1
|
Lin G, Yao Z, Kang K, Luo R, Yi L, Lu Y. Dynamic evolution and antitumor mechanisms of CXCR6 +CD8 + T cells in small cell lung cancer treated with low-dose radiotherapy and immunotherapy. J Transl Med 2025; 23:453. [PMID: 40247265 PMCID: PMC12007177 DOI: 10.1186/s12967-025-06450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Patients with small-cell lung cancer (SCLC) have the poor prognosis. Current research suggested that low-dose radiotherapy (LDRT) combined with immunotherapy can enhance the immunogenicity of tumor cells, thereby improving antigen presentation and promoting the intratumoral infiltration of CD8+ T cells, which significantly extends the survival of patients. However, the change trajectory of T cells, and the mechanisms underlying the promotion of intratumoral infiltration of CD8+ T cells, and the enhancement of their cytotoxic functions remain to be elucidated. METHODS To delineate the dynamic changes of T cells, we collected tumors from Kaede tumor-bearing mice that had undergone radioimmunotherapy. Using flow cytometry, we sorted intratumoral-infiltrating immune cells, which were required for single-cell RNA sequencing, at various time points (Kaede Red: derived from tumor-draining lymph node [TDLN]). The results obtained from the sequencing analysis were further validated through experiments, such as flow cytometry, immunofluorescence, and analysis of clinical cohort data. RESULTS Here, we observed stem-like T cells migrating from the TDLN to the tumor site and differentiating into effector phenotypes within the tumor. Dendritic cells (DCs) are the key cluster that induces the differentiation of stem-like T cell into effector phenotypes. Moreover, SCLC patients with a high infiltration of tumor-specific CXCR6+CD8+ T cells exhibited a supportive TME and longer survival time (P < 0.001). CONCLUSIONS This study delineates the change trajectory of CD8+ T cells, identifies the crucial role of DCs in T cell differentiation, and highlights the significance of tumor-specific CXCR6+CD8+ T cells in anti-tumor immunity. Future therapeutic strategies for SCLC could focus on enhancing the infiltration of activated DCs and CXCR6+CD8+ T cells within the tumor microenvironment to improve treatment efficacy.
Collapse
Affiliation(s)
- Guo Lin
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
2
|
Wang Z, Li P, Zeng X, Guo J, Zhang C, Fan Z, Wang Z, Zhu P, Chen Z. CAR-T therapy dilemma and innovative design strategies for next generation. Cell Death Dis 2025; 16:211. [PMID: 40148310 PMCID: PMC11950394 DOI: 10.1038/s41419-025-07454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has shown remarkable curative effects on hematological tumors, driving the exponential growth in CAR-T-related research. Although CD19-targeting CAR-T-cell therapy has displayed remarkable promise in clinical trials, many obstacles are arising that limit its therapeutic efficacy in tumor immunotherapy. The "dilemma" of CAR-T cell-based tumor therapy includes lethal cytotoxicity, restricted trafficking, limited tumor infiltration, an immunosuppressive microenvironment, immune resistance and limited potency. The solution to CAR-T-cell therapy's dilemma requires interdisciplinary strategies, including synthetic biology-based ON/OFF switch, bioinstructive scaffolds, nanomaterials, oncolytic viruses, CRISPR screening, intestinal microbiota and its metabolites. In this review, we will introduce and summarize these interdisciplinary-based innovative technologies for the next generation CAR-T-cell design and delivery to overcome the key barriers of current CAR-T cells.
Collapse
Affiliation(s)
- Zhiwei Wang
- The First Affiliated Hospital of Henan University, 475004, Kaifeng, China
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Peixian Li
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Xiaoyu Zeng
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Jing Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Cheng Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhiwei Wang
- The First Affiliated Hospital of Henan University, 475004, Kaifeng, China.
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Han SH, Ju MH, Pak MG. Prognostic and therapeutic potential of CXCR6 expression on CD8 + T cells in gastric cancer: a retrospective cohort study. BMC Gastroenterol 2025; 25:139. [PMID: 40050760 PMCID: PMC11884069 DOI: 10.1186/s12876-025-03735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a pressing global health concern, with prognosis intricately linked to the tumour stage and tumour microenvironment, especially, the presence of immune cells. Notably, CD8 + T cells play a pivotal role in the anti-tumour immune response, prompting investigations into their correlation with GC survival. This study aimed to investigate the intricate interplay between CD8 + T cells, particularly within the context of CXCR6, and survival outcomes in patients with GC. METHODS Utilising datasets from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Dysfunction and Exclusion, the study employed xCell and Weighted Gene Co-expression Network Analysis to assess CD8 + T cell infiltration and identify key gene clusters. The prognostic significance of CXCR6 was evaluated via immunohistochemical staining of a GC tissue microarray. RESULTS High CD8 + T cell infiltration correlated with improved survival in patients with GC. CXCR6 was identified as a prognostic gene and its expression was predominantly observed in CD8 + T cells. CXCR6 expression positively correlated with improved overall and disease-free survival. Furthermore, CXCR6 expression was associated with an immunoreactive microenvironment. CONCLUSION This study established that high CD8 + T-cell infiltration is related to CXCR6 expression, making it a key factor in predicting a favorable GC prognosis. The role of CXCR6 in shaping the tumour microenvironment and its potential utility in immunotherapy response prediction highlights its significance in GC management.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Mi Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Min Gyoung Pak
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| |
Collapse
|
4
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
5
|
Zhong X, Fu B, Wang H, Zhang M, Jia S, Ren Z, Zhang Y, Wang W, Li T, Zhao J, Shi H, Chang Q, Ge F, Gong Y, Liu W, Chen S, Liao L, Zhuang Y, Tang J, Chu Y, Qiu F, Xu S, Li T. Preliminary exploration of the association of CXCR6 +T lymphocytes in T2D. Int Immunopharmacol 2025; 147:113962. [PMID: 39798468 DOI: 10.1016/j.intimp.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
Type 2 diabetes (T2D) is a metabolic disease, in which inflammation is a key factor. It has been well established that T cells play important role in antigen-driven immune disorders or immune defense, but were less discussed in inflammatory metabolic diseases. However, accumulating evidences suggest that CD186 (also known as CXCR6)-positive tissue infiltrating T cells might play a key role in inflammatory metabolic diseases. Here, as a preliminary and exploratory study, we detected the expression levels of CXCR6 on peripheral blood T-lymphocytes of human subjects of T2D. Additionally, the expression levels of CXCR6 in BSK-db/db mice, a murine T2D model, were also detected. Results showed that, compared with the healthy control group, T2D group had significantly reduced levels of CD4+CD45RO-CD186+CD183- T lymphocytes (Z = -3.988, P < 0.001) and CD8+CD45RO+CD186+CD183- T lymphocytes (Z = -2.428, P = 0.035). CD4+CD45RO-CD186+CD183- T lymphocytes had an AUC area of 0.978 (0.93, 1.00), 88.9 % sensitivity, and 100.0 % specificity. Additionally, the sensitivity of CD8+CD45RO+CD186+CD183- was 55.6 %, and the specificity was 100.0 %, with an AUC area of 0.747 (0.522, 0.972). The levels of CD8+CD186+ (t = -3.198, P = 0.015), CD8+CD44+CD186+ (t = -2.706, P = 0.030), and CD8+CD44-CD186+ (t = -2.915, P = 0.022) in BSK-db/db mice were significantly lower than in BSK-db/db homologous control mice. Taken together, CXCR6+T cells might play a role in T2D, and has the potential to become a biomarker for T2D patients.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Shuangshuang Jia
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhuangzhuang Ren
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Yufeng Zhang
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tingyu Li
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Hui Shi
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siwen Chen
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Liao
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhuang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiayue Tang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Chu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
| | - Shiping Xu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Ouyang SX, Xu YG, Ding P, Long Y, Zhang Z, Sun SJ, Zhang Y, Yin H, Zhang JB, Cao Q, Shen FM, Wang P, Liu J, Li DJ. Dynamic analysis of intrahepatic T cells reveals a unique group of restorative Cxcr3 + tissue-resident CD4 T cells in acute liver injury. Toxicology 2025; 511:154058. [PMID: 39828240 DOI: 10.1016/j.tox.2025.154058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Acetaminophen (APAP) stands as one of the most prevalent triggers of drug-induced acute liver injury (ALI). The intricate modulation of immune system activation and inflammatory cascades by hepatic immune cells is paramount in managing liver injury and subsequent restoration. In this study, we employed an integrative approach that fused our proprietary flow cytometry analyses across various time points post-APAP injury with publicly available single-cell RNA sequencing (scRNA-seq) datasets, encompassing time-series data from liver tissue of mice subjected to APAP intoxication. This allowed us to delve into the dynamics of T cell profiles during APAP-induced ALI. Our comprehensive analyses unveiled the intricate temporal shifts in intrahepatic T cell populations across different phases following APAP-induced ALI. Notably, we observed a persistent augmentation of intrahepatic CD4+ T cells post-APAP injury. Amongst these, a distinct population of restorative Cxcr3+ tissue-resident CD4+ T cells emerged. Inhibition of CXCR3 using a neutralizing antibody exacerbated APAP-induced liver function impairment and hepatocyte death. Furthermore, we identified that the Cxcr3+ tissue-resident CD4+ T cells were tightly regulated by intrahepatic ''Lgals9-Cd45'' and 'CXCL13-Cxcr3' signaling pathways. These discoveries underscore the novel protective function of CXCR3, a vital biological macromolecule, in mitigating APAP-induced ALI, and may shed lights on new therapeutic strategies targeting this condition.
Collapse
Affiliation(s)
- Shen-Xi Ouyang
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China; Department of Pharmacology, Shanghai Pulmonary Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China; Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Yong-Gang Xu
- Department of Cardiology, The 921th Hospital of the PLA Joint Logistics Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Peng Ding
- Department of Anesthesiology, The 983th Hospital PLA Joint Logistics Support Force, Tianjin, China
| | - Yue Long
- Department of Anesthesiology, The 921th Hospital of the PLA Joint Logistics Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhen Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China
| | - Si-Jia Sun
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China; Department of Pharmacology, Shanghai Pulmonary Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China
| | - Yan Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China
| | - Hang Yin
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China
| | - Jia-Bao Zhang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Qi Cao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China
| | - Pei Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jian Liu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University/Second Military Medical University, Shanghai, China.
| | - Dong-Jie Li
- Department of Pharmacology, Shanghai Tenth People's Hospital Affiliated to School of Medicine of Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Wu X, Pan B, Chu C, Zhang Y, Ma J, Xing Y, Ma Y, Zhu W, Zhong H, Alimu A, Zhou G, Liu S, Chen W, Li X, Puyi S. CXCL16/CXCR6/TGF-β Feedback Loop Between M-MDSCs and Treg Inhibits Anti-Bacterial Immunity During Biofilm Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409537. [PMID: 39716908 PMCID: PMC11831521 DOI: 10.1002/advs.202409537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Indexed: 12/25/2024]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of Periprosthetic joint infection (PJI), a severe complication after joint arthroplasty. Immunosuppression is a major factor contributing to the infection chronicity of S. aureus PJI, posing significant treatment challenges. This study investigates the relationship between the immunosuppressive biofilm milieu and S. aureus PJI outcomes in both discovery and validation cohorts. This scRNA-seq analysis of synovium from PJI patients reveals an expansion and heightened activity of monocyte-related myeloid-derived suppressor cells (M-MDSCs) and regulatory T cells (Treg). Importantly, CXCL16 is significantly upregulated in M-MDSCs, with its corresponding CXCR6 receptor also elevated on Treg. M-MDSCs recruit Treg and enhance its activity via CXCL16-CXCR6 interactions, while Treg secretes TGF-β, inducing M-MDSCs proliferation and immunosuppressive activity. Interfering with this cross-talk in vivo using Treg-specific CXCR6 knockout PJI mouse model reduces M-MDSCs/Treg-mediated immunosuppression and alleviates bacterial burden. Immunohistochemistry and recurrence analysis show that PJI patients with CXCR6high synovium have poor prognosis. This findings highlight the critical role of CXCR6 in Treg in orchestrating an immunosuppressive microenvironment and biofilm persistence during PJI, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Baiqi Pan
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Chenghan Chu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yangchun Zhang
- Department of OrthopedicsThe People's Hospital of Baoan ShenzhenShenzhenGuangdong518101China
- Department of OrthopedicsThe Second Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518101China
| | - Jinjin Ma
- Technology School of MedicineSouth China University of TechnologyGuangzhouGuangdong510640China
- Shien‐ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Yang Xing
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yuanchen Ma
- Department of OrthopedicsGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong519041China
| | - Wengang Zhu
- Department of Joint OrthopedicsYuebei People's HospitalShaoguanGuangdong512099China
| | - Huan Zhong
- Department of Joint SurgeryAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524002China
| | - Aerman Alimu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Guanming Zhou
- Department of OrthopedicsFoshan Hospital of Traditional Chinese MedicineGuangzhouGuangdong528051China
| | - Shuying Liu
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weishen Chen
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Xiang Li
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Sheng Puyi
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| |
Collapse
|
8
|
Feng J, He LN, Yao R, Qiao Y, Yang T, Cui Z, Meng X, Tong J, Jia K, Zuo Z, Shen J. Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights. J Adv Res 2024:S2090-1232(24)00620-9. [PMID: 39732334 DOI: 10.1016/j.jare.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors. The heterogeneity of colon and ileum in CD, which is essential for tailored therapeutic approaches, has not yet been systematically illustrated. OBJECTIVES CD presents with unique intestinal lesions, mainly impacting the terminal ileum and colon. It is essential to comprehend the diversity in pathogenesis and treatment response among various segments. METHODS We conducted comparative single-cell RNA sequencing analysis in treatment-naïve CD patients, concentrating on the colon and ileum. RESULTS A novel subset of epithelial cells expressing high levels of DUOX2 and DUOXA2 (DUOX2-epi) was discovered. This DUOX2-epi subcluster predominantly distributed in the tip epithelium of the inflamed colon, potentially in response to microbial infection, as evidenced by the significant enrichment of inflammatory and microbial response pathways. The colonic and ileal DUOX2-epi subsets trigger inflammatory responses through distinct mechanisms. The colonic DUOX2-epi primarily affects monocytes via the SAA1-FPR2 ligand-receptor interaction, whereas the ileal DUOX2-epi directly interacts with regulate T cells through the CXCL16-CXCR6 ligand-receptor pair. Moreover, the cell-cell communication networks involving DUOX2-epi in the colon and ileum can help predict the location-specific effects of biological therapies. CONCLUSION This study delves into the heterogeneity within the ileum and colon of Crohn's disease at the single-cell level, identifying a new epithelial subset DUOX2-epi. Predictive gene modules tailored to different locations for biological therapies are developed as well, based on the cell-cell communication network modulated by DUOX2-epi.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruchen Yao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Qiao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yang
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlu Tong
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Jia
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jun Shen
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Vardaman D, Ali MA, Siam MHB, Bolding C, Tidwell H, Stephens H, Patil M, Tyrrell DJ. Development of a Spectral Flow Cytometry Analysis Pipeline for High-dimensional Immune Cell Characterization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1713-1724. [PMID: 39451039 PMCID: PMC11573633 DOI: 10.4049/jimmunol.2400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Flow cytometry is used for immune cell analysis for cell composition and function. Spectral flow cytometry allows for high-dimensional analysis of immune cells, overcoming limitations of conventional flow cytometry. However, analyzing data from large Ab panels is challenging using traditional biaxial gating strategies. We present, to our knowledge, a novel analysis pipeline to improve analysis of spectral flow cytometry. We employ this method to identify rare T cell populations in aging. We isolated splenocytes from young (2-3 mo old) and aged (18-19 mo old) female C57BL/6N mice and then stained these with a panel of 20 fluorescently labeled Abs. We performed spectral flow cytometry and then data processing and analysis using Python within a Jupyter Notebook environment to perform dimensionality reduction, batch correction, unsupervised clustering, and differential expression analysis. Our analysis of 3,776,804 T cells from 11 spleens revealed 35 distinct T cell clusters identified by surface marker expression. We observed significant differences between young and aged mice, with clusters enriched in one age group over the other. Naive, effector memory, and central memory CD8+ and CD4+ T cell subsets exhibited age-associated changes in abundance and marker expression. We also demonstrate the utility of our pipeline in a human PBMC dataset that used a 50-fluorescent color panel. By leveraging high-dimensional analysis methods, we provide insights into the immune aging process. This approach offers a robust and easily implemented analysis pipeline for spectral flow cytometry data that may facilitate the discovery of novel therapeutic targets for age-related immune dysfunction.
Collapse
Affiliation(s)
- Donald Vardaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
- Biochemistry and Structural Biology Theme, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Md Hasanul Banna Siam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
- Microbiology Theme, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Chase Bolding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Harrison Tidwell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Holly Stephens
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
- Immunology Theme, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Mallikarjun Patil
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Daniel J. Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| |
Collapse
|
10
|
Lu X, Ge LP, Liu Z, Zhu Y, Ye D, Chang Y. CXCR6 expression predicts prognosis and immunotherapeutic benefit in muscle-invasive bladder cancer. Front Oncol 2024; 14:1498579. [PMID: 39588301 PMCID: PMC11586233 DOI: 10.3389/fonc.2024.1498579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
Background Increasing evidence suggests that the CXC chemokine receptor 6 (CXCR6) is involved in tumor progression and the regulation of tumor immunity. However, its role in muscle-invasive bladder cancer (MIBC) remains largely unexplored. Methods Data from 391 MIBC patients in the TCGA, 212 patients from GEO, 131 patients from our center, 195 patients in the IMvigor210 cohort, and single-cell RNA sequencing (scRNA-seq) data from 9 bladder cancer patients (GSE222315) were analyzed. Additionally, data from the GEPIA 2, TISCH2, TIMER2.0, and UALCAN platforms were utilized to investigate the prognostic and immunotherapeutic significance of CXCR6 in MIBC. Results We observed that CXCR6 expression was significantly reduced in bladder cancer tumors and correlated with tumor stage and grade. Low CXCR6 expression was associated with poor recurrence-free survival (RFS) and overall survival (OS) in the TCGA cohort, a finding validated in both the meta-GEO dataset and our center's cohort. Multivariate analysis confirmed that low CXCR6 expression was an independent predictor of poor OS and RFS. A nomogram incorporating CXCR6 expression and other independent prognostic factors was developed to accurately predict 3- and 5-year OS. Gene set enrichment analysis indicated that immune activation-related pathways were significantly enriched in tumors with high CXCR6 expression. CIBERSORT analysis revealed that CXCR6 expression was positively correlated with CD8+ T cells, CD4+ T cells, activated NK cells, M1 macrophages, and activated dendritic cells in TCGA, findings further validated by TIMER2.0. scRNA-seq data showed that CXCR6 was predominantly expressed in T and NK cells and facilitated T/NK-myeloid interaction via the CXCR6-CXCL16 axis. Importantly, CXCL16+ macrophages and dendritic cells recruited CXCR6+ T and NK cells, which exhibited enhanced cytotoxicity, thereby amplifying anti-tumor immunity. Clinically, in the IMvigor210 immunotherapy cohort, higher CXCR6 expression was associated with improved anti-PD-L1 therapeutic outcomes. Conclusion Our findings highlight CXCR6 as a critical biomarker for predicting prognosis and immunotherapeutic response in MIBC.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Ping Ge
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Pan J, Qu J, Fang W, Zhao L, Zheng W, Zhai L, Tan M, Xu Q, Du Q, Lv W, Sun Y. SHP2-Triggered Endothelial Cell Activation Fuels Estradiol-Independent Endometrial Sterile Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403038. [PMID: 39234819 PMCID: PMC11538683 DOI: 10.1002/advs.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sterile inflammation occurs in various chronic diseases due to many nonmicrobe factors. Examples include endometrial hyperplasia (EH), endometriosis, endometrial cancer, and breast cancer, which are all sterile inflammation diseases induced by estrogen imbalances. However, how estrogen-induced sterile inflammation regulates EH remains unclear. Here, a single-cell RNA-Seq is used to show that SHP2 upregulation in endometrial endothelial cells promotes their inflammatory activation and subsequent transendothelial macrophage migration. Independent of the initial estrogen stimulation, IL1β and TNFα from macrophages then create a feedforward loop that enhances endothelial cell activation and IGF1 secretion. This endothelial cell-macrophage interaction sustains sterile endometrial inflammation and facilitates epithelial cell proliferation, even after estradiol withdrawal. The bulk RNA-Seq results and phosphoproteomic analysis show that endothelial SHP2 mechanistically enhances RIPK1 activity by dephosphorylating RIPK1Tyr380. This event activates downstream activator protein 1 (AP-1) and instigates the inflammation response. Furthermore, targeting SHP2 using SHP099 (an allosteric inhibitor) or endothelial-specific SHP2 deletion alleviates endothelial cell activation, macrophage infiltration, and EH progression in mice. Collectively, the findings demonstrate that SHP2 mediates the transition of endothelial activation from estradiol-driven acute inflammation to macrophage-amplified chronic inflammation. Targeting sterile inflammation mediated by endothelial cell activation is a promising strategy for nonhormonal intervention in estrogen-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Linhui Zhai
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Minjia Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Qianming Du
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjing210006China
- School of Basic Medicine & Clinical PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Lv
- Department of GynecologyTongde Hospital of Zhejiang Province234 Gucui RoadHangzhouZhejiang310012China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| |
Collapse
|
12
|
Shi H, Xu X, Wang S, Chen Q, Zhang F, Guo H, Lu W, Qiao F. The relationship between CXCR6+CD8+T cells and clinicopathological parameters in patients with primary biliary cholangitis. Hepatol Int 2024; 18:1555-1565. [PMID: 39134906 DOI: 10.1007/s12072-024-10715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND CXCR6+CD8+T cells have been implicated in the pathogenesis of various liver and autoimmune diseases. However, their involvement in primary biliary cholangitis (PBC) has not been elucidated. METHODS We used immunohistochemistry and flow cytometry to quantify CXCR6+CD8+T cells in hepatic tissue and peripheral blood samples obtained from CXCR6+CD8+T cells obtained from PBC patients. Then, we performed comprehensive statistical analyses to access the correlation between the abundance of these cells and clinical as well as pathological data across different stages of PBC. RESULTS Our research revealed that CXCR6+ cell frequencies in CD3+CD8+T cells from PBC patients significantly exceeded that of healthy controls (HCs) (2.24 vs. 0.61%, p < 0.01). A similar pattern emerged for hepatic CXCR6+CD8+T cell counts, which were notably higher in the PBC cohort compared to HCs. Our cohort consisted of 118 PBC patients, categorized into 62 early-stage (E-PBC) and 56 late-stage (L-PBC) cases. Notably, significant disparities existed between these groups in terms of liver enzyme and lipid profile levels (p < 0.05), with no notable differences observed in gender, age, blood counts, cholesterol levels, or autoantibodies (p > 0.05). Intriguingly, the quantity of hepatic CXCR6+CD8+T cells per high power field (HPF) was significantly elevated in both E-PBC and L-PBC patients as opposed to normal liver samples, indicating a substantial increase in these cells across all stages of PBC (p = 0.000). Spearman's rank correlation analysis showed a positive correlation between CXCR6+CD8+T cell counts and serum levels of Alkaline Phosphatase (AKP) and Gamma-Glutamyl Transferase (GGT), ANA, IgG and IgM, while revealing a negligible correlation with Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST). Subsequent findings indicated significant variances in CXCR6+ cell numbers not only among different PBC stages but also across various degrees of inflammation and fibrosis (p ≤ 0.007). In a follow-up study post-Ursodeoxycholic Acid (UDCA) treatment, stark differences were identified in biochemical and immunohistochemical profiles between responder (31 patients) and non-responder (33 patients) groups (p < 0.05). A Wilcoxon rank-sum test further demonstrated a significant difference in the level of hepatic CXCR6+CD8+T cells between these two response groups (p = 0.002). CONCLUSION CXCR6+CD8+T cells play a vital role in the pathogenesis of PBC, exhibiting correlations with the extent of inflammation, staging of liver fibrosis, and response to pharmacological interventions in PBC patients.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Xiangtao Xu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Shuangshuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinlei Chen
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Fan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Haiyan Guo
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Weiting Lu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Fei Qiao
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
13
|
Vardaman D, Ali MA, Bolding C, Tidwell H, Stephens H, Tyrrell DJ. Development of a Spectral Flow Cytometry Analysis Pipeline for High-Dimensional Immune Cell Characterization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599633. [PMID: 38948780 PMCID: PMC11213029 DOI: 10.1101/2024.06.19.599633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Flow cytometry is a widely used technique for immune cell analysis, offering insights into cell composition and function. Spectral flow cytometry allows for high-dimensional analysis of immune cells, overcoming limitations of conventional flow cytometry. However, analyzing data from large antibody panels can be challenging using traditional bi-axial gating strategies. Here, we present a novel analysis pipeline designed to improve analysis of spectral flow cytometry. We employ this method to identify rare T cell populations in aging. We isolated splenocytes from young (2-3 months) and aged (18-19 months) female mice then stained these with a panel of 20 fluorescently labeled antibodies. Spectral flow cytometry was performed, followed by data processing and analysis using Python within a Jupyter Notebook environment to perform batch correction, unsupervised clustering, dimensionality reduction, and differential expression analysis. Our analysis of 3,776,804 T cells from 11 spleens revealed 34 distinct T cell clusters identified by surface marker expression. We observed significant differences between young and aged mice, with certain clusters enriched in one age group over the other. Naïve, effector memory, and central memory CD8+ and CD4+ T cell subsets exhibited age-associated changes in abundance and marker expression. Additionally, γδ T cell clusters showed differential abundance between age groups. By leveraging high-dimensional analysis methods borrowed from single-cell RNA sequencing analysis, we identified age-related differences in T cell subsets, providing insights into the immune aging process. This approach offers a robust, free, and easily implemented analysis pipeline for spectral flow cytometry data that may facilitate the discovery of novel therapeutic targets for age-related immune dysfunction.
Collapse
Affiliation(s)
- Donald Vardaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
- Biochemistry and Structural Biology Theme, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Chase Bolding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Harrison Tidwell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Holly Stephens
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
- Immunology Theme, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| | - Daniel J. Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35205 USA
| |
Collapse
|
14
|
Seyedsadr M, Bang MF, McCarthy EC, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21-producing CD4+ T cells drives inflammatory neuropathy. J Clin Invest 2024; 134:e178602. [PMID: 39087473 PMCID: PMC11290969 DOI: 10.1172/jci178602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory neuropathies, which include chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain Barré syndrome (GBS), result from autoimmune destruction of the PNS and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we used paired single-cell RNA-Seq (scRNA-Seq) and single-cell T cell receptor-sequencing (scTCR-Seq) of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21-expressing CD4+ T cells that were clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells consisted of 2 transcriptionally distinct expanded cell populations, which expressed genes associated with T follicular helper (Tfh) and T peripheral helper (Tph) cell subsets. Remarkably, TCR clonotypes were shared between these 2 IL-21-expressing cell populations, suggesting a common lineage differentiation pathway. Finally, we demonstrated that IL-21 receptor-KO (IL-21R-KO) mice were protected from neuropathy development and had decreased immune infiltration into peripheral nerves. IL-21 signaling upregulated CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Madison F. Bang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | | | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Jason K. Whitmire
- Department of Genetics, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics and
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
15
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
16
|
Qu J, Wu B, Chen L, Wen Z, Fang L, Zheng J, Shen Q, Heng J, Zhou J, Zhou J. CXCR6-positive circulating mucosal-associated invariant T cells can identify patients with non-small cell lung cancer responding to anti-PD-1 immunotherapy. J Exp Clin Cancer Res 2024; 43:134. [PMID: 38698468 PMCID: PMC11067263 DOI: 10.1186/s13046-024-03046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells have been reported to regulate tumor immunity. However, the immune characteristics of MAIT cells in non-small cell lung cancer (NSCLC) and their correlation with the treatment efficacy of immune checkpoint inhibitors (ICIs) remain unclear. PATIENTS AND METHODS In this study, we performed single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence assays to determine the proportion and characteristics of CD8+MAIT cells in patients with metastatic NSCLC who did and did not respond to anti-PD-1 therapy. Survival analyses were employed to determine the effects of MAIT proportion and C-X-C chemokine receptor 6 (CXCR6) expression on the prognosis of patients with advanced NSCLC. RESULTS The proportion of activated and proliferating CD8+MAIT cells were significantly higher in responders-derived peripheral blood mononuclear cells (PBMCs) and lung tissues before anti-PD-1 therapy, with enhanced expression of cytotoxicity-related genes including CCL4, KLRG1, PRF1, NCR3, NKG7, GZMB, and KLRK1. The responders' peripheral and tumor-infiltrating CD8+MAIT cells showed an upregulated CXCR6 expression. Similarly, CXCR6+CD8+MAIT cells from responders showed higher expression of cytotoxicity-related genes, such as CST7, GNLY, KLRG1, NKG7, and PRF1. Patients with ≥15.1% CD8+MAIT cells to CD8+T cells ratio and ≥35.9% CXCR6+CD8+MAIT cells to CD8+MAIT cells ratio in peripheral blood showed better progression-free survival (PFS) after immunotherapy. The role of CD8+MAIT cells in lung cancer immunotherapy was potentially mediated by classical/non-classical monocytes through the CXCL16-CXCR6 axis. CONCLUSION CD8+MAIT cells are a potential predictive biomarker for patients with NSCLC responding to anti-PD-1 therapy. The correlation between CD8+MAIT cells and immunotherapy sensitivity may be ascribed to high CXCR6 expression.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Binggen Wu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Zuoshi Wen
- Department of Cardiology, The First Affiliated Hospital, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liangjie Fang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianfu Heng
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China.
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
17
|
Zhang C, Cao X, Zhao L, Ni Z, Du H, Qu J, Zhu J, Sun H, Sun Y, Ouyang Z. Traditional Chinese Medicine Shi-Bi-Man ameliorates psoriasis via inhibiting IL-23/Th17 axis and CXCL16-mediated endothelial activation. Chin Med 2024; 19:38. [PMID: 38429819 PMCID: PMC10905932 DOI: 10.1186/s13020-024-00907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory genetic disease, mainly manifesting in the skin. Conventional therapies, such as glucocorticosteroids and corticosteroids, have adverse effects that limit drug use. Hence, it is imperative to identify a new therapeutic strategy that exhibits a favorable safety profile. Shi-Bi-Man (SBM) is a safe herbal supplement sourced from various natural plants, including ginseng, angelica sinensis, polygonum multiflorum, and aloe vera. PURPOSE We aimed to find a potential treatment for psoriasis and investigate the underlying mechanism through which SBM alleviates psoriatic-like skin inflammation in mice. METHODS We investigated the effects of supplementing with SBM through intragastric administration or smear administration in a murine model of imiquimod-induced psoriasis. The changes in body weight and Psoriasis Area and Severity Index (PASI) score were recorded throughout the entire process. Additionally, we used hematoxylin-eosin staining to observe the skin structure and performed single-cell RNA sequencing to explore the underlying mechanism of SBM in influencing the psoriasis-like phenotype. Immunofluorescence was conducted to verify our findings. Furthermore, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to investigate the impact of Tetrahydroxy stilbene glycoside (TSG) on the expression levels of IL23 in HaCaT cells. RESULTS SBM remarkably alleviated the psoriasis-like phenotype by inhibiting IL-23/Th17 cell axis. Single-cell RNA sequencing analysis revealed a decrease in the expression of Il17 and Il23 in keratinocytes and T cells, concomitant with a reduction in the proportion of Th17 cells. Meanwhile, the activation of endothelial cells was inhibited, accompanied by a decrease in the expression of Cxcl16. In vitro, the addition of TSG to HaCaT cells resulted in significant suppression of IL23 expression stimulated by tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zitong Ni
- Jinling High School, 169 Zhongshan Road, Nanjing, 210008, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jianxia Zhu
- Shenzhen Sipimo Technology Co., Ltd, Shenzhen, China
| | - Haiyan Sun
- School of Food and Drug, Institute of Marine Biomedicine, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, Guangdong, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Zijun Ouyang
- School of Food and Drug, Institute of Marine Biomedicine, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
18
|
Seyedsadr M, Bang M, McCarthy E, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21 producing CD4+ T cells drives Inflammatory neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574553. [PMID: 38260637 PMCID: PMC10802410 DOI: 10.1101/2024.01.07.574553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Inflammatory neuropathies, which include CIDP (chronic inflammatory demyelinating polyneuropathy) and GBS (Guillain Barre Syndrome), result from autoimmune destruction of the peripheral nervous system (PNS) and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we use paired scRNAseq and scTCRseq of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21 expressing CD4+ T cells that are clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells are comprised of two transcriptionally distinct expanded populations, which express genes associated with Tfh and Tph subsets. Remarkably, TCR clonotypes are shared between these two IL-21-expressing populations, suggesting a common lineage differentiation pathway. Finally, we demonstrate that IL-21 signaling is required for neuropathy development and pathogenic T cell infiltration into peripheral nerves. IL-21 signaling upregulates CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
- Maryamsadat Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Madison Bang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | | | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| |
Collapse
|
19
|
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. ACTA MATERIA MEDICA 2024; 3. [DOI: 10.15212/amm-2023-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer is the leading cause of morbidity and mortality worldwide and is an important barrier to lengthening life expectancy in every country. Natural products are receiving increased attention from researchers globally and increasing numbers of natural products are approved for clinical studies involving cancer in recent years. To gain more insight into natural products that have undergone clinical trials for cancer treatment, a comprehensive search was conducted. The https://clinicaltrials.gov website was searched for relevant clinical trials and natural product information up to December 2022. The search terms included different types of cancers, such as colorectal, lung, breast, gynecologic, kidney, bladder, melanoma, pancreatic, hepatocellular, gastric and haematologic. Then, PubMed and Web of Science were searched for relevant articles up to February 2024. Hence, we listed existing clinical trials about natural products used in the treatment of cancers and discussed the preclinical and clinical studies of some promising natural products and their targets, indications, and underlying mechanisms of action. Our intent was to provide basic information to readers who are interested or majoring in natural products and obtain a deeper understanding of the progress and actions of natural product mechanisms of action.
Collapse
|
20
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Ying S, Yang H, Gu Q, Wu Z, Zou N, Wang CZ, Wan C, Yuan CS. The Small-Molecule compound baicalein alleviates experimental autoimmune encephalomyelitis by suppressing pathogenetic CXCR6 + CD4 cells. Int Immunopharmacol 2023; 114:109562. [PMID: 36508914 DOI: 10.1016/j.intimp.2022.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CXC chemokine receptor6 (CXCR6)-based immunotherapy plays a significant role in autoimmune diseases, however, little is known about possible small compounds that inhibit pathogenic CXCR6+ T cells for treating multiple sclerosis (MS). Baicalein, a flavonoid isolated from Scutellarin baicalensis (Huang Qin), was shown to exert therapeutic effects on MS, but the underlying mechanisms are largely unknown. In the current study, we found that baicalein inhibited Th1 and Th17 differentiation in vitro. Oral administration of baicalein (25 mg/kg) significantly reduced the disease severity and the infiltration process, decreased the extent of demyelination in EAE, and selectively blocked IL-17A production and specific antibodies (IgG and IgG3) in MOG35-55-induced specific immune responses. In addition, the expression of CD4 cell effectors (CD44hiCD62Llow) and pathogenic Th17 cells was decreased by baicalein treatment. Furthermore, baicalein treatment largely decreased CXCR6+ CD4 and CD8 cells and prominently inhibited CXCR6+ Th17 cells in EAE. Taken together, the findings of this study suggest for the first time that baicalein may ameliorate EAE by suppressing pathogenetic CXCR6+ CD4 cells.
Collapse
Affiliation(s)
- Sai Ying
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China
| | - Haihao Yang
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China
| | - Qianlan Gu
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China
| | - Zhao Wu
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China
| | - Nanting Zou
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China
| | - Chong-Zhi Wang
- Department of Anesthesia & Critical Care, and Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Chunping Wan
- School of Clinical Medicine, School of Pharmacy and School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650021, PR China.
| | - Chun-Su Yuan
- Department of Anesthesia & Critical Care, and Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Mabrouk N, Tran T, Sam I, Pourmir I, Gruel N, Granier C, Pineau J, Gey A, Kobold S, Fabre E, Tartour E. CXCR6 expressing T cells: Functions and role in the control of tumors. Front Immunol 2022; 13:1022136. [PMID: 36311728 PMCID: PMC9597613 DOI: 10.3389/fimmu.2022.1022136] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
CXCR6 is a receptor for the chemokine CXCL16, which exists as a membrane or soluble form. CXCR6 is a marker for resident memory T (TRM) cells that plays a role in immunosurveillance through their interaction with epithelial cells. The interaction of CXCR6 with CXCL16 expressed at the membrane of certain subpopulations of intratumor dendritic cells (DC) called DC3, ideally positions these CXCR6+ T cells to receive a proliferation signal from IL-15 also presented by DC3. Mice deficient in cxcr6 or blocking the interaction of CXCR6 with its ligand, experience a poorer control of tumor proliferation by CD8+ T cells, but also by NKT cells especially in the liver. Intranasal vaccination induces CXCL16 production in the lungs and is associated with infiltration by TRM expressing CXCR6, which are then required for the efficacy of anti-tumor vaccination. Therapeutically, the addition of CXCR6 to specific CAR-T cells enhances their intratumoral accumulation and prolongs survival in animal models of pancreatic, ovarian and lung cancer. Finally, CXCR6 is part of immunological signatures that predict response to immunotherapy based on anti-PD-(L)1 in various cancers. In contrast, a protumoral role of CXCR6+T cells has also been reported mainly in Non-alcoholic steatohepatitis (NASH) due to a non-antigen specific mechanism. The targeting and amplification of antigen-specific TRM expressing CXCR6 and its potential use as a biomarker of response to immunotherapy opens new perspectives in cancer treatment.
Collapse
Affiliation(s)
| | - Thi Tran
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ikuan Sam
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ivan Pourmir
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Nadège Gruel
- Institut Curie, PSL Research University, Department of Translational Research, Paris, France
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, Paris, France
| | - Clémence Granier
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Joséphine Pineau
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Alain Gey
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elizabeth Fabre
- Université ParisCité, INSERM, PARCC, Paris, France
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- *Correspondence: Eric Tartour,
| |
Collapse
|