1
|
Zhi-Xiong C. Decoding YOD1: Insights into tumour regulation and translational opportunities. Biochem Pharmacol 2025; 236:116889. [PMID: 40132762 DOI: 10.1016/j.bcp.2025.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
YOD1 deubiquitinase is a 38 kDa protein that belongs to the ovarian tumour protease (OTU) family, and its dysregulation can precipitate cancer development. Still, an up-to-date review article that can summarize its detailed tumour-regulatory function and translational potentials in different cancer types is lacking. To fill this literature gap, this review aims to discuss the tumour-modulatory role of YOD1 based on findings from different pre-clinical and clinical studies, followed by exploring the potential translational values of YOD1 as a tumour biomarker or therapeutic target. Overall, YOD1 could control the development of at least 15 tumour types by deubiquitinating or targeting different cellular proteins to modulate the activities of the cell cycle, p53, β-catenin, extracellular-regulated signal kinase (ERK), and YES-associated pathway (YAP) activities. Additionally, four long non-coding RNAs (lncRNAs), 12 microRNAs (miRNAs), and a few compounds can also directly or indirectly alter the expression and activity of YOD1, mediating tumourigenesis across different cancer types. Cellular expression data showed that YOD1 expression is dysregulated in eight cancer types, giving YOD1 the potential to be used as a diagnostic biomarker. Besides, YOD1 dysregulation can affect the clinical outcomes of various cancers. Hence, targeting YOD1 could potentially help slow tumourigenesis. The major drawback of considering YOD1 as a biomarker or therapeutic target is that its tumour-regulatory role is mainly based on the findings from single-center studies with relatively small sample sizes. Hence, future large-scale and in-depth clinical trials should be conducted to further verify the translational values of YOD1 as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive 117599, Singapore.
| |
Collapse
|
2
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Liu J, Lu Y, Zhu R, Xi P, Yang Z, Zhang Z, Xiong Y, Liu Y, Zhu Q, Sun T, Xie W, Gong B. The deubiquitinase YOD1 suppresses tumor progression by stabilizing ZNF24 in clear cell renal carcinoma. Cell Death Dis 2025; 16:334. [PMID: 40274778 DOI: 10.1038/s41419-025-07673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Metastasis remains a significant challenge in the management of clear cell renal cell carcinoma (ccRCC), and a continued focus on its underlying mechanisms is crucial for improving patient outcomes and optimizing clinical therapies. The ovarian-tumor related protease (OTU) is involved in regulating critical cell signaling pathways, but the functions of most OTUs have yet to be explored. In this study, an unbiased RNAi screening revealed that ovarian tumor domain-containing 2 (YOD1) knockdown significantly promoted cell metastasis. YOD1 downregulation promoted ccRCC growth and metastasis both in vitro and in vivo. Notably, YOD1 knockdown stimulated the growth of organoids derived from ccRCC patients. Further investigation revealed that YOD1 directly interacted with and stabilized Zinc finger protein 24 (ZNF24) expression by deubiquitination in a manner dependent on its catalytic activity. YOD1 inhibition attenuated ZNF24 transcriptional repression of vascular endothelial growth factor A (VEGFA), thereby promoting VEGFA gene expression. Furthermore, ZNF24 was identified as a key mediator of YOD1 function. The expression of YOD1 and ZNF24 was significantly downregulated in tumor tissues, with a strong correlation between them. Importantly, reduced YOD1 and ZNF24 levels were strongly associated with poor clinical outcomes in ccRCC patients. Our results reveal the mechanism by which YOD1 regulates VEGFA transcription and suppresses tumorigenesis by deubiquitinating ZNF24, providing a therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Ying Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Runye Zhu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Ping Xi
- Department of Thoracic Surgery, XinSteel Center Hospital, Xinyu, China
| | - Zhihao Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Zhipeng Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Yunbing Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Yifu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiqi Zhu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China.
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China.
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
4
|
Xiao Z, Wang Y, Pan D, Liu X, Gan J, Huang L, Feng Y. USP3 promotes clear cell renal cell carcinoma progression by stabilizing MYC and enhancing glycolysis. Biochim Biophys Acta Gen Subj 2025; 1869:130801. [PMID: 40164288 DOI: 10.1016/j.bbagen.2025.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal malignancy, and the deubiquitinase USP3 has been implicated as a critical factor in tumor biology. However, the precise mechanisms by which USP3 contributes to ccRCC progression remain unclear. This study investigates the role of USP3 in ccRCC and elucidates its underlying molecular mechanisms. Data from TCGA and GTEx databases showed elevated USP3 expression in ccRCC tissues and cell lines compared to normal renal tissues. Further analysis using qPCR and Western blot confirmed this upregulation in ccRCC cell lines. Functional assays revealed that silencing USP3 significantly impaired cell proliferation, migration, and invasion, while promoting apoptosis. Additionally, co-immunoprecipitation assays demonstrated an interaction between USP3 and MYC, with subsequent ubiquitination assays showing that USP3 regulates MYC stability. USP3 depletion also led to alterations in glycolysis-related gene expression, which could be partially reversed by MYC overexpression. These findings suggest that USP3 modulates ccRCC progression by stabilizing MYC, highlighting its potential as a therapeutic target in ccRCC treatment.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China
| | - Yuan Wang
- Guangzhou Medical University, Guangzhou 511436, China
| | - Dehua Pan
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China
| | - Xin Liu
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China
| | - Jin Gan
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China
| | - Liang Huang
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China
| | - Yan Feng
- Department of Urology, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330000, China.
| |
Collapse
|
5
|
Lin WT, Jiang YC, Mei YL, Chen YH, Zheng ZZ, Han X, Wu GJ, Huang WJ, Ye BZ, Liang G. Endothelial deubiquinatase YOD1 mediates Ang II-induced vascular endothelial-mesenchymal transition and remodeling by regulating β-catenin. Acta Pharmacol Sin 2024; 45:1618-1631. [PMID: 38641745 PMCID: PMC11272938 DOI: 10.1038/s41401-024-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 μg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to β-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain β-catenin protein stability by removing the K48 ubiquitin chain from β-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of β-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-β-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for β-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating β-catenin-mediated vascular diseases.
Collapse
Affiliation(s)
- Wan-Te Lin
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu-Cheng Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi-Lin Mei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang-Hao Chen
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhao-Zheng Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Bo-Zhi Ye
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 325035, China.
| |
Collapse
|
6
|
Deng Y, Li J, He Y, Du D, Hu Z, Zhang C, Rao Q, Xu Y, Wang J, Xu K. The deubiquitinating enzymes-related signature predicts the prognosis and immunotherapy response in breast cancer. Aging (Albany NY) 2024; 16:11553-11567. [PMID: 39115875 PMCID: PMC11346791 DOI: 10.18632/aging.206010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/30/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Breast cancer is a prevalent disease that has a dismal prognosis for patients and a bad outlook for treatments. Ubiquitination is a reversible biological process that regulates protein production and degradation, as well as plays a vital role in protein transport, localization, and biological activity. METHODS We obtained the breast cancer patient sample data and used a machine learning technique to create a novel index called Deubiquitinating enzyme related index (DUBRI) by gathering genes associated to deubiquitinating enzymes. Based on DUBRI, we systematically analyze patients' prognosis, clinical characteristics, tumor immune microenvironment, chemotherapy response and immunotherapy response. Finally, the function of OTUB2 was explored in breast cancer cells. RESULTS DUBRI, which consists of five deubiquitinating enzyme genes (OTUB2, USP41, MINDY2, YOD1, and PSMD7), is a reliable predictor of survival in breast cancer patients. We found that the high DUBRI group presented higher levels of immune cell infiltration. We performed molecular docking prediction of core target proteins in deubiquitinating enzymes. In vitro experiments verified that knockdown of OTUB2 could inhibit the proliferation and migration of breast cancer. CONCLUSIONS The DUBRI discovered in this research may effectively evaluate the outlook of breast cancer patients and identify groups of patients who would gain advantages from immunotherapy, offering vital knowledge for the future targeted treatment of breast cancer patients.
Collapse
Affiliation(s)
- Youyuan Deng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Jingyong Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Ye He
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Dou Du
- Department of Pathology, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Zhiya Hu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha 410000, Hunan, P.R. China
| | - Chao Zhang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Qishuo Rao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Yiping Xu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Jianguo Wang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan 410000, Hunan, P.R. China
| | - Ke Xu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, P.R. China
- Clinical Medical College, Chengdu Medical College, Chengdu 610500, Sichuan, P.R. China
| |
Collapse
|
7
|
Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome. Genome Med 2024; 16:84. [PMID: 38898508 PMCID: PMC11186236 DOI: 10.1186/s13073-024-01356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease for which there is no effective cure. We aimed to identify potential drug targets for CKD and kidney function by integrating plasma proteome and transcriptome. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian randomization (MR) (for proteins), summary-based MR (SMR) (for mRNA), and colocalization (for coding genes) to identify potential multi-omics biomarkers for CKD and combined the protein-protein interaction, Gene Ontology (GO), and single-cell annotation to explore the potential biological roles. The outcomes included CKD, extensive kidney function phenotypes, and different CKD clinical types (IgA nephropathy, chronic glomerulonephritis, chronic tubulointerstitial nephritis, membranous nephropathy, nephrotic syndrome, and diabetic nephropathy). RESULTS Leveraging pQTLs of 3032 proteins from 3 large-scale GWASs and corresponding blood- and tissue-specific eQTLs, we identified 32 proteins associated with CKD, which were validated across diverse CKD datasets, kidney function indicators, and clinical types. Notably, 12 proteins with prior MR support, including fibroblast growth factor 5 (FGF5), isopentenyl-diphosphate delta-isomerase 2 (IDI2), inhibin beta C chain (INHBC), butyrophilin subfamily 3 member A2 (BTN3A2), BTN3A3, uromodulin (UMOD), complement component 4A (C4a), C4b, centrosomal protein of 170 kDa (CEP170), serologically defined colon cancer antigen 8 (SDCCAG8), MHC class I polypeptide-related sequence B (MICB), and liver-expressed antimicrobial peptide 2 (LEAP2), were confirmed. To our knowledge, 20 novel causal proteins have not been previously reported. Five novel proteins, namely, GCKR (OR 1.17, 95% CI 1.10-1.24), IGFBP-5 (OR 0.43, 95% CI 0.29-0.62), sRAGE (OR 1.14, 95% CI 1.07-1.22), GNPTG (OR 0.90, 95% CI 0.86-0.95), and YOD1 (OR 1.39, 95% CI 1.18-1.64,) passed the MR, SMR, and colocalization analysis. The other 15 proteins were also candidate targets (GATM, AIF1L, DQA2, PFKFB2, NFATC1, activin AC, Apo A-IV, MFAP4, DJC10, C2CD2L, TCEA2, HLA-E, PLD3, AIF1, and GMPR1). These proteins interact with each other, and their coding genes were mainly enrichment in immunity-related pathways or presented specificity across tissues, kidney-related tissue cells, and kidney single cells. CONCLUSIONS Our integrated analysis of plasma proteome and transcriptome data identifies 32 potential therapeutic targets for CKD, kidney function, and specific CKD clinical types, offering potential targets for the development of novel immunotherapies, combination therapies, or targeted interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Liu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Siyan Zhan
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Liu C, Fan C, Liu J, Zhang S, Tang H, Liu Y, Zhang S, Wu Q, Zhang J, Qi Z, Shen Y. YOD1 protects against MRSA sepsis-induced DIC through Lys33-linked deubiquitination of NLRP3. Cell Death Dis 2024; 15:360. [PMID: 38789414 PMCID: PMC11126606 DOI: 10.1038/s41419-024-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Disseminated intravascular coagulation (DIC) is considered to be the most common and lethal complication of sepsis. NLR-family pyrin domain-containing-3 (NLRP3) inflammasome plays an important role in host defense against microbial pathogens, and its deregulation may cause coagulation cascade and should be strictly managed. Here, we identified the deubiquitinase YOD1, which played a vital role in regulating coagulation in a NLRP3 inflammasome-dependent manner in sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA). YOD1 interacted with NLRP3 to remove K33-linked ubiquitination of NLRP3 based on its deubiquitinating enzyme activity and specifically inhibited expression of NLRP3 as well as activation of NLRP3 inflammasome. Deficiency of YOD1 expression enhanced NLRP3 inflammasome activation and coagulation both in vitro and in vivo. In addition, pharmacological inhibition of the NLRP3 effectively improved coagulation and alleviated organ injury in Yod1-/- mice infected with MRSA. Thus, our study reported that YOD1 is a key regulator of coagulation during MRSA infection, and provided YOD1 as a potential therapeutic target for the treatment of NLRP3 inflammasome-related diseases, especially MRSA sepsis-induced DIC.
Collapse
Affiliation(s)
- Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Caihong Fan
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shiqi Zhang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Huixin Tang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yashan Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China.
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China.
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, China.
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
9
|
Cheng S, Chen L, Ying J, Wang Y, Jiang W, Zhang Q, Zhang H, Wang J, Wang C, Wu H, Ye J, Zhang L. 20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3. J Ginseng Res 2024; 48:298-309. [PMID: 38707638 PMCID: PMC11068957 DOI: 10.1016/j.jgr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 05/07/2024] Open
Abstract
Background 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.
Collapse
Affiliation(s)
- Siyu Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Langqun Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiahui Ying
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiahe Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huimin Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Ye
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Le ML, Yang YY, Jiang MY, Han C, Guo ZR, Liu RD, Zhao ZJ, Zhou Q, Wen S, Wu Y. Discovery of novel selective phosphodiesterase‑1 inhibitors for the treatment of acute myelogenous leukemia. Bioorg Chem 2024; 144:107114. [PMID: 38224637 DOI: 10.1016/j.bioorg.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. PDE1 (Phosphodiesterase 1) is a subfamily of the PDE super-enzyme families that can hydrolyze the second messengers cAMP and cGMP simultaneously. Previous research has shown that suppressing the gene expression of PDE1 can trigger apoptosis of human leukemia cells. However, no selective PDE1 inhibitors have been used to explore whether PDE1 is a potential target for treating AML. Based on our previously reported PDE9/PDE1 dual inhibitor 11a, a series of novel pyrazolopyrimidinone derivatives were designed in this study. The lead compound 6c showed an IC50 of 7.5 nM against PDE1, excellent selectivity over other PDEs and good metabolic stability. In AML cells, compound 6c significantly inhibited the proliferation and induced apoptosis. Further experiments indicated that the apoptosis induced by 6c was through a mitochondria-dependent pathway by decreasing the ratio of Bcl-2/Bax and increasing the cleavage of caspase-3, 7, 9, and PARP. All these results suggested that PDE1 might be a novel target for AML.
Collapse
Affiliation(s)
- Mei-Ling Le
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Rong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheng-Jiong Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
12
|
Han Z, Jia Q, Zhang J, Chen M, Wang L, Tong K, He W, Zhang Y, Zhu W, Qin J, Wang T, Liu T, Ma Y, Chen Y, Zha S, Zhang C. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J Exp Clin Cancer Res 2023; 42:228. [PMID: 37667382 PMCID: PMC10478497 DOI: 10.1186/s13046-023-02781-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that aberrant expression of deubiquitinating enzymes is associated with the initiation and progression of Triple-negative breast cancer (TNBC). The publicly available TCGA database of breast cancer data was used to analyze the OTUD deubiquitinating family members that were correlated with survival of breast cancer and ovarian tumor domain-containing 2 (OTUD-2), or YOD1 was identified. The aim of present study was to assess YOD1 expression and function in human TNBC and then explored the underlying molecular events. METHODS We detected the expression of YOD1 in 32 TNBC and 44 NTNBC samples by qRT-PCR, Western blot and immunohistochemistry. Manipulation of YOD1 expression was assessed in vitro and in vivo for TNBC cell proliferation, migration, invasion, cell-cycle and drug resistance, using colony formation assay, transwell assay, CCK8 assay, TUNEL assay, flow cytometric analysis and xenograft tumor assay. Next, proteomic analysis, Western blot, proximity ligation assay, Immunoprecipitation, and Immunofluorescence were conducted to assess downstream targets. RESULTS It was found that YOD1 was significantly upregulated in TNBC tissues compared with non-triple-negative breast cancer (NTNBC), which was positively correlated with poor survival in TNBC patients. Knockdown of YOD1 effectively inhibited TNBC cell migration, proliferation, cell cycle and resistance to cisplatin and paclitaxel. Mechanistically, YOD1 promoted TNBC progression in a manner dependent on its catalytic activity through binding with CDK1, leading to de-polyubiquitylation of CDK1 and upregulation of CDK1 expression. In addition, YOD1 overexpression was found to be correlated with CDK1 overexpression in human TNBC specimens. Finally, in vivo study demonstrated that YOD1 knockdown or YOD1 inhibitor could inhibit CDK1 expression and suppress the growth and metastasis of TNBC tumors. CONCLUSION Our study highlights that YOD1 functions as an oncogene in TNBC via binding to CDK1 and mediated its stability and oncogenic activity. Interfering with YOD1 expression or YOD1 inhibitor could suppress TNBC cells in vitro and in vivo, suggesting that YOD1 may prove to be a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi Jia
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jing Zhang
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Miaomiao Chen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kai Tong
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weiwei He
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weina Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ju Qin
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Orthopedics, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tielong Liu
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Ma
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Yuanming Chen
- Department of Orthopedics, Second Affiliated Hospital of Guangxi Medical University, 166 East Daxue Road, Nanning, 530000, Guangxi, China.
| | - Siluo Zha
- Department of General Surgery, Shanghai Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Chunlei Zhang
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, 210023, China.
| |
Collapse
|
13
|
Wu Y, Duan Y, Han W, Cao J, Ye B, Chen P, Li H, Wang Y, Liu J, Fang Y, Yue K, Wu Y, Wang X, Jing C. Deubiquitinase YOD1 suppresses tumor progression by stabilizing E3 ligase TRIM33 in head and neck squamous cell carcinoma. Cell Death Dis 2023; 14:517. [PMID: 37573347 PMCID: PMC10423255 DOI: 10.1038/s41419-023-06035-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Ubiquitination is a reversible process that not only controls protein synthesis and degradation, but also is essential for protein transport, localization and biological activity. Deubiquitinating enzyme (DUB) dysfunction leads to various diseases, including cancer. In this study, we aimed to explore the functions and mechanisms of crucial DUBs in head and neck squamous cell carcinoma (HNSCC). Based on bioinformatic analysis and immunohistochemistry detection, YOD1 was identified to be significantly downregulated in HNSCC specimens compared with adjacent normal tissues. Further analysis revealed that reduced YOD1 expression was associated with the malignant progression of HNSCC and indicated poor prognosis. The results of the in vitro and in vivo experiments verified that YOD1 depletion significantly promoted growth, invasion, and epithelial-mesenchymal transition in HNSCC. Mechanistically, YOD1 inhibited the activation of the ERK/β-catenin pathway by suppressing the ubiquitination and degradation of TRIM33, leading to the constriction of HNSCC progression. Overall, our findings reveal the molecular mechanism underlying the role of YOD1 in tumor progression and provide a novel potential therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Han
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
14
|
Pei HZ, Peng Z, Zhuang X, Wang X, Lu B, Guo Y, Zhao Y, Zhang D, Xiao Y, Gao T, Yu L, He C, Wu S, Baek SH, Zhao ZJ, Xu X, Chen Y. miR-221/222 induce instability of p53 By downregulating deubiquitinase YOD1 in acute myeloid leukemia. Cell Death Discov 2023; 9:249. [PMID: 37454155 DOI: 10.1038/s41420-023-01537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs). Herein, we found that the expression of YOD1, among several DUBs, is substantially reduced in blood cells from AML patients. We identified that YOD1 deubiqutinated and stabilized p53 through interaction via N-terminus of p53 and OTU domain of YOD1. In addition, expression levels of YOD1 were suppressed by elevated miR-221/222 in AML cells through binding to the 3' untranslated region of YOD1, as verified by reporter gene assays. Treatment of cells with miR-221/222 mimics and inhibitors yielded the expected effects on YOD1 expressions, in agreement with the negative correlation observed between the expression levels of miR-221/222 and YOD1 in AML cells. Finally, overexpression of YOD1 stabilized p53, upregulated pro-apoptotic p53 downstream genes, and increased the sensitivity of AML cells to FLT3 inhibitors remarkably. Collectively, our study identified a pathway connecting miR-221/222, YOD1, and p53 in AML. Targeting miR-221/222 and stimulating YOD1 activity may improve the therapeutic effects of FLT3 inhibitors in patients with AML.
Collapse
Affiliation(s)
- Han Zhong Pei
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiyong Peng
- Nanfang-Chunfu Children's Institute of Hematology, Taixin Hospital, Dongguan, Guangdong, China
| | - Xiaomei Zhuang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Dengyang Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yunjun Xiao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Tianshun Gao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Chunxiao He
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Suk-Hwan Baek
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, South Korea.
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK, 73104, USA.
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yun Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
15
|
Dai B, Wang F, Wang Y, Zhu J, Li Y, Zhang T, Zhao L, Wang L, Gao W, Li J, Zhu H, Li K, Hu J. Targeting HDAC3 to overcome the resistance to ATRA or arsenic in acute promyelocytic leukemia through ubiquitination and degradation of PML-RARα. Cell Death Differ 2023; 30:1320-1333. [PMID: 36894687 PMCID: PMC10154408 DOI: 10.1038/s41418-023-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML-RARα, which recruits corepressor complexes, including histone deacetylases (HDACs), to suppress cell differentiation and promote APL initiation. All-trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) or chemotherapy highly improves the prognosis of APL patients. However, refractoriness to ATRA and ATO may occur, which leads to relapsed disease in a group of patients. Here, we report that HDAC3 was highly expressed in the APL subtype of AML, and the protein level of HDAC3 was positively associated with PML-RARα. Mechanistically, we found that HDAC3 deacetylated PML-RARα at lysine 394, which reduced PIAS1-mediated PML-RARα SUMOylation and subsequent RNF4-induced ubiquitylation. HDAC3 inhibition promoted PML-RARα ubiquitylation and degradation and reduced the expression of PML-RARα in both wild-type and ATRA- or ATO-resistant APL cells. Furthermore, genetic or pharmacological inhibition of HDAC3 induced differentiation, apoptosis, and decreased cellular self-renewal of APL cells, including primary leukemia cells from patients with resistant APL. Using both cell line- and patient-derived xenograft models, we demonstrated that treatment with an HDAC3 inhibitor or combination of ATRA/ATO reduced APL progression. In conclusion, our study identifies the role of HDAC3 as a positive regulator of the PML-RARα oncoprotein by deacetylating PML-RARα and suggests that targeting HDAC3 could be a promising strategy to treat relapsed/refractory APL.
Collapse
Affiliation(s)
- Bo Dai
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Ying Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- Department of Hematology, Tong Ji Hospital, Tong Ji University School of Medicine, No 389 Xincun Road, Shanghai, 200065, China
| | - Jiayan Zhu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Yunxuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Tingting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Luyao Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Lining Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Wenhui Gao
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, and Institute of Hematology, Zhejiang University, Zhejiang, 310003, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China.
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
| |
Collapse
|
16
|
Zhang X, Chen Y, Yang B, Shao X, Ying M. Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discov Today 2023; 28:103584. [PMID: 37061213 DOI: 10.1016/j.drudis.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Oncofusion proteins drive the development of about 16.5% of human cancers {AuQ: Edit OK?}, functioning as the unique pathogenic factor in some cancers. The targeting of oncofusion proteins is an attractive strategy to treat malignant tumors. Recently, triggering the degradation of oncofusion proteins has been shown to hold great promise as a therapeutic strategy. Here, we review the recent findings on the mechanisms that maintain the high stability of oncofusion proteins. Then, we summarize strategies to target the degradation of oncofusion proteins through the ubiquitin-proteasome pathway, the autophagy-lysosomal pathway, and the caspase-dependent pathway. By examining oncofusion protein degradation in cancer, we not only gain better insight into the carcinogenic mechanisms that involve oncofusion proteins, but also raise the possibility of treating oncofusion-driven cancer.
Collapse
Affiliation(s)
- Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|