1
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Hou H, Ji Y, Pan Y, Wang L, Liang Y. Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124980. [PMID: 39293651 DOI: 10.1016/j.envpol.2024.124980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The characteristic of semi-volatility enables persistent organic pollutants (POPs) almost ubiquitous in the environment. There is increasing concern about the potential risks of exposure to POPs due to their lipophilicity and readily bioaccumulation. Lipid droplets (LDs) are highly dynamic lipid storage organelles, alterations of intracellular LDs play a vital role in the progression of many prevalent metabolic diseases, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). This article systematically reviewed the biological processes involved in LDs metabolism, the role of LDs proteins and LDs in metabolic diseases, and summarized updating researches on involvement of POPs in the progression of LDs-related metabolic diseases and potential mechanisms. POPs might change the physiological functions of LDs, also interfere the processes of adipogenesis and lipolysis by altering LDs synthesis, decomposition and function. However, further studies are still needed to explore the underlying mechanism of POPs-induced metabolic diseases, which can offer scientific evidences for metabolic disease prevention.
Collapse
Affiliation(s)
- Huixin Hou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yaoting Ji
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
3
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 PMCID: PMC11285164 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Gao S, Gao T, Li L, Wang S, Hu J, Zhang R, Zhou Y, Dong H. Exploring the therapeutic potential of garlic in alcoholic liver disease: a network pharmacology and experimental validation study. GENES & NUTRITION 2024; 19:13. [PMID: 39044161 PMCID: PMC11267778 DOI: 10.1186/s12263-024-00748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Employing network pharmacology and molecular docking, the study predicts the active compounds in garlic and elucidates their mechanism in inhibiting the development of alcoholic liver disease (ALD). ALD is a global chronic liver disease with potential for hepatocellular carcinoma progression. METHODS The main active ingredients and targets of garlic were identified through screening the TCMSP, TCM-ID, and ETCM databases. ALD disease targets were sourced from DisGeNET, GeneCards, and DiGSeE databases, and intervention targets for garlic were determined through intersections. Protein interaction networks were constructed using the STRING platform, and GO and KEGG pathway enrichment analyses were performed with R software. The garlic component-disease-target network was established using Cytoscape software. Validation of active ingredients against core targets was conducted through molecular docking simulations using AutoDock Vina software. Expression validation of core targets was carried out using human sequencing data of ALD obtained from the GEO database. RESULTS Integration of garlic drug targets with ALD disease targets identified 83 target genes. Validation through an alcohol-induced ALD mouse model supported certain network pharmacology findings, suggesting that garlic may impede disease progression by mitigating the inflammatory response and promoting ethanol metabolism. CONCLUSION This study provides insights into the potential therapeutic mechanisms of garlic in inhibiting ALD development. The identified active ingredients offer promising avenues for further investigation and development of treatments for ALD, emphasizing the importance of botanical remedies in liver disease management.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lizheng Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shule Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun Zhou
- Shanxi Province Integrated Traditional and Western Medicine Hospital, Taiyuan, China.
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Yu H, Chen L, Chen D, Gao Y, Li G, Shen X, Xu S, An T. Associations of multiple hydroxy-polycyclic aromatic hydrocarbons with serum levels of lipids in the workers from coking and non-ferrous smelting industries. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134664. [PMID: 38788576 DOI: 10.1016/j.jhazmat.2024.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Epidemiological evidence indicates that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with certain metabolic diseases. However, the relationship between PAHs and serum lipid profiles in exposed subjects remain unknown. Herein, the associations of multiple (8) urinary hydroxylated PAHs (OH-PAHs) in workers of coking (n = 655) and non-ferrous smelting (n = 614) industries with serum lipid levels (marking lipid metabolism) were examined. Multivariable linear regression, Bayesian kernel machine regression, and quantile g-computation were used. Most urinary OH-PAHs were significantly higher (p < 0.001) in coking workers than in non-ferrous smelting workers. In workers of both industries, OH-PAH exposure was associated with elevated levels of serum total cholesterol, total triglyceride, and low-density lipoprotein, as well as reduced high-density lipoprotein levels. Specifically, urinary 4-hydroxyphenanthrene was significantly positively associated with serum total cholesterol, total triglyceride, and low-density lipoprotein levels in non-ferrous smelting workers; however, the completely opposite association of 4-hydroxyphenanthrene with these lipid levels was observed in coking workers. The results of this pioneering examination suggest that exposure to OH-PAHs may contribute to dyslipidemia in coking and non-ferrous smelting workers, and distinct patterns of change were observed. Further prospective studies involving larger sample sizes are needed to further validate the findings.
Collapse
Affiliation(s)
- Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health of the Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health of the Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health of the Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Gripshover TC, Wahlang B, Head KZ, Luo J, Bolatimi OE, Smith ML, Rouchka EC, Chariker JH, Xu J, Cai L, Cummins TD, Merchant ML, Zheng H, Kong M, Cave MC. Multiomics Analysis of PCB126's Effect on a Mouse Chronic-Binge Alcohol Feeding Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47007. [PMID: 38619879 PMCID: PMC11018247 DOI: 10.1289/ehp14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS Briefly, male C57BL/6J mice were exposed to 0.2 mg / kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in > 4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.
Collapse
Affiliation(s)
- Tyler C. Gripshover
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Melissa L. Smith
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Julia H. Chariker
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA
| | - Jason Xu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Timothy D. Cummins
- Division of Nephrology and Hypertension, Department of Medicine and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology and Hypertension, Department of Medicine and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Hao Zheng
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Maiying Kong
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
- Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- The Liver Transplant Program at UofL Health – Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Liu W, Li M, Guo H, Wei S, Xu W, Yan Y, Shi Y, Xu Z, Chang K, Wei G, Zhao S. Single-cell transcriptome analysis of liver immune microenvironment changes induced by microplastics in mice with non-alcoholic fatty liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168308. [PMID: 37977403 DOI: 10.1016/j.scitotenv.2023.168308] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Recent studies have discovered that tiny particles of microplastics (MPs) at the nano-scale level can enter the body of organisms from the environment, potentially causing metabolic ailments. However, further investigation is required to understand the alterations in the immune microenvironment associated with non-alcoholic fatty liver disease (NAFLD) occurrence following exposure to MPs. Experiments were performed using mice, which were given a normal chow or high-fat diet (NCD or HFD, respectively) plus free drinking of sterile water with or without MPs, respectively. Employing an impartial technique known as unbiased single-cell RNA-sequencing (scRNA-seq), the cellular (single-cell) pathology landscape of NAFLD and related changes in the identified immune cell populations induced following MPs plus HFD treatment were assessed. The results showed that mice in the HFD groups had remarkably greater NAFLD activity scores than those from the NCD groups. Moreover, administration of MPs plus HFD further worsened the histopathological changes in the mice's liver, leading to hepatic steatosis, inflammatory cell infiltrations and ballooning degeneration. Following the construction of a sing-cell resolution transcriptomic atlas of 43,480 cells in the mice's livers of the indicated groups, clear cellular heterogeneity and potential cell-to-cell cross-talk could be observed. Specifically, we observed that MPs exacerbated the pro-inflammatory response and influenced the stemness of hepatocytes during HFD feeding. Importantly, treatment with MPs significantly increase the infiltration of the infiltrating liver-protecting Vsig4+ macrophages in the liver of the NAFLD mouse model while remarkably decreasing the angiogenic S100A6+ macrophage subpopulation. Furthermore, mice treated with MPs plus HFD exhibited significantly increased recruitment of CD4+ cells and heightened exhaustion of CD8+ T cells than those from the control group, characteristics typically associated with the dysregulation of immune homeostasis and severe inflammatory damage. Overall, this study offers valuable perspectives into comprehending the potential underlying cellular mechanisms and regulatory aspects of the microenvironment regarding MPs in the development of NAFLD.
Collapse
Affiliation(s)
- Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huaqi Guo
- Department of Pulmonary and Critical Care Medicine, The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Xia Y, Luo D, Xu A, Zhao B, Lin H, Yao H, Li S. Insight into the mechanism of melatonin in attenuating PCB126-induced liver injury: Resistance to ROS-dependent NETs formation to alleviate inflammation and lipid metabolism dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115923. [PMID: 38171107 DOI: 10.1016/j.ecoenv.2023.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
3,3',4',4',5-Polychlorinated biphenyls (PCB126) is classified as a persistent organic environmental pollutant that can cause liver damage by producing excessive reactive oxygen species (ROS). ROS also can stimulate neutrophil extracellular traps (NETs) formation, which cause damage to organism if NETs are produced in excess. Melatonin is generally considered to possess strong antioxidant and anti-inflammation prosperities, but it is unclear whether it can alleviate PCB126-induced injury. To explore whether PCB126-induced liver injury is related to the formation of NETs and whether melatonin has a potent protective effect, we established PCB126 exposure/ PCB126 and melatonin co-treatment mouse models by gavage. To further clarify the specific mechanism, we also cultured neutrophils and AML12 cells to replicate in vivo model. Here, we found PCB126 exposure resulted in an elevation in the activities of MDA, LPO, PCO, and 8-OHdG, and a reduction in the activities of CAT, GSH-PX and SOD. We found that PCB126 exposure led to an elevation in the expression levels of chemokines (CCL2, CCL3, CCL4, CXCL12, and CXCL8) and marker factors for NETs formation (MPO, NE, NOX2, PKCα, and PKCζ) in the PCB126 group. IF, SYTOX staining, and SEM results also revealed that PCB126 could stimulate NETs formation. In addition, results of a co-culture system of PBNs and AML12 cells revealed that the expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) significantly decreased and the expression levels of metabolism factors (Fas, Acc, and Srebp) slightly decreased for scavenging NETs, indicating NETs formation aggravated PCB126-induced hepatic damages. Noteworthy, treatment with melatonin reversed these results. In summary, our findings revealed that melatonin alleviated hepatic damage aggravated by PCB126-induced ROS-dependent NETs formation through suppressing excessive ROS production. This finding not only enriches toxicological mechanism of PCB126, but more importantly extends biological effects of melatonin and its potential application values.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Han L, Ma C, Wu Z, Xu H, Li H, Pan G. AhR-STAT3-HO-1/COX-2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver. Br J Pharmacol 2024; 181:125-141. [PMID: 37538043 DOI: 10.1111/bph.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The low efficacy of mesenchymal stem cells (MSCs) has restricted their application in the treatment of liver disease. Emerging evidence suggested that ferroptosis may provoke hepatocyte dysfunction and exacerbate damage to the liver microenvironment. Here, we have investigated the contribution of liver ferroptosis to the elimination and effectiveness of human MSC (hMSC). Furthermore, potential links between liver ferroptosis and aryl hydrocarbon receptors (AhR) were explored. EXPERIMENTAL APPROACH Two mouse models, iron supplement-induced hepatic ferroptosis and hepatic ischaemia/reperfusion (I/R) injury, were used to identify effects of ferroptosis on hMSC pharmacokinetics (PK)/pharmacodynamics (PD). KEY RESULTS AhR inhibition attenuated hepatic ferroptosis and improved survival of hMSCs. hMSC viability was decreased by iron supplementation or serum from I/R mice. The AhR antagonist CH223191 reversed iron overload and oxidative stress induced by ferroptosis and increased hMSC concentration and efficacy in mouse models. Effects of CH223191 were greater than those of deferoxamine, a conventional ferroptosis inhibitor. Transcriptomic results suggested that the AhR-signal transducer and activator of transcription 3 (STAT3)-haem oxygenase 1/COX-2 signalling pathway is critical to this process. These results were confirmed in a mouse model of hepatic I/R injury. In mice pre-treated with CH223191, hMSC exhibited more potent protective effects, linked to decreased hepatic ferroptosis. CONCLUSION AND IMPLICATIONS Our findings showed that ferroptosis was a critical factor in determining the fate of hMSCs. Inhibition of AhR decreased hepatic ferroptosis, thereby increasing survival and therapeutic effects of hMSCs in mouse models of liver disease.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Brady A, Sheneman KR, Pulsifer AR, Price SL, Garrison TM, Maddipati KR, Bodduluri SR, Pan J, Boyd NL, Zheng JJ, Rai SN, Hellmann J, Haribabu B, Uriarte SM, Lawrenz MB. Type 3 secretion system induced leukotriene B4 synthesis by leukocytes is actively inhibited by Yersinia pestis to evade early immune recognition. PLoS Pathog 2024; 20:e1011280. [PMID: 38271464 PMCID: PMC10846697 DOI: 10.1371/journal.ppat.1011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/06/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Katelyn R. Sheneman
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sarah L. Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Taylor M. Garrison
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Sobha R. Bodduluri
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Nolan L. Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jing-Juan Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shesh N. Rai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
11
|
Li S, Li L, Zhang C, Fu H, Yu S, Zhou M, Guo J, Fang Z, Li A, Zhao M, Zhang M, Wang X. PM2.5 leads to adverse pregnancy outcomes by inducing trophoblast oxidative stress and mitochondrial apoptosis via KLF9/CYP1A1 transcriptional axis. eLife 2023; 12:e85944. [PMID: 37737576 PMCID: PMC10584374 DOI: 10.7554/elife.85944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Epidemiological studies have demonstrated that fine particulate matter (PM2.5) is associated with adverse obstetric and postnatal metabolic health outcomes, but the mechanism remains unclear. This study aimed to investigate the toxicological pathways by which PM2.5 damaged placental trophoblasts in vivo and in vitro. We confirmed that PM2.5 induced adverse gestational outcomes such as increased fetal mortality rates, decreased fetal numbers and weight, damaged placental structure, and increased apoptosis of trophoblasts. Additionally, PM2.5 induced dysfunction of the trophoblast cell line HTR8/SVneo, including in its proliferation, apoptosis, invasion, migration and angiogenesis. Moreover, we comprehensively analyzed the transcriptional landscape of HTR8/SVneo cells exposed to PM2.5 through RNA-Seq and observed that PM2.5 triggered overexpression of pathways involved in oxidative stress and mitochondrial apoptosis to damage HTR8/SVneo cell biological functions through CYP1A1. Mechanistically, PM2.5 stimulated KLF9, a transcription factor identified as binding to CYP1A1 promoter region, which further modulated the CYP1A1-driven downstream phenotypes. Together, this study demonstrated that the KLF9/CYP1A1 axis played a crucial role in the toxic progression of PM2.5 induced adverse pregnancy outcomes, suggesting adverse effects of environmental pollution on pregnant females and putative targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Lingbing Li
- The Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Huaxuan Fu
- Jinan Environmental Monitoring Center of Shandong ProvinceJinanChina
| | - Shuping Yu
- School of Public Health, Weifang Medical UniversityWeifangChina
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
12
|
Piell KM, Petri BJ, Head KZ, Wahlang B, Xu R, Zhang X, Pan J, Rai SN, de Silva K, Chariker JH, Rouchka EC, Tan M, Li Y, Cave MC, Klinge CM. Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104138. [PMID: 37137421 PMCID: PMC10330322 DOI: 10.1016/j.etap.2023.104138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Banrida Wahlang
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Raobo Xu
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA
| | - Xiang Zhang
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kalpani de Silva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Julia H Chariker
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Min Tan
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Matthew C Cave
- University of Louisville Hepatobiology and Toxicology Center, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
13
|
Zhao Z, Du JF, Wang QL, Qiu FN, Chen XY, Liu FJ, Li P, Jiang Y, Li HJ. An integrated strategy combining network toxicology and feature-based molecular networking for exploring hepatotoxic constituents and mechanism of Epimedii Folium-induced hepatotoxicity in vitro. Food Chem Toxicol 2023; 176:113785. [PMID: 37080529 DOI: 10.1016/j.fct.2023.113785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Epimedii Folium (EF), a commonly used herbal medicine to treat osteoporosis, has caused serious concern due to potential hepatotoxicity. Until now, its intrinsic hepatotoxic mechanism and hepatotoxic ingredients remain unclear. Here, a novel high-throughput approach was designed to investigate the intrinsic hepatotoxic of EF. High-content screen imaging (HCS) and biochemical tests were first performed to obtain the cytotoxicity parameter matrix of 17 batch EF samples. EF-treated alpha mouse liver 12 (AML12) cells showed increased reactive oxygen species (ROS), reduced glutathione (GSH) and mitochondrial membrane potential (MMP), and apoptosis and cholestasis were further observed. Network toxicology predicted that EF-triggered hepatotoxiciy was involved in transcription factor (TF) activity. The FXR expression, screened by a TF PCR array, exhibited down-regulation following EF extract administration. Moreover, EF inhibited bile acid (BA) metabolism pathway in an FXR-dependent manner. Pearson correlation between the cytotoxicity parameter matrix and quantification feature table obtained from UHPLC-QTOF data of EF suggested 7 prenylated flavonoids possessed potent hepatotoxicities and their cytotoxicity order was further summarized. The transcriptional repression effects of them on FXR were also verified. Collectively, our findings indicate that FXR is probably responsible for EF-induced hepatotoxicity and prenylated flavonoids may be a major class of hepatotoxic constituents in EF.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Fang-Ning Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Xu-Yan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
14
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Gripshover TC, Wahlang B, Head KZ, Young JL, Luo J, Mustafa MT, Kirpich IA, Cave MC. The environmental pollutant, polychlorinated biphenyl 126, alters liver function in a rodent model of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:60-75. [PMID: 36377258 PMCID: PMC9974797 DOI: 10.1111/acer.14976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology. METHODS Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model. RESULTS Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively. CONCLUSIONS Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD.
Collapse
Affiliation(s)
- Tyler C. Gripshover
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jamie L. Young
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Muhammad T. Mustafa
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Irina A. Kirpich
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The Liver Transplant Program at UofL Health - Jewish Hospital Trager Transplant Center, Louisville, KY 40202 USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
16
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Cave MC, Klinge CM. Polychlorinated biphenyls alter hepatic m6A mRNA methylation in a mouse model of environmental liver disease. ENVIRONMENTAL RESEARCH 2023; 216:114686. [PMID: 36341798 PMCID: PMC10120843 DOI: 10.1016/j.envres.2022.114686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
17
|
Guillotin S, Delcourt N. Studying the Impact of Persistent Organic Pollutants Exposure on Human Health by Proteomic Analysis: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214271. [PMID: 36430748 PMCID: PMC9692675 DOI: 10.3390/ijms232214271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Persistent organic pollutants (POPs) are organic chemical substances that are widely distributed in environments around the globe. POPs accumulate in living organisms and are found at high concentrations in the food chain. Humans are thus continuously exposed to these chemical substances, in which they exert hepatic, reproductive, developmental, behavioral, neurologic, endocrine, cardiovascular, and immunologic adverse health effects. However, considerable information is unknown regarding the mechanism by which POPs exert their adverse effects in humans, as well as the molecular and cellular responses involved. Data are notably lacking concerning the consequences of acute and chronic POP exposure on changes in gene expression, protein profile, and metabolic pathways. We conducted a systematic review to provide a synthesis of knowledge of POPs arising from proteomics-based research. The data source used for this review was PubMed. This study was carried out following the PRISMA guidelines. Of the 742 items originally identified, 89 were considered in the review. This review presents a comprehensive overview of the most recent research and available solutions to explore proteomics datasets to identify new features relevant to human health. Future perspectives in proteomics studies are discussed.
Collapse
Affiliation(s)
- Sophie Guillotin
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations, 31000 Toulouse, France
| | - Nicolas Delcourt
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1214, Toulouse NeuroImaging Center, 31024 Toulouse, France
- Correspondence: ; Tel.: +33-(0)-567691640
| |
Collapse
|
18
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|