Li B, Lin H, Song Y, Zhang Y, Wu X, Hu C, Wang Y, Liao S, Huang Y. Acid-sensitive ion channel 1a regulates TNF-α expression in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway. Mol Immunol 2023; 153:25-35. [PMID: 36403431 DOI: 10.1016/j.molimm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is the local inflammatory response of the lungs involved in a variety of inflammatory cells. Macrophages are immune cells and inflammatory cells widely distributed in the body. Acid-sensitive ion channel 1a (ASIC1a) is involved in the occurrence of ALI, but the mechanism is still unclear. METHODS Kunming mouse were stimulated by Lipopolysaccharides (LPS) to establish ALI model in vivo, and RAW264.7 cells were stimulated by LPS to establish inflammatory model in vitro. Amiloride was used as a blocker of ASIC1a to treat mice, and dexamethasone was used as a positive drug for ALI. After blockers and RNAi blocked or silenced the expression of ASIC1a, the expressions of ASIC1a, endoplasmic reticulum-related proteins GRP78, CHOP, C/EBPα and TNF-α were detected. The Ca2+ concentration was measured by a laser confocal microscope. The interaction between CHOP and C/EBPα and the effect of C/EBPα on the activity of TNF-α promoter were detected by immunoprecipitation and luciferase reporter. RESULTS The expressions of ASIC1a and TNF-α were increased significantly in LPS group. After the blocker and RNAi blocked or silenced ASIC1a, the expressions of TNF-α, GRP78, CHOP were reduced, and the intracellular Ca2+ influx was weakened. The results of immunoprecipitation showed that CHOP and C/EBPα interacted in the macrophages. After silencing CHOP, C/EBPα expression was increased, and TNF-α expression was decreased. The results of the luciferase reporter indicated that C/EBPα directly binds to TNF-α. CONCLUSION ASIC1a regulates the expression of TNF-α in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuayue Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Na Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yonghu Song
- Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Yunting Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Chengmu Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Songyan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China.
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Ran LS, Wu YZ, Gan YW, Wang HL, Wu LJ, Zheng CM, Ming Y, Xiong R, Li YL, Lei SH, Wang X, Lao XQ, Zhang HM, Wang L, Chen C, Zhao CY. Andrographolide ameliorates hepatic steatosis by suppressing FATP2-mediated fatty acid uptake in mice with nonalcoholic fatty liver disease. J Nat Med 2023; 77:73-86. [DOI: https:/doi.org/10.1007/s11418-022-01647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/07/2022] [Indexed: 02/14/2024]
Abstract
Abstract
Excessive intrahepatocellular lipid accumulation or steatosis is caused by abnormal lipid metabolism and a common character of nonalcoholic fatty liver disease (NAFLD), which may progress into cirrhosis and hepatocellular cancer. Andrographolide (Andro) is the primary active ingredient extracted from Andrographis paniculata, showing a protective role against dietary steatosis with the mechanism not fully understood. In this study, we showed that administration of Andro (50, 100, and 200 mg/kg/day for 8 weeks, respectively) attenuated obesity and metabolic syndrome in high-fat diet (HFD)-fed mice with improved glucose tolerance, insulin sensitivity, and reduced hyperinsulinemia, hyperglycemia, and hyperlipidemia. HFD-fed mice presented hepatic steatosis, which was significantly prevented by Andro. In vitro, Andro decreased the intracellular lipid droplets in oleic acid-treated LO2 cells. The selected RT-PCR array revealed a robust expression suppression of the fatty acid transport proteins (FATPs) by Andro treatment. Most importantly, we found that Andro consistently reduced the expression of FATP2 in both the oleic acid-treated LO2 cells and liver tissues of HFD-fed mice. Overexpression of FATP2 abolished the lipid-lowering effect of Andro in oleic acid-treated LO2 cells. Andro treatment also reduced the fatty acid uptake in oleic acid-treated LO2 cells, which was blunted by FATP2 overexpression. Collectively, our findings reveal a novel mechanism underlying the anti-steatosis effect of Andro by suppressing FATP2-mediated fatty acid uptake, suggesting the potential therapeutic application of Andro in the treatment of NAFLD.
Graphical abstract
Collapse
|
16
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
17
|
Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front Pharmacol 2022; 13:920435. [PMID: 36238575 PMCID: PMC9551308 DOI: 10.3389/fphar.2022.920435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals have attracted much attention in the field of anti-inflammatory due to their good pharmacological activity and efficacy. Andrographis paniculata is a natural plant ingredient that is widely used around the world. Andrographolide is the main active ingredient derived from Andrographis paniculata, which has a good effect on the treatment of inflammatory diseases. This article reviews the application, anti-inflammatory mechanism and molecular targets of andrographolide in different inflammatory diseases, including respiratory, digestive, immune, nervous, cardiovascular, skeletal, and tumor system diseases. And describe its toxicity and explain its safety. Studies have shown that andrographolide can be used to treat inflammatory lesions of various systemic diseases. In particular, it acts on many inflammation-related signalling pathways. The future direction of andrographolide research is also introduced, as is the recent research that indicates its potential clinical application as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaohong Li
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaohong Li,
| | - Weichen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minmin Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Gu X, Gao R, Li Y, Liu J, Wu Y, Xu H. Combination effect of azithromycin with TCM preparation Xiyanping injection against Klebsiella pneumoniae infection in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154332. [PMID: 35853301 DOI: 10.1016/j.phymed.2022.154332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Klebsiella pneumoniae is known as one of the most principal opportunistic human pathogens. Although antibiotics such as the first-line agent azithromycin (AZM) usually are efficient for the treatment of K. pneumonia-related infections, growing threat from antibiotic resistance has become a major challenge. Various preparations based on traditional Chinese medicine (TCM) clinical experience have been developed to help combat such a global public health threat, including Xiyanping injection (XYP) that is made from the natural product andrographolide with potent heat-clearing and toxin-resolving functions. PURPOSE The present study aimed to demonstrate the therapeutic potential, as well as the action of mechanism of AZM in combination with XYP against K. pneumonia infection in rats. METHODS Pneumonia model of K. pneumoniae infection in rats was established and subjected to various treatments. The lung histopathological lesions were evaluated. ELISA and Griess techniques were used to determine the level of crucial cytokines. The protein expressions of MAPKs and NF-κB pathways were analyzed by Western blotting. RESULTS The combination in vivo could significantly inhibit the proliferation of K. pneumoniae in lung, improve the pathological changes of lung and reduce inflammatory factors in lung homogenate and bronchoalveolar lavage fluid, mainly by inactivating MAPKs and NF-κB signaling pathways. Combination therapy caused one-fold increase in apparent distribution volume of AZM in rats after multiple dosing, along with a significant increase of AZM level in lungs but obvious decrease in livers. CONCLUSION The combination therapy of AZM and XYP showed increased antibacterial and anti-inflammatory properties, indicating that it might be used to treat K. pneumoniae infection.
Collapse
Affiliation(s)
- Xuejing Gu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China
| | - Rongrong Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China; Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou 256601, China
| | - Jiali Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005, China.
| |
Collapse
|
19
|
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium-induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36:e23197. [PMID: 35983679 DOI: 10.1002/jbt.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Fragesin, a traditional Chinese medicine, has been shown to exert anti-inflammatory effect. The aim of this study was to figure out the possible effectiveness of the fargesin, and to invest the mechanisms by which it works in the cadmium-induced lung injury in mice. Fargesin was given 1 h before cadmium treatment for 7 days. Then, the bronchoalveolar lavage fluid (BALF) were harvested to test inflammatory cells and pro-inflammatory cytokine production. Lung histopathological changes, myeloperoxidase (MPO) activity, and aryl hydrocarbon receptor (AhR) and nuclear factor kappa B (NF-κB) activation were measured. Fargesin dose-dependently reduced inflammatory cells and pro-inflammatory cytokines in BALF, improved lung histopathological injury, and inhibited lung wet/dry ratio and MPO activity. Furthermore, fargesin inhibited cadmium-induced NF-κB activation. In addition, fargesin was found to increase AhR expression. In conclusion, fargesin attenuates cadmium-induced lung injury may be via activating AhR, which subsequently suppressing the inflammatory response.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Ma
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese, Jinan, China
| | - Juan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
20
|
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022; 27:molecules27144479. [PMID: 35889352 PMCID: PMC9316804 DOI: 10.3390/molecules27144479] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
- Correspondence:
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| |
Collapse
|
21
|
Sun Q, Xia Y, Qin H, Zhang W, Wang J, Ning Y, Dong Y. MEF2 intervened LPS-induced acute lung injury by binding to KLF2 promoter and modulating macrophage phenotype. Int Immunopharmacol 2022; 108:108873. [DOI: 10.1016/j.intimp.2022.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/27/2022]
|
22
|
Xuan TQ, Gong G, Du H, Liu C, Wu Y, Bao G, Ma Q, Zhen D. Protective effect of pteryxin on LPS-induced acute lung injury via modulating MAPK/NF-κB pathway and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114924. [PMID: 34942323 DOI: 10.1016/j.jep.2021.114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peucedanum praeruptorum seed root is a common medicinal herb with antipyretic, expectorant, antitussive, and therapeutic effects against bronchitis and furuncle. The roots of this herb contain many coumarin compounds, including pteryxin. AIM OF THIS STUDY To investigate whether pteryxin can alleviate the LPS-induced lung injury and the mechanism involved. MATERIAL AND METHODS Male BALB/C mice were orally given sodium carboxymethylcellulose (CMC-Na) (0.5%, 1mL/100g) and pteryxin (suspended in CMC-Na; 0.5%) at 5, 10, 25 mg/kg once daily for 7 days. Subsequently, the mice received a single intratracheal instillation of 5 mg/kg LPS or saline as the control. After 8 hours, the mice were sacrificed to collect bronchoalveolar lavage fluid (BALF) and lung tissues. These samples were used to determine the lung W/D (wet/dry) weight ratio, total protein (TP) levels, inflammatory cytokines (IL-6, TNF-α, and IL-1β) and expression of protein involved in MAPK/NF-κB pathway and NLRP3 inflammasome. H&E staining was carried out on tissue sections to explore the pathological alterations induced by LPS. The protein expression of F4/80 and NLRP3 in lung tissues was analyzed using immunohistochemical staining. The binding of pteryxin to target proteins (MAPK, NF-κB and NLRP3) was determined based on molecular docking tests. RESULTS Treatment with pteryxin reduced the lung W/D weight ratio, total protein (TP) level and levels of inflammatory cytokines (TNFα, IL-6 and IL-1 β) significantly. Therefore, it ameliorated LPS-induced inflammatory response in BALB/C mice. Moreover, pteryxin suppressed LPS-induced upregulation of proteins involved in MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation. The expression level of F4/80 and NLRP3 was also downregulated by pteryxin pretreatment in lung tissues. Docking analysis revealed that pteryxin bound to target proteins (MAPK, NF- κB and NLRP3) with a fit-well pattern . CONCLUSION Pteryxin may attenuate LPS-induced acute lung injury by dampening MAPK/NF-κB signaling and NLRP 3 inflammasome activation.
Collapse
Affiliation(s)
- Tian-Qi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Huanhuan Du
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chunyan Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guilan Bao
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
23
|
Xuan L, Hu JH, Bi R, Liu SQ, Wang CX. Andrographolide Inhibits Proliferation and Promotes Apoptosis in Bladder Cancer Cells by Interfering with NF-κB and PI3K/AKT Signaling In Vitro and In Vivo. Chin J Integr Med 2022; 28:349-356. [PMID: 35048242 DOI: 10.1007/s11655-022-3464-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells. METHODS For in vitro experiments, T24 cells were stimulated with Andro (0-40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κB (NF-κB) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting. RESULTS Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01). CONCLUSIONS Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF-κB and PI3K/AKT signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Lei Xuan
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Hai Hu
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Ran Bi
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Qi Liu
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Xi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Agrawal P, Nair MS. An insight into the pharmacological and analytical potential of Andrographolide. Fundam Clin Pharmacol 2022; 36:586-600. [PMID: 35001431 DOI: 10.1111/fcp.12757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Andrographis paniculata is an annual medicinal herb from the family Acanthaceae. Andrographolide is generally considered an essential bioactive component of plant A. paniculata. Since ancient times, it has been widely recognized for its therapeutic qualities and has attracted the scientific and medical communities' attention. This review summarizes the molecular, clinical, and in vitro research of compound andrographolide and its mechanism of action. Andrographolide, when combined with other enhancing agents, offers a wide variety of health benefits. The therapeutic potential of andrographolide has been exemplified and exhibited by directly regulating genes and indirectly interacting with small molecules and different enzymes. This review compiles and consolidates the pharmacological action of andrographolide and its analogs and deciphers the gaps that have hindered its use in medicinal research.
Collapse
Affiliation(s)
- Pallavi Agrawal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
25
|
Wang Y, Wei B, Wang D, Wu J, Gao J, Zhong H, Sun Y, Xu Q, Liu W, Gu Y, Guo W. DNA damage repair promotion in colonic epithelial cells by andrographolide downregulated cGAS‒STING pathway activation and contributed to the relief of CPT-11-induced intestinal mucositis. Acta Pharm Sin B 2022; 12:262-273. [PMID: 35127384 PMCID: PMC8799857 DOI: 10.1016/j.apsb.2021.03.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Gastrointestinal mucositis is one of the most debilitating side effects of the chemotherapeutic agent irinotecan (CPT-11). Andrographolide, a natural bicyclic diterpenoid lactone, has been reported to possess anti-colitis activity. In this study, andrographolide treatment was found to significantly relieve CPT-11-induced colitis in tumor-bearing mice without decreasing the tumor suppression effect of CPT-11. CPT-11 causes DNA damage and the release of double-stranded DNA (dsDNA) from the intestine, leading to cyclic-GMP-AMP synthase (cGAS)‒stimulator of interferon genes (STING)-mediated colitis, which was significantly decreased by andrographolide both in vivo and in vitro. Mechanistic studies revealed that andrographolide could promote homologous recombination (HR) repair and downregulate dsDNA‒cGAS‒STING signaling and contribute to the improvement of CPT-11-induced gastrointestinal mucositis. These results suggest that andrographolide may be a novel agent to relieve gastrointestinal mucositis caused by CPT-11.
Collapse
|
26
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, Ge S, Li Q, Ma Y, Zhang H, Wang J, Cui Y, Zhang J, Zhu Y, Zhang B. Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11:3337-3363. [PMID: 34567957 PMCID: PMC8450055 DOI: 10.1016/j.apsb.2021.09.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.
Collapse
Affiliation(s)
- Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taiyi Wang
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Qingling Li
- Institute of Basic Medicine and Cancer, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
28
|
Qian H, Yang H, Li X, Yang G, Zheng X, He T, Li S, Liu B, Wu Y, Cheng Y, Shen F. Andrographolide sulfonate attenuates alveolar hypercoagulation and fibrinolytic inhibition partly via NF-κB pathway in LPS-induced acute respiratory distress syndrome in mice. Biomed Pharmacother 2021; 143:112209. [PMID: 34649343 DOI: 10.1016/j.biopha.2021.112209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Alveolar hypercoagulation and fibrinolytic inhibition are important characteristics during acute respiratory distress syndrome (ARDS), and NF-κB p65 signaling pathway is involved to regulate these pathophysiologies. We hypothesize that targeting NF-κB signal pathway could ameliorate alveolar hypercoagulation and fibrinolyitc inhibition, thus attenuating lung injury in ARDS. PURPOSE We explore the efficacy and the potential mechanism of andrographolide sulfonate (Andro-S) on alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS in mice. METHODS ARDS was made by lipopolysaccharide (LPS) inhalation in C57BLmice. Andrographolide sulfonate (2.5, 5 and 10 mg/kg) was intraperitoneally given to the mice (once a day for three consecutive days) before LPS administration. NEMO binding domain peptide (NBD), an inhibitor of NF-κB, was used as the positive control and it replaced Andro-S in mice of NBD group. Mice in normal control received saline instead of LPS. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis of alveolar coagulation, fibrinolytic inhibition as well as of pulmonary inflammatory response after 8 h of LPS inhalation. NF-κB signal pathway in lung tissue was simultaneously determined. RESULTS Andro-S dose-dependently inhibited tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 expressions either in mRNA or in protein in lung tissue of ARDS mice, and it also decreased the concentrations of TF, PAI-1, thrombin-antithrombin complex (TAT), procollagen peptide type Ⅲ (PⅢP) while promoting the production of activated protein C (APC) in BALF. Meanwhile, Andro-S effectively inhibited inflammatory response (interleukin 1β and myeloperoxidase) induced by LPS. LPS stimulation dramatically activated NF-κB signal pathway, indicated by increased expressions of phosphorylation of p65 (p-p65), p-IKKα/β and p-IκBα and the higher p65-DNA binding activity, which were all dose-dependently reversed by Andro-S. Andro-S and NBD presented similar efficacies. CONCLUSIONS Andro-S treatment improves alveolar hypercoagulation and fibrinolytic inhibition and attenuates pulmonary inflammation in LPS-induced ARDS in mice partly through NF-κB pathway inactivation. The drug is expected to be an effective choice for ARDS.
Collapse
Affiliation(s)
- Hong Qian
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China; Department of Intensive Care Unit, The Second People's Hospital of Guiyang, 550001, China.
| | - Huilin Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xiang Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Guixia Yang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Xinghao Zheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Tianhui He
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Shuwen Li
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Bo Liu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yanqi Wu
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Yumei Cheng
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| | - Feng Shen
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang 550001, China.
| |
Collapse
|
29
|
Zhu XB, Guo M, Zhang ZH, Sun LH, Liu L, Zhou LJ, Shan CL, Yang Y, Kan LD, Li LC. Chinese herbal injections for coronavirus disease 2019 (COVID-19): A narrative review. Integr Med Res 2021; 10:100778. [PMID: 34608432 PMCID: PMC8481649 DOI: 10.1016/j.imr.2021.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background The outbreak of Coronavirus disease 2019 (COVID-19) has caused more than 180 million infections and 3.9 million deaths. To date, emerging clinical evidence has shown the synergetic benefits of Chinese herbal injections in treating this contagious respiratory disease. This review aims to summarize and analyze the efficacy and safety of Chinese herbal injections in the therapy of COVID-19. Methods The literature from 3 electronic databases, PubMed, CNKI, and Web of Science, were searched using the search terms “COVID-19”, “SARS-CoV-2”, “traditional Chinese medicine”, “herb”, “herbal”, and “injection”. Then the identified articles were comprehensively evaluated. Results Limited data demonstrated that Chinese herbal injections could significantly improve the clinical outcomes of COVID-19 patients, especially in combination with conventional treatment strategies. The benefits of which were mainly associated with the relief of symptoms, prevention of secondary infection, regulation of inflammation and immune function. There was also evidence showing the inhibitory effects on SARS-CoV-2 replication in vitro. Nevertheless, available real-world data suggested the increased risk of adverse event. Furthermore, the defects of existing researches and the insights for discovering novel antiviral drugs were prospectively discussed. Conclusion Evidence-based advances revealed that Chinese herbal injections such as XueBiJing injection and ShenMai injection, exerted potent effects against COVID-19. Further laboratory researches and clinical evaluation are needed to gather scientific evidence on the efficacy and safety.
Collapse
Affiliation(s)
- Xiao-Bin Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Guo
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Hui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai, China
| | - Li-Hua Sun
- Department of Diagnostic Ultrasound & Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Liu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Li-Juan Zhou
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Lei Shan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wu Y, Zhong P. Clinical Progress on Management of Pneumonia Due to COVID-19 With Chinese Traditional Patent Medicines. Front Pharmacol 2021; 12:655063. [PMID: 34539389 PMCID: PMC8443789 DOI: 10.3389/fphar.2021.655063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Background: The outbreak of new coronavirus has tremendously threatened the public health system worldwide, including China. Chinese patent medicines (CPMs) have greatly contributed to the prevention and treatment of this viral infection, as well as the recovery of patients with COVID-19 infection. Therefore, numerous experts and guidelines recommend to take CPMs to treat pneumonia due to COVID-19. Aim of the Study: The present study reviewed CPMs recommended by the < Guidelines for diagnosis and management of COVID-19 (8th edition)> regarding evidence of their efficacy from clinical studies and the underlying mechanisms, which will lay the foundation for clinical use of these CPMs for COVID-19. Methods: The composition, efficacy, indications, history of use, and relevant clinical research on 14 recommended CPMs, including Huoxiangzhengqi capsules (pills, liquid, oral solution), Jinhuaqinggan granules, Lianhuaqingwen capsules (granules), Shufengjiedu capsules, Xiyanping injections, Xuebijing injections, Reduning injections, Tanreqing injections, Xingnaojing injections, Shenfu injections, Shengmai injections, Angongniuhuang pills, Suhexiang pills, were searched in both Chinese and English databases based on differences in stages of the disease and manifestations of such patients. Advantages of these CPMs over conventional treatments and their underlying mechanisms were explored by analyzing results from published articles and undergoing clinical trials. Results: Findings from clinical studies and Chinese experience in using these CPMs showed that CPMs, when used in combination with conventional treatments, were effective in managing COVID-19 with few side effects. Conclusion: CPMs have excellent efficacy in managing COVID-19 with a great potential for clinical use.
Collapse
Affiliation(s)
- Ying Wu
- Department of Neurology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
31
|
Wang Y, Lu C, Li H, Qi W, Ruan L, Bian Y, Shi H, Song H, Tu S, Zhang Y, Bai T, Cao R, Hong K, Li H, Liu L, Lu S, Rong N, Liu Y, Fang J, Shi J, Yang W, Zhao B, Yang Y, Zhao Y, Li S, Fan T, Rong P, Huang L. Efficacy and safety assessment of severe COVID-19 patients with Chinese medicine: A retrospective case series study at early stage of the COVID-19 epidemic in Wuhan, China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:113888. [PMID: 33529638 PMCID: PMC7847283 DOI: 10.1016/j.jep.2021.113888] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/23/2021] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The coronavirus disease 2019 (COVID-19) has formed a global pandemic since late 2019. Benefitting from the application experience of Chinese Medicine (CM) for influenza and SARS, CM has been used to save patients at the early stage of COVID-19 outbreak in China. AIM OF THE STUDY In order to evaluate the efficacy and safety of CM, and compare with Western Medicine (WM) for COVID-19, we conducted a retrospective case series study based on the patients in Wuhan Jinyintan Hospital, Wuhan, China. METHODS The inclusion and exclusion criteria of data extraction were set for this retrospective study. All patients who were admitted by the Wuhan Jinyintan Hospital between January 17th and February 25th 2020 were considered. In addition, patients enrolled met the severe defined by the guidelines released by the National Health Commission of the People's Republic of China. In these cases included in the study, CM or WM treatment was selected according to the wishes of the patients at the beginning of hospitalization. The patients in CM group were treated with Huashi Baidu granule (137 g po, bid) combined with the injections of Xiyanping (100 mg iv, bid), Xuebijing (100 ml iv, bid) and Shenmai (60 ml iv, qd) according to the syndrome of epidemic toxin blocking the lung in the theory of Traditional Chinese Medicine. The WM group received antiviral therapy (including abidor capsule 0.2 g po, tid; Lopinavir-Ritonavir tablets, 500 mg po, bid), antibiotics (such as cefoperazone 2 g iv, bid; moxifloxacin hydrochloride tablets, 0.4 g po, qd) or corticosteroid therapy (such as methylprednisolone succinate sodium 40 mg iv, qd; prednisone, 30 mg po, qd). In addition, patients in both groups received routine supportive treatment, including oxygen inhalation, symptomatic therapy, and/or human intravenous immunoglobulin, and/or serum albumin, and treatment for underlying diseases. The clinical outcomes were evaluated based on changes related with clinical manifestations, computer tomography (CT) scan images, and laboratory examinations before and after the treatment. RESULTS 55 severe COVID-19 patients, with 23 in CM group and 32 in WM group, were included for analyzed. There was no case of death, being transferred to ICU, or receiving invasive mechanical ventilation in two groups during hospitalization. The median time of SARS-CoV-2 RNA clearance in CM and WM group were 12 days and 15.5 days respectively, the ratio of nucleic acid negative conversion of CM group at different follow-up time points was significantly higher than that of WM group (HR: 2.281, P = 0.018). Further, the chest CT imaging showed more widely lung lesion opacity absorbed in the CM group. The high sensitivity C-reactive protein and serum ferritin decreased significantly in the CM group (P<0.05). There was no significant difference in adverse events in terms of liver function and renal function between the two groups. CONCLUSION Based on this retrospective analysis from Wuhan Jinyintan Hospital, CM has better effects in SARS-CoV-2 RNA clearance, promoting lung lesion opacity absorbed and reducing inflammation in severe COVID-19 patients, which is effective and safe therapy for treating severe COVID-19 and reducing mortality.
Collapse
Affiliation(s)
- Yu Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Wensheng Qi
- China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yongjun Bian
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaxin Shi
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Song
- Wuhan Jinyintan Hospital, Wuhan, China
| | | | - Yan Zhang
- Wuhan Jinyintan Hospital, Wuhan, China
| | - Tao Bai
- Wuhan Jinyintan Hospital, Wuhan, China
| | - Rong Cao
- Wuhan Jinyintan Hospital, Wuhan, China
| | - Ke Hong
- Wuhan Jinyintan Hospital, Wuhan, China
| | | | - Li Liu
- Wuhan Jinyintan Hospital, Wuhan, China
| | - Sixia Lu
- Wuhan Jinyintan Hospital, Wuhan, China
| | - Nianhe Rong
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaheng Shi
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiebing Fan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Yang C, Song C, Liu Y, Qu J, Li H, Xiao W, Kong L, Ge H, Sun Y, Lv W. Re-Du-Ning injection ameliorates LPS-induced lung injury through inhibiting neutrophil extracellular traps formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153635. [PMID: 34229173 PMCID: PMC8213523 DOI: 10.1016/j.phymed.2021.153635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yitong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute of traditional Chinese medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China.
| | - Wen Lv
- Institute of traditional Chinese medicine of Zhejiang Province, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China.
| |
Collapse
|
33
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
34
|
Jiang K, Yang J, Xue G, Dai A, Wu H. Fisetin Ameliorates the Inflammation and Oxidative Stress in Lipopolysaccharide-Induced Endometritis. J Inflamm Res 2021; 14:2963-2978. [PMID: 34262322 PMCID: PMC8275103 DOI: 10.2147/jir.s314130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Fisetin is a natural flavone of polyphenol, which widely exists in many fruits and vegetables and has many pharmacological activities. However, the mechanism involved remains largely unknown. Here, we investigate the mechanisms of fisetin on the inflammatory response and oxidative stress in LPS-induced endometritis model and bovine endometrial epithelial cell line (BEND). Methods The function of fisetin was analyzed by network pharmacology. Effects of increasing doses of fisetin on inflammation and oxidative stress are studied in BALB/c mice with LPS-induced endometritis. The underlying mechanisms of antioxidant activity of fisetin were further explored in LPS-stimulated BEND cells. Results The results showed that fisetin significantly alleviated LPS-induced inflammatory injury and oxidative stress both in vivo and in vitro. Further studies found that fisetin greatly inhibited the LPS stimulated TLR4 expression and nuclear translocation of nuclear factor-κB (NF-κB), thus reducing the pro-inflammatory mediators secretion. Silencing TLR4 reduced LPS-induced inflammatory responses. Moreover, we observed that fisetin evidently decreased ROS production but activated Nrf2/HO-1 pathway in LPS-stimulated BEND cells. To further explore the role of Nrf2 in fisetin-induced HO-1 protein expression, the specific siRNA was used to silence Nrf2 expression. Silencing Nrf2 abrogated the inhibitory effects of fisetin on LPS-induced pro-inflammatory cytokines TNF-α, IL-1β secretion, NADPH oxidase-4 (Nox4) and ROS production. Conclusion In conclusion, fisetin effectively protected against LPS-induced oxidative stress and inflammatory responses which may be closely correlated to inhibition of TLR4-mediated ROS/NF-κB and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Guanhong Xue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| |
Collapse
|
35
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Fang L, Pei J, Mao S, Wu L, Jiang S. Traditional Chinese medicine injection for the treatment of viral pneumonia in children: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25506. [PMID: 33879684 PMCID: PMC8078279 DOI: 10.1097/md.0000000000025506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent years, more and more reports are focused on the application of traditional Chinese medicine injection (TCMJ) for the treatment of viral pneumonia. There are about 200 million cases of viral pneumonia worldwide every year, half of which are children. At present, many kinds of TCMJ are created for the treatment of viral pneumonia in children, with good therapeutic effects. However, there are many kinds of TCMJ, and the treatment advantages are different, thus bringing difficulties to the selection of clinical drugs. In order to provide evidence-based evidence support for the clinical selection of TCMJ for the treatment of viral pneumonia in children, this study selected the commonly used TCMJ for clinical treatment of viral pneumonia for meta-analysis to evaluate its efficacy. METHODS The Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang Data, Viper information databases, Cochran library Web of Science, PubMed, MEDLINE and EMBASE will be searched. The literature will be searched, with language restriction in English and Chinese. The related reference will be retrieved as well. Two reviewers will independently extract data and perform quality assessment of included studies. Review Manager 5.3 will be applied to conduct this meta-analysis. RESULTS The results of this systematic review and meta-analysis will be published in a peer-reviewed journal once we finish this study. CONCLUSIONS This study provides reliable evidence-based evidence for the efficacy of TCMJ in the treatment of viral pneumonia in children. ETHICS AND DISSEMINATION We will not be allowed to publish private information from individuals. This kind of systematic review should not harm the rights of participants. No ethical approval was required. The results can be published in peer-reviewed journals or at relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/795MB.
Collapse
|
37
|
Luo W, Jia L, Zhang JW, Wang DJ, Ren Q, Zhang W. Andrographolide Against Lung Cancer-New Pharmacological Insights Based on High-Throughput Metabolomics Analysis Combined with Network Pharmacology. Front Pharmacol 2021; 12:596652. [PMID: 33967748 PMCID: PMC8097142 DOI: 10.3389/fphar.2021.596652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Andrographolide (Andro) has known to treat various illnesses such as colds, diarrhea, fever and infectious diseases. However, the effect mechanism of Andro is still unclear. Therefore, we used high-throughput metabolomics analysis to discover biomarkers, metabolic profiles and pathways to reveal the pharmacological action and effective mechanism of Andro against lung cancer. The metabolic effects of Andro on lung cancer animal was explored by ultra-performance liquid chromatography-triple-time of flight/mass spectrometry (UPLC-TOF/MS) analysis. Our results showed that Andro exhibited significant protective effects against lung cancer. Compared with control group, a total of 25 metabolites biomarkers was identified in urine of model animals, which 18 of them were regulated toward the normal direction after Andro treatment, and network pharmacology analysis showed that they were related with 570 proteins. Biological pathways analysis showed that the 11 metabolism pathways were regulated by Andro treatment in lung cancer mouse, and amino acid metabolism and arachidonic acid metabolism have great potential as target pathways for Andro against lung cancer. It revealed that high-throughput metabolomics combined with network pharmacology analysis provides deeply insight into the therapeutic mechanisms of natural product for promoting medicine development and disease treatment.
Collapse
Affiliation(s)
- Wen Luo
- Respiratory Department, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Jia
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jia-Wen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dong-Jie Wang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiu Ren
- Department of Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Li H, Song S, Kong Z, Zhu Z, Liu Y, Zuo S, Yin S. Regulatory Effects of Andrographolide on Lung Tissue Inflammation and Th17/Treg in Rats with Chronic Obstructive Pulmonary Disease Induced by Smoking and Lipopolysaccharide. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pathogenesis of Chronic obstructive pulmonary disease (COPD) is complex, and lung tissue inflammation and Th17/Treg imbalance are the key factors causing lung dysfunction. We constructed a rat COPD model induced by smoking and lipopolysaccharide to explore andrographolide’s
regulation on lung inflammation and Th17/Treg in COPD rats. By contrast, the study found that normal rats, COPD rats forced expiratory volume of 0.3 seconds (FEV0.3), FEV0.3/forced vital capacity (FVC), and peak expiratory flow (PEF) levels decreased. In addition,
the levels of IL-8, TNF-α, IL-17, and IL-6 in alveolar lavage fluid increased, and the level of IL-10 decreased. Concurrently, the total number of white blood cells, monocytes and macrophages, neutrophils, and lymphocytes increased. Meanwhile, the contents of CD25, CD4, and Foxp3 in
lung tissue all increased, and the protein levels of HMGB1, TLR4, and p65 increased. After treatment with andrographolide, the levels of FEV0.3, FEV0.3/FVC, and PEF increased, proving the increase was positively correlated with the concentration of andrographolide. The
levels of IL-8, TNF-α, IL-17, and IL-6 in rat alveolar lavage fluid decreased, and the level of IL-10 sequentially. The total number of white blood cells, the number of monocytes and macrophages, the number of lymphocytes, and the neutral Granulocytes decreased significantly. And the
contents of CD25, CD4, and Foxp3 in lung tissue significantly decreased, and the protein levels of HMGB1, TLR4, and p65 significantly decreased. The above results indicate that andrographolide might be a potential COPD treatment approach. Andrographolide improves the lung function of rats
with COPD, reduces lung inflammation, regulates Th17/Treg balance, and its mechanism may be related to HMGB1/TLR4/NF-кB signaling.
Collapse
Affiliation(s)
- Hong Li
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Shuang Song
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Zhibin Kong
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Zhen Zhu
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Yi Liu
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Sheng Zuo
- Department of Geriatrics, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| | - Shaojun Yin
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, PR China
| |
Collapse
|
39
|
Bunthawong R, Sirion U, Chairoungdua A, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R. Synthesis and cytotoxic activity of new 7-acetoxy-12-amino-14-deoxy andrographolide analogues. Bioorg Med Chem Lett 2021; 33:127741. [DOI: 10.1016/j.bmcl.2020.127741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023]
|
40
|
Liu D, Wang Z, Liu Y, Zhang Y, Guo E, He M, Liu J, Deng S, Ye W, Xie N. Two New Isomeric Andrographolides with Anti-Inflammatory and Cytotoxic Activity. Chem Biodivers 2020; 17:e1900494. [PMID: 33022147 DOI: 10.1002/cbdv.201900494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022]
Abstract
Two novel epimerized andrographolides, 8,17-dihydro-7,8-dehydroandrographolide and 10β-8,17-dihydro-7,8-dehydroandrographolide, were isolated from andrographolide sulfonates. Their structures were elucidated by detailed NMR analysis, single-crystal X-ray diffraction and quantum chemical ECD calculations. In addition, these compounds exhibited suppression of NO production in LPS-stimulated RAW264.7 cells over the range of 1.564 to 25.000 μg/mL.
Collapse
Affiliation(s)
- Difa Liu
- Jinan University, Guangzhou, 510632, P. R. China.,State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Zhangwei Wang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Yaoqi Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Yi Zhang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Eryan Guo
- China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shuangbing Deng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| | - Wencai Ye
- Jinan University, Guangzhou, 510632, P. R. China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, P. R. China
| |
Collapse
|
41
|
Leung ELH, Pan HD, Huang YF, Fan XX, Wang WY, He F, Cai J, Zhou H, Liu L. The Scientific Foundation of Chinese Herbal Medicine against COVID-19. ENGINEERING (BEIJING, CHINA) 2020; 6:1099-1107. [PMID: 33520331 PMCID: PMC7833648 DOI: 10.1016/j.eng.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today's antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yu-Feng Huang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Fang He
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Jun Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
42
|
Cui J, Gao J, Li Y, Fan T, Qu J, Sun Y, Liu W, Guo W, Xu Q. Andrographolide sulfate inhibited NF-κB activation and alleviated pneumonia induced by poly I:C in mice. J Pharmacol Sci 2020; 144:189-196. [PMID: 33070837 PMCID: PMC7448882 DOI: 10.1016/j.jphs.2020.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Pneumonia is a common illness that continues to be the major killer of remaining to be a significant source of morbidity and mortality in the patient population. Many microorganisms cause pneumonia, and now concern is turning to the importance of the cause the new therapies for viral pneumonia. In the current study, we report the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on poly I: C-induced pneumonia. Andrographolide sulfonate was administrated through intraperitoneal injection to mice with poly I: C-induced pneumonia. Recruitment of airway inflammatory cells, alteration of lung histological induced by Poly I: C were significantly ameliorated by andrographolide sulfonate. The protein levels of pro-inflammatory cytokines in bronchoalveolar fluid (BALF) and serum were reduced by andrographolide sulfonate treatment. The levels of MUC5AC and MUC5B in lung tissue were also suppressed. These results reveal that andrographolide sulfate remarkably alleviated pneumonia induced by poly I:C in mice. Moreover, andrographolide sulfonate markedly inhibited the activation of nuclear factor-κB (NF-κB). Taken together, we demonstrated that andrographolide sulfonate ameliorated poly I: C-induced pneumonia in mice, suggesting the possible use of andrographolide sulfonate for virus-induced pneumonia in clinical.
Collapse
Affiliation(s)
- Jian Cui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ting Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
43
|
Wu Y, Jiang W, Lu Z, Su W, Liu N, Guo F. miR-138-5p targets sirtuin1 to regulate acute lung injury by regulation of the NF-κB signaling pathway. Can J Physiol Pharmacol 2020; 98:522-530. [PMID: 32729719 DOI: 10.1139/cjpp-2019-0559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI), a disease with a high mortality rate, is a noncardiogenic pulmonary inflammatory response and characterized by damage to the pulmonary system. In this study, we explored the mechanism of the occurrence and development of ALI. It was firstly found that miR-138-5p could inhibit the expression of sirtuin1 (SIRT1), and we further demonstrated that miR-138-5p targets directly SIRT1 through the luciferase assay, while the latter negatively regulated the expression of NF-κB. A549 cells were treated with lipopolysaccharide in vitro to simulate ALI cells and induce ALI in the model mice. The results showed that inhibiting the expression of miR-138-5p could effectively increase the viability of damaged cells, promote cell proliferation, reduce apoptosis, inhibit the inflammatory response, reduce oxidative stress, and then relieve ALI symptoms. Collectively, our results suggested that miR-138-5p can inhibit SIRT1 expression and indirectly activate the NF-κB signaling pathway, thus regulating the development of ALI.
Collapse
Affiliation(s)
- Yinshan Wu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weiliang Jiang
- Department of critical care, Xiasha Hospital Hangzhou, Hanzhou 310018, China
| | - Zhuhua Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wei Su
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Nan Liu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
44
|
Luo Z, Ang MJY, Chan SY, Yi Z, Goh YY, Yan S, Tao J, Liu K, Li X, Zhang H, Huang W, Liu X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6925296. [PMID: 32607499 PMCID: PMC7315394 DOI: 10.34133/2020/6925296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to reduce viral progression.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Shuangqian Yan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Tao
- Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaosong Li
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China
| |
Collapse
|
45
|
Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact 2020; 325:109125. [PMID: 32376238 PMCID: PMC7196551 DOI: 10.1016/j.cbi.2020.109125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders. Plant derived therapeutics for managing chronic respiratory disorders. Activity of natural product based molecules on key regulatory pathways of COPD. Preclinical evidence for the efficacy of natural product moieties. Clinical significance of plant derived molecules in pulmonary distress.
Collapse
|
46
|
Song Y, Wu X, Yang D, Fang F, Meng L, Liu Y, Cui W. Protective Effect of Andrographolide on Alleviating Chronic Alcoholic Liver Disease in Mice by Inhibiting Nuclear Factor Kappa B and Tumor Necrosis Factor Alpha Activation. J Med Food 2020; 23:409-415. [PMID: 32119798 DOI: 10.1089/jmf.2019.4471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yuan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Department of Gastroenterology, Jilin Province People's Hospital, Changchun, China
| | - Xiangqun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Di Yang
- Department of Changchun International Travel Healthcare, China Custom, Changchun, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Lingshi Meng
- Department of Cardiology, Jilin Province People's Hospital, Changchun, China
| | - Ya Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
47
|
Wei-Ya C, Yuan-Song W, Chun-Yu L, Yu-Bin J, Fei-Fei Y, Yong-Hong L. Comparison of pulmonary availability and anti-inflammatory effect of dehydroandrographolide succinate via intratracheal and intravenous administration. Eur J Pharm Sci 2020; 147:105290. [DOI: 10.1016/j.ejps.2020.105290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
48
|
Gao J, Cui J, Zhong H, Li Y, Liu W, Jiao C, Gao J, Jiang C, Guo W, Xu Q. Andrographolide sulfonate ameliorates chronic colitis induced by TNBS in mice via decreasing inflammation and fibrosis. Int Immunopharmacol 2020; 83:106426. [PMID: 32220806 DOI: 10.1016/j.intimp.2020.106426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease could result in diarrhea and abdominal pain, as well as potential complications such as tissue fibrosis. The therapeutic effect of andrographolide sulfonate on acute murine experimental colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) has been confirmed. In the study here, chronic colitis triggered by repeated intrarectal administration of TNBS was established and the effect of andrographolide sulfonate was examined. Repeated TNBS administration induced substantial mice death, which was significantly decreased by andrographolide sulfonate treatment. The elevation of inflammatory cytokines including IL-6, IL-17A, TNF-α as well as IFN-γ in colonic tissues levels were decreased after administration of andrographolide sulfonate. Next, CD4+ T cell and macrophage infiltration was found to descend. The subset of pathogenic CD4+ T cell subset including CD4+IFN-γ+ (Th1) and CD4+IL-17A+ (Th17) were also suppressed by andrographolide sulfonate. Further, the restrain of p38 and p65 activation were also observed after andrographolide sulfonate administration. Finally, TNBS-induced colonic epithelial damage as well as fibrosis were significantly mitigated by andrographolide sulfonate. Based on the results got here, we can make a conclusion that andrographolide sulfonate could decrease inflammation and epithelial damage as well as fibrosis thus ameliorating chronic colitis in mice. Our study suggest the possible use of andrographolide sulfonate for chronic colitis treatment in clinical.
Collapse
Affiliation(s)
- Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; State Key Laboratory of Innovative Nature Medicine and TCM Injections, Ganzhou, China
| | - Jian Cui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Nature Medicine and TCM Injections, Ganzhou, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
49
|
Andrographolide potentiates PD-1 blockade immunotherapy by inhibiting COX2-mediated PGE2 release. Int Immunopharmacol 2020; 81:106206. [PMID: 32018066 DOI: 10.1016/j.intimp.2020.106206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Cancer immunotherapy has now become a first line therapy for several kinds of tumors. However, the clinical performance of immnuocheckpoint blockade therapy is usually limited by low response rate or side effects including cytokine storm. Andrographolide, a natural diterpenoid from Andrographis paniculata, has been used in Asia for treatment of bronchitis, paristhmitis and bacillary dysentery for its unique anti-inflammatory effect. However, its effect on anti-tumor immunity remains elusive. In this study, we found that andrographolide in combination with anti-PD-1 antibody showed a higher therapeutic benefit than individual therapy in murine xenograft model of CT26 colon cancer. Consequently, andrographolide and anti-PD-1 antibody co-treatment boosted the function of CD4+ and CD8+ T cells evidenced by considerable tissue infiltration, elevated IFN-γ secretion and enhanced expression of cytotoxic T-cell related molecules including FasL, perforin and Granzyme B, which significantly decreases the tumor load. Mechanistically, andrographolide treatment inhibited COX2 activity and PGE2 release both in vivo and in vitro, which augments anti-tumor efficiency of anti-PD-1 therapy. Finally, we confirmed that COX2 level in human colon cancer sample positively correlated with tumor-promoting factors. Our study here provides a potential combination strategy for immunotherapy against colorectal cancer.
Collapse
|
50
|
Gao J, Peng S, Shan X, Deng G, Shen L, Sun J, Jiang C, Yang X, Chang Z, Sun X, Feng F, Kong L, Gu Y, Guo W, Xu Q, Sun Y. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 2019; 10:957. [PMID: 31862870 PMCID: PMC6925222 DOI: 10.1038/s41419-019-2195-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy, whereas no effective interventions are available. Andrographolide, an active component extracted from Andrographis paniculate, is prescribed as a treatment for upper respiratory tract infection. Here we report the potential radioprotective effect and mechanism of Andrographolide on RILI. C57BL/6 mice were exposed to 18 Gy of whole thorax irradiation, followed by intraperitoneal injection of Andrographolide every other day for 4 weeks. Andrographolide significantly ameliorated radiation-induced lung tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine release in the early phase and progressive fibrosis in the late phase. Moreover, Andrographolide markedly hampered radiation-induced activation of the AIM2 inflammasome and pyroptosis in vivo. Furthermore, bone marrow-derived macrophages (BMDMs) were exposed to 8 Gy of X-ray radiation in vitro and Andrographolide significantly inhibited AIM2 inflammasome mediated-pyroptosis in BMDMs. Mechanistically, Andrographolide effectively prevented AIM2 from translocating into the nucleus to sense DNA damage induced by radiation or chemotherapeutic agents in BMDMs. Taken together, Andrographolide ameliorates RILI by suppressing AIM2 inflammasome mediated-pyroptosis in macrophage, identifying Andrographolide as a novel potential protective agent for RILI.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Shuang Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinni Shan
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lihong Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Nature Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - Xiaoling Yang
- State Key Laboratory of Innovative Nature Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, China
| | - Zhigang Chang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinchen Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yanhong Gu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|