1
|
Kale R, Samant C, Nandakumar K, Ranganath Pai KS, Bhonde M. Drugging the Undruggable and beyond: Emerging precision oncology approaches to target acquired resistance to KRAS G12C and KRAS G12D inhibitors. Biochem Biophys Res Commun 2025; 760:151688. [PMID: 40174369 DOI: 10.1016/j.bbrc.2025.151688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Development of mutant specific KRAS inhibitors validated KRAS as a 'druggable' target. However, excellent initial efficacy was eventually overshadowed by failure to exhibit sustained clinical response, primarily due to acquired resistance. Some targeted therapies like SOS1, SHP2, and MEK inhibitors, in combination with mutant KRAS G12C inhibitors (G12Ci), are currently under clinical investigation with evidences of improving efficacy. However, a deep understanding of the underlying molecular pathways behind the acquired resistance is still at a nascent stage. Recent preclinical studies have uncovered a role of novel proteins and pathways responsible for resistance and their inhibition demonstrated a robust anticancer efficacy in combination. Plethora of combination therapy approaches are now being proposed with emergence of AXL, ULK1, Tissue factor, farnesyltransferase, etc. as targets to counter G12Ci resistance. This review summarizes in a comprehensive manner, some of the novel combination modalities to overcome G12Ci resistance, based on current understanding and with great potential to hit clinical success. Along with G12C, KRAS G12D (G12D) was also considered a formidable foe, until the discovery of selective inhibitors. However, eventual clinical resistance can eclipse the early success and requires an in-depth understanding of resistance mechanisms. Evidences of G12Ci resistance can be exploited as probable combination strategies to tackle ensuing resistance to G12D inhibitors (G12Di), and can translate in superior clinical efficacy. Early preclinical studies of G12Di in combination with ERBB, SOS1, AKT and immune-checkpoints inhibitors indicate encouraging response. This review further describes some of the early affirmations on combination strategies with G12Di. We postulate to go beyond 'Drugging the Undruggable' with advanced combination approaches mitigating G12C and G12D inhibitor resistance.
Collapse
Affiliation(s)
- Ramesh Kale
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Charudatt Samant
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
2
|
Liu C, Wang X, Xu S, Liu M, Cao X. Regulation of autophagy: Insights into O-GlcNAc modification mechanisms. Life Sci 2025; 369:123547. [PMID: 40058573 DOI: 10.1016/j.lfs.2025.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/30/2025]
Abstract
Autophagy is a "self-eating" biological process that degrades cytoplasmic contents to ensure cellular homeostasis. Its response to stimuli occurs in two stages: Within a few to several hours of exposure to a stress condition, autophagic flow rapidly increases, which is mediated by post-translational modification (PTM). Subsequently, the transcriptional program is activated and mediates the persistent autophagic response. O-linked β-N-acetylglucosamine (O-GlcNAc) modification is an inducible and dynamically cycling PTM; mounting evidence suggests that O-GlcNAc modification participates in the total autophagic process, including autophagy initiation, autophagosome formation, autophagosome-lysosome fusion, and transcriptional process. In this review, we summarize the current knowledge on the emerging role of O-GlcNAc modification in regulating autophagy-associated proteins and explain the different regulatory effects on autophagy exerted by O-GlcNAc modification.
Collapse
Affiliation(s)
- Chengzhi Liu
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinyu Wang
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shengnan Xu
- College of Basic Medicine, Dalian Medical University, Dalian 116044, China
| | - Mingyue Liu
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xusheng Cao
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
3
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Tao M, Ye W, Wu Y, Chang W, Liu F, Zhu Y. Identification and validation of five novel protein targets for type 2 diabetes mellitus. Sci Rep 2025; 15:12127. [PMID: 40204939 PMCID: PMC11982283 DOI: 10.1038/s41598-025-97416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Despite advances in type 2 diabetes mellitus (T2DM) therapy, challenges remain due to the lack of novel therapeutic targets. We used Mendelian randomization to integrate cis-expression quantitative trait loci data for circulating proteins from the eQTLGen Consortium (31,684 individuals) with T2DM summary statistics from the Integrative Epidemiology Unit Open Genome-Wide Association Studies Project (61,714 cases, 593,952 controls). 42 genes were significantly associated with T2DM. Colocalization analysis revealed that six genes (CLSTN1, KCNJ11, MLX, DLD, RELA, and ULK1) shared common causal variants with T2DM. Among them, CLSTN1 (OR = 0.80, 95% CI: 0.70-0.90), KCNJ11 (OR = 0.66, 95% CI: 0.60-0.73), and MLX (OR = 0.73, 95% CI: 0.65-0.82) were negatively associated with T2DM, while DLD (OR = 1.38, 95% CI: 1.15-1.65), RELA (OR = 1.90, 95% CI: 1.41-2.55), and ULK1 (OR = 1.42, 95% CI: 1.17-1.71) were positively associated with T2DM. A matched case-control study further validated these associations, except for DLD, showing significant downregulation of CLSTN1, KCNJ11, and MLX (P < 0.05) alongside upregulation of RELA and ULK1 (P < 0.05) in T2DM patients. These findings underscore the potential of these proteins as drug targets, warranting further clinical investigation to confirm their therapeutic relevance.
Collapse
Affiliation(s)
- Mengjun Tao
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Wufei Ye
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Yang Wu
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Weiwei Chang
- School of Public Health, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China
| | - Fei Liu
- School of Laboratory Medicine, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China.
| | - Yu Zhu
- School of Public Health, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
5
|
Mandal N, Das A, Datta R. Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in Mucopolysaccharidosis VII. Neurobiol Dis 2025; 206:106825. [PMID: 39909083 DOI: 10.1016/j.nbd.2025.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Cognitive disability and neurodegeneration are prominent symptoms of Mucopolysaccharidosis VII (MPS VII), a lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. Yet, the mechanism of neurodegeneration in MPS VII remains unclear thereby limiting the scope of targeted therapy. We aimed to bridge this knowledge gap by employing the β-glucuronidase-deficient (CG2135-/-) Drosophila model of MPS VII. Taking cues from our initial observation that the adult CG2135-/- flies displayed enhanced susceptibility to starvation, we investigated potential impairments in the autophagy-lysosomal clearance machinery in their brain to dissect the underlying cause of neurodegeneration. We found that both autophagosome biogenesis and lysosome-mediated autophagosomal turnover were impaired in the CG2135-/- fly brain. This was evidenced by lower Atg8a-II levels, reduced Atg1 and Ref(2)P expression along with accumulation of lipofuscin-like inclusions and multilamellar bodies. Mitophagy was also found to be defective in their brain, resulting in buildup of enlarged mitochondria with distorted cristae and reduced membrane potential. This, in turn, compromised mitochondrial function, as reflected by drastically reduced brain ATP levels. Energy depletion triggered apoptosis in neuronal as well as non-neuronal cells of the CG2135-/- fly brain, where apoptotic dopaminergic neurons were also detected. Interestingly, resveratrol treatment corrected the mitophagy defect and prevented ATP depletion in the CG2135-/- fly brain, providing an explanation for its neuroprotective effects. Collectively, our study reveals a pharmacologically targetable mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in MPS VII.
Collapse
Affiliation(s)
- Nishan Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA.
| |
Collapse
|
6
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
7
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2025; 51:108-127. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
8
|
Zhang Z, Sun D, Yang Y, Abbas SY, Li H, Chen L. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Expert Opin Ther Pat 2025; 35:7-16. [PMID: 39470442 DOI: 10.1080/13543776.2024.2423010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION UNC-51-like kinase 1/2 (ULK1/2) are serine/threonine kinases that play a crucial role in autophagy activation and maintaining cellular homeostasis. Given their broad physiological relevance, ULK1/2 are candidate targets for treating various diseases. In recent years, ULK1/2 inhibitors have made significant progress, and the highly potent ULK1/2 inhibitors have entered clinical trials. AREA COVERED This review aims to provide an updated analysis of patents describing ULK1/2 inhibitors and their potential therapeutic applications that were disclosed between 2019 and 2024. EXPERT OPINION Due to their crucial role in various diseases, the invention of small-molecule drugs targeting ULK1/2 is particularly important, especially in cancer treatment. Despite the great success of ULK1/2 inhibitors development, ULK1/2 inhibitors are ATP competitive inhibitors of aminopyrimidines currently, and most ULK1/2 inhibitors are still in the preclinical research stage, with only DCC-3116 entered clinical research. Therefore, developing highly selective ULK1/2 inhibitors with low side effects and high bioavailability remains a challenging and promising research direction.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Kumar A, Singh MK, Singh V, Shrivastava A, Sahu DK, Bisht D, Singh S. The role of autophagy dysregulation in low and high-grade nonmuscle invasive bladder cancer: A survival analysis and clinicopathological association. Urol Oncol 2024; 42:452.e1-452.e13. [PMID: 39256148 DOI: 10.1016/j.urolonc.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Bladder cancer disproportionately affects men and often presents as nonmuscle-invasive bladder cancer (NMIBC). Despite initial treatments, the recurrence and progression of NMIBC are linked to autophagy. This study investigates the expression of autophagy genes (mTOR, ULK1, Beclin1, and LC3) in low and high-grade NMIBC, providing insights into potential prognostic markers and therapeutic targets. MATERIAL AND METHODS A total of 115 tissue samples (n = 85 NMIBC (pTa, pT1, and CIS) and n = 30 control from BPH patients) were collected. The expression level of autophagy genes (mTOR, ULK1, Beclin1, and LC3) and their proteins were assessed in low and high-grade NMIBC, along with control tissue samples using quantitative real-time polymerase chain reaction and western blotting. Association with clinicopathological characteristics and autophagy gene expression was analyzed by multivariate and univariate survival analysis using SPSS. RESULT In high-grade NMIBC, ULK1, P = 0.0150, Beclin1, P = 0.0041, and LC3, P = 0.0014, were substantially downregulated, whereas mTOR, P = 0.0006, was significantly upregulated. The KM plots show significant survival outcomes with autophagy genes. The clinicopathological characters, high grade (P = 0.019), tumor stage (CIS P = 0.039, pT1 P = 0.018, P = 0.045), male (P = 0.010), lymphovascular invasion (P = 0.028) and autophagy genes (ULK1 P = 0.002, beclin1 (P = 0.010, P = 0.022) were associated as risk factors for survival outcome in NMIBC patients. CONCLUSION The upregulated mTOR, downregulated ULK1, and beclin1 expression is linked to a high-grade, CIS and pT1 stage, resulting in poor recurrence-free survival and progression-free survival and highlights the prognostic significance of autophagy gene in nonmuscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul Kumar Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vishwajeet Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Ashutosh Shrivastava
- Center For Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar Sahu
- Central Research Facility, Post Graduate Institute of Child Health, Noida, Uttar Pradesh, India
| | - Dakshina Bisht
- Department Microbiology, Santosh Deemed to Be University, Ghaziabad, Uttar Pradesh, India
| | - Shubhendu Singh
- Department Microbiology, Santosh Deemed to Be University, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Kong X, Shan Z, Zhao Y, Tao S, Chen J, Ji Z, Jin J, Liu J, Lin W, Wang XJ, Wang J, Zhao F, Huang B, Chen J. NDR2 is critical for osteoclastogenesis by regulating ULK1-mediated mitophagy. JCI Insight 2024; 10:e180409. [PMID: 39561008 PMCID: PMC11721311 DOI: 10.1172/jci.insight.180409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Bone homeostasis primarily stems from the balance between osteoblasts and osteoclasts, wherein an augmented number or heightened activity of osteoclasts is a prevalent etiological factor in the development of bone loss. Nuclear Dbf2-related kinase (NDR2), also known as STK38L, is a member of the Hippo family with serine/threonine kinase activity. We unveiled an upregulation of NDR2 expression during osteoclast differentiation. Manipulation of NDR2 levels through knockdown or overexpression facilitated or hindered osteoclast differentiation, respectively, indicating a negative feedback role for NDR2 in the osteoclastogenesis. Myeloid NDR2-dificient mice (Lysm+NDR2fl/fl) showed lower bone mass and further exacerbated ovariectomy-induced or aging-related bone loss. Mechanically, NDR2 enhanced autophagy and mitophagy through mediating ULK1 instability. In addition, ULK1 inhibitor (ULK1-IN2) ameliorated NDR2 conditional KO-induced bone loss. Finally, we clarified a significant inverse association between NDR2 expression and the occurrence of osteoporosis in patients. The NDR2/ULK1/mitophagy axis is a potential innovative therapeutic target for the prevention and management of bone loss.
Collapse
Affiliation(s)
- Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yihao Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jingyun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiayan Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-jian Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Yang J, Wu Q, Li Y, Zhang Y, Lan S, Yuan K, Dai J, Sun B, Meng Y, Xu S, Shi H. BL-918 alleviates oxidative stress in rats after subarachnoid hemorrhage by promoting mitophagy through the ULK1/PINK1/Parkin pathway. Free Radic Biol Med 2024; 224:846-861. [PMID: 39368518 DOI: 10.1016/j.freeradbiomed.2024.10.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a critical role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The small molecule ULK1 agonist, BL-918, demonstrated neuroprotective effects in other central nervous system diseases; however, its role in SAH has not yet been explored. This study aimed to evaluate whether BL-918 could provide neuroprotective effects in rats following SAH. METHODS An SAH model was established in Sprague-Dawley rats using endovascular perforation. BL-918 was administered intraperitoneally after SAH, while the ULK1 inhibitor SBI was given intraperitoneally prior to SAH modeling. PINK1 siRNA was administered into the lateral ventricle before SAH induction. The neuroprotective effects and mechanisms of BL-918 were assessed through SAH grading, brain water content measurement, blood-brain barrier permeability, neurobehavioral tests, Western blot, immunofluorescence, TUNEL staining, DHE staining, and transmission electron microscopy (TEM). RESULTS After SAH, the expression levels of p-ULK1, PINK1, Parkin, and LC3Ⅱ increased, peaking at 24 h post-SAH. BL-918 treatment improved neurological function in rats, reduced brain water content and blood-brain barrier permeability, and exhibited anti-oxidative stress and anti-apoptotic effects. Western blot analysis revealed that BL-918 increased the expression of p-ULK1, PINK1, Parkin, LC3Ⅱ, Bcl-xl, and Bcl-2 while inhibiting the expression of Bax and Cleaved Caspase-3. Oxidative stress-related indicators showed that BL-918 alleviated oxidative stress. Immunofluorescence and TEM results demonstrated that BL-918 promoted mitophagy and preserved mitochondrial morphology. Furthermore, the positive effects of BL-918 were reversed by SBI and PINK1 siRNA, respectively. CONCLUSION BL-918 improved both short-term and long-term neurological impairments in rats after SAH and reduced oxidative stress by promoting mitophagy, at least partially through the ULK1/PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Jinshuo Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiaowei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Lan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Sun
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiao Meng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shancai Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Pei CS, Hou XO, Ma ZY, Tu HY, Qian HC, Li Y, Li K, Liu CF, Ouyang L, Liu JY, Hu LF. α-Synuclein disrupts microglial autophagy through STAT1-dependent suppression of Ulk1 transcription. J Neuroinflammation 2024; 21:275. [PMID: 39462396 PMCID: PMC11515151 DOI: 10.1186/s12974-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Autophagy dysfunction in glial cells is implicated in the pathogenesis of Parkinson's disease (PD). The previous study reported that α-synuclein (α-Syn) disrupted autophagy in cultured microglia. However, the mechanism of microglial autophagy dysregulation is poorly understood. METHODS Two α-Syn-based PD models were generated via AAV-mediated α-Syn delivery into the mouse substantia nigra and striatal α-Syn preformed fibril (PFF) injection. The levels of microglial UNC-51-like kinase 1 (Ulk1) and other autophagy-related genes in vitro and in PD mice, as well as in the peripheral blood mononuclear cells of PD patients and healthy controls, were determined via quantitative PCR, western blotting and immunostaining. The regulatory effect of signal transducer and activator of transcription 1 (STAT1) on Ulk1 transcription was determined via a luciferase reporter assay and other biochemical studies and was verified through Stat1 knockdown or overexpression. The effect of α-Syn on glial STAT1 activation was assessed by immunohistochemistry and western blotting. Changes in microglial status, proinflammatory molecule expression and dopaminergic neuron loss in the nigrostriatum of PD and control mice following microglial Stat1 conditional knockout (cKO) or treatment with the ULK1 activator BL-918 were evaluated by immunostaining and western blotting. Motor behaviors were determined via open field tests, rotarod tests and balance beam crossing. RESULTS The transcription of microglial ULK1, a kinase that controls autophagy initiation, decreased in both in vitro and in vivo PD mouse models. STAT1 plays a critical role in suppressing Ulk1 transcription. Specifically, Stat1 overexpression downregulated Ulk1 transcription, while Stat1 knockdown increased ULK1 expression, along with an increase in LC3II and a decrease in the SQSTM1/p62 protein. α-Syn PFF caused toll-like receptor 4-dependent activation of STAT1 in microglia. Ablation of Stat1 alleviated the decrease in microglial ULK1 expression and disruption of autophagy caused by α-Syn PFF. Importantly, the ULK1 activator BL-918 and microglial Stat1 cKO attenuated neuroinflammation, dopaminergic neuronal damage and motor defects in PD models. CONCLUSIONS These findings reveal a novel mechanism by which α-Syn impairs microglial autophagy and indicate that targeting STAT1 or ULK1 may be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Chong-Shuang Pei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Yuan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Yue Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Chun Qian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jun-Yi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China.
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
13
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
14
|
Wang H, Liu Y, Cui M, Guo Z, Zhao Y, Yang J, Wu C. Pseudoginsenoside-F11 reduces cognitive impairment and white matter injury in vascular dementia by alleviating autophagy-lysosomal pathway deficiency. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155883. [PMID: 39059268 DOI: 10.1016/j.phymed.2024.155883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Vascular dementia (VaD) resulting from chronic cerebral hypoperfusion (CCH) induces cognitive impairment and white matter injury (WMI). We previously found that CCH induces dysfunction of the autophagy-lysosomal pathway (ALP) in white matter (WM) of rats. Enhancing oligodendrocyte autophagy to counteract ALP deficiency is beneficial for cognitive recovery. Pseudogenoside-F11 (PF11), a saponin extracted from Panax quinquefolium l., provides neuroprotective benefits in many animal models of cerebral ischemia and dementia. PURPOSE To investigate how PF11 affects cognitive deterioration in rats with VaD induced by two vessel occlusion (2VO), and to determine if PF11 regulates ALP dysfunction in WM. METHODS CCH-related VaD was induced in rats using the 2VO method. PF11 (6, 12, 24 mg/kg, intragastric administration) was given continuously for 4 weeks postoperatively. Behavioral tests related to cognitive function were performed on the 28th day following 2VO. Transmission electron microscopy, immunofluorescence, western blotting and Luxol fast blue staining were used to assess the WMI and the mechanism of action of PF11 in 2VO-induced VaD. RESULTS PF11 (12 mg/kg) ameliorated 2VO-induced cognitive impairment. PF11 also alleviated WMI on the 28th day following 2VO, as characterized by reduction of neuronal axonal demyelination and axonal loss. Furthermore, PF11 prevented mature oligodendrocytes death by attenuating ALP deficiency in WM on the 14th day following 2VO, as manifested by enhancement of mechanistic target of rapamycin-mediated autophagy and lysosomal function, thereby reducing the aberrant accumulation of autophagy substrates and increasing the level of autophagosomes in WM. In addition, PF11 also prevented microglia and astrocytes from activating in WM on the 28th day following 2VO. CONCLUSION PF11 significantly ameliorates cognitive impairment and WMI, and the mechanism is at least partly related to lessening ALP dysfunction in WM by enhancing autophagy and reducing lysosomal defects in oligodendrocytes.
Collapse
Affiliation(s)
- Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhenkun Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
15
|
Feng Z, Ou Y, Deng X, Deng M, Yan X, Chen L, Zhou F, Hao L. Deubiquitinase USP10 promotes osteosarcoma autophagy and progression through regulating GSK3β-ULK1 axis. Cell Biosci 2024; 14:111. [PMID: 39218913 PMCID: PMC11367994 DOI: 10.1186/s13578-024-01291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) are pivotal in maintaining cell homeostasis by regulating substrate protein ubiquitination in both healthy and cancer cells. Ubiquitin-specific protease 10 (USP10) belongs to the DUB family. In this study, we investigated the clinical and pathological significance of USP10 and Unc-51-like autophagy activating kinase 1 (ULK1) in osteosarcoma (OS), as well as the mechanism of USP10 action in ULK1-mediated autophagy and disease progression. RESULTS The analysis of OS and adjacent normal tissues demonstrated that USP10 and ULK1 were significantly overexpressed in OS, and a positive association between their expression and malignant properties was observed. USP10 knockdown in OS cells reduced ULK1 mRNA and protein expression, whereas USP10 overexpression increased ULK1 mRNA and protein expression. In vitro experiments showed that USP10 induced autophagy, cell proliferation, and invasion by enhancing ULK1 expression in OS cell lines. Furthermore, we found that the regulation of ULK1-mediated autophagy, cell proliferation, and invasion in OS by USP10 was dependent on glycogen synthase kinase 3β (GSK3β) activity. Mechanistically, USP10 promoted ULK1 transcription by interacting with and stabilising GSK3β through deubiquitination, which, in turn, increased the activity of the ULK1 promoter, thereby accelerating OS progression. Using a xenograft mouse model, we showed that Spautin-1, a small-molecule inhibitor targeting USP10, significantly reduced OS development, with its anti-tumour activity significantly enhanced when combined with the chemotherapeutic agent cisplatin. CONCLUSION Collectively, we demonstrated that the USP10-GSK3β-ULK1 axis promoted autophagy, cell proliferation, and invasion in OS. The findings imply that targeting USP10 may offer a promising therapeutic avenue for treating OS.
Collapse
Affiliation(s)
- Zuxi Feng
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yanghuan Ou
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xueqiang Deng
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Minghao Deng
- Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, 330031, China
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Hao
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
16
|
Han D, Su T, Wang M, Zhang R, Xu H, Chu R, Zhu Z, Shen Y, Wang N, He S, Wang Y, Han Y, Wang Q. JAK2 inhibitor protects the septic heart through enhancing mitophagy in cardiomyocytes. Biomed Pharmacother 2024; 178:117279. [PMID: 39121587 DOI: 10.1016/j.biopha.2024.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a severe complication in sepsis, manifested as myocardial systolic dysfunction, which is associated with poor prognosis and higher mortality. Mitophagy, a self-protective mechanism maintaining cellular homeostasis, plays an indispensable role in cardioprotection. This study aimed to unveil the cardioprotective effects of Baricitinib on LPS-induced myocardial dysfunction and its effect on mitophagy. Herein, we demonstrated that LPS induced severe myocardial dysfunction and initiated mitophagy in septic mice hearts. Despite the initiation of mitophagy, a significant number of apoptotic cells and damaged mitochondria persisted in the myocardium, and myocardial energy metabolism remained impaired, indicating that the limited mitophagy was insufficient to mitigate LPS-induced damage. The JAK2-AKT-mTOR signaling pathway is activated in LPS-induced cardiomyocytes and in the hearts of septic mice. Baricitinib administration remarkably improved cardiac function, suppressed systemic inflammatory response, attenuated histopathological changes, inhibited cardiac cell apoptosis and alleviated myocardial damage in septic mice. Furthermore, Baricitinib treatment significantly enhanced PINK1-Parkin-mediated mitophagy, increased autophagosomes, decreased impaired mitochondria, and restored myocardial energy metabolism. Mechanically, the limited mitophagy in septic myocardium was associated with increased p-ULK1 (Ser757), which was regulated by p-mTOR. Baricitinib reduced p-ULK1 (Ser757) and enhanced mitophagy by inhibiting the JAK2-AKT-mTOR signaling pathway. Inhibition of mitophagy with Mdivi-1 reversed the cardiac protective and anti-inflammatory effects of Baricitinib in septic mice. These findings suggest that Baricitinib attenuates SIMD by enhancing mitophagy in cardiomyocytes via the JAK2-AKT-mTOR signaling pathway, providing a novel mechanistic and therapeutic insight into the SIMD.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Mingzhu Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yawei Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yongsheng Wang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China; Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| |
Collapse
|
17
|
Zhang B, Li Z, Ye G, Hu K. Biologic activity and treatment resistance to gastrointestinal cancer: the role of circular RNA in autophagy regulation. Front Oncol 2024; 14:1393670. [PMID: 39281375 PMCID: PMC11392687 DOI: 10.3389/fonc.2024.1393670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Circular RNAs (circRNAs) lack the 5'-end methylated guanine cap structure and 3' polyadenylate tail structure, classifying it as a non-coding RNA. With the extensive investigation of circRNA, its role in regulating cell death has garnered significant attention in recent years, establishing it as a recognized participant in cancer's biological processes. Autophagy, an essential pathway in programmed cell death (PCD), involves the formation of autophagosomes using lysosomes to degrade cellular contents under the regulation of various autophagy-related (ATG) genes. Numerous studies have demonstrated that circRNA can modulate the biological activity of cancer cells by influencing the autophagy pathway, exhibiting a dualistic role in suppressing or promoting carcinogenesis. In this review, we comprehensively analyze how autophagy-related circRNA impacts the progression of gastrointestinal cancer (GIC). Additionally, we discuss drug resistance phenomena associated with autophagy regulation in GIC. This review offers valuable insights into exploring potential biological targets for prognosis and treatment strategies related to GIC.
Collapse
Affiliation(s)
- Bo Zhang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
19
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
20
|
Jiang L, Ye C, Huang Y, Hu Z, Wei G. Targeting the TRAF3-ULK1-NLRP3 regulatory axis to control alveolar macrophage pyroptosis in acute lung injury. Acta Biochim Biophys Sin (Shanghai) 2024; 56:789-804. [PMID: 38686458 PMCID: PMC11187487 DOI: 10.3724/abbs.2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/04/2024] [Indexed: 05/02/2024] Open
Abstract
Acute lung injury (ALI) is a serious condition characterized by damage to the lungs. Recent research has revealed that activation of the NLRP3 inflammasome in alveolar macrophages, a type of immune cell in the lungs, plays a key role in the development of ALI. This process, known as pyroptosis, contributes significantly to ALI pathogenesis. Researchers have conducted comprehensive bioinformatics analyses and identified 15 key genes associated with alveolar macrophage pyroptosis in ALI. Among these, NLRP3 has emerged as a crucial regulator. This study further reveal that the ULK1 protein diminishes the expression of NLRP3, thereby reducing the immune response of alveolar macrophages and mitigating ALI. Conversely, TRAF3, another protein, is found to inhibit ULK1 through a process called ubiquitination, leading to increased activation of the NLRP3 inflammasome and exacerbation of ALI. This TRAF3-mediated suppression of ULK1 and subsequent activation of NLRP3 are confirmed through various in vitro and in vivo experiments. The presence of abundant M0 and M1 alveolar macrophages in the ALI tissue samples further support these findings. This research highlights the TRAF3-ULK1-NLRP3 regulatory axis as a pivotal pathway in ALI development and suggests that targeting this axis could be an effective therapeutic strategy for ALI treatment.
Collapse
Affiliation(s)
- Lei Jiang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Chunlin Ye
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Yunhe Huang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Zhi Hu
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Guangxia Wei
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| |
Collapse
|
21
|
Chang X, Li Z, Tian M, Deng Z, Zhu L, Li G. Rotenone activates the LKB1-AMPK-ULK1 signaling pathway to induce autophagy and apoptosis in rat thoracic aortic endothelial cells. BMC Pharmacol Toxicol 2024; 25:33. [PMID: 38783387 PMCID: PMC11118107 DOI: 10.1186/s40360-024-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Zeyuan Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziwei Deng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
22
|
Bhuia MS, Chowdhury R, Akter MA, Ali MA, Afroz M, Akbor MS, Sonia FA, Mubarak MS, Islam MT. A mechanistic insight into the anticancer potentials of resveratrol: Current perspectives. Phytother Res 2024. [PMID: 38768953 DOI: 10.1002/ptr.8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol is a widely recognized polyphenolic phytochemical found in various plants and their fruits, such as peanuts, grapes, and berry fruits. It is renowned for its several health advantages. The phytochemical is well known for its anticancer properties, and a substantial amount of clinical evidence has also established its promise as a chemotherapeutic agent. This study focuses on assessing the anticancer properties of resveratrol and gaining insight into the underlying molecular mechanisms. It also evaluates the biopharmaceutical, toxicological characteristics, and clinical utilization of resveratrol to determine its suitability for further development as a reliable anticancer agent. Therefore, the information about preclinical and clinical studies was collected from different electronic databases up-to-date (2018-2023). Findings from this study revealed that resveratrol has potent therapeutic benefits against various cancers involving different molecular mechanisms, such as induction of oxidative stress, cytotoxicity, inhibition of cell migration and invasion, autophagy, arresting of the S phase of the cell cycle, apoptotic, anti-angiogenic, and antiproliferative effects by regulating different molecular pathways including PI3K/AKT, p38/MAPK/ERK, NGFR-AMPK-mTOR, and so on. However, the compound has poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of resveratrol). Clinical application also showed therapeutic benefits in several types of cancer with no serious adverse effects. We suggest additional extensive studies to further check the efficacy, safety, and long-term hazards. This could involve a larger number of clinical samples to establish the compound as a reliable drug in the treatment of cancer.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Mst Asma Akter
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Arman Ali
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
23
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
24
|
Zhao Y, Zhou Y, Qian Y, Wei W, Lin X, Mao S, Sun J, Jin J. m 6A-dependent upregulation of DDX21 by super-enhancer-driven IGF2BP2 and IGF2BP3 facilitates progression of acute myeloid leukaemia. Clin Transl Med 2024; 14:e1628. [PMID: 38572589 PMCID: PMC10993053 DOI: 10.1002/ctm2.1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a haematological malignancy with unfavourable prognosis. Despite the effectiveness of chemotherapy and targeted therapy, relapse or drug resistance remains a major threat to AML patients. N6-methyladenosine (m6A) RNA methylation and super-enhancers (SEs) are extensively involved in the leukaemogenesis of AML. However, the potential relationship between m6A and SEs in AML has not been elaborated. METHODS Chromatin immunoprecipitation (ChIP) sequencing data from Gene Expression Omnibus (GEO) cohort were analysed to search SE-related genes. The mechanisms of m6 A-binding proteins IGF2BP2 and IGF2BP3 on DDX21 were explored via methylated RNA immunoprecipitation (MeRIP) assays, RNA immunoprecipitation (RIP) assays and luciferase reporter assays. Then we elucidated the roles of DDX21 in AML through functional assays in vitro and in vivo. Finally, co-immunoprecipitation (Co-IP) assays, RNA sequencing and ChIP assays were performed to investigate the downstream mechanisms of DDX21. RESULTS We identified two SE-associated transcripts IGF2BP2 and IGF2BP3 in AML. High enrichment of H3K27ac, H3K4me1 and BRD4 was observed in IGF2BP2 and IGF2BP3, whose expression were driven by SE machinery. Then IGF2BP2 and IGF2BP3 enhanced the stability of DDX21 mRNA in an m6A-dependent manner. DDX21 was highly expressed in AML patients, which indicated a poor survival. Functionally, knockdown of DDX21 inhibited cell proliferation, promoted cell apoptosis and led to cell cycle arrest. Mechanistically, DDX21 recruited transcription factor YBX1 to cooperatively trigger ULK1 expression. Moreover, silencing of ULK1 could reverse the promoting effects of DDX21 overexpression in AML cells. CONCLUSIONS Dysregulation of SE-IGF2BP2/IGF2BP3-DDX21 axis facilitated the progression of AML. Our findings provide new insights into the link between SEs and m6A modification, elucidate the regulatory mechanisms of IGF2BP2 and IGF2BP3 on DDX21, and reveal the underlying roles of DDX21 in AML.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Yutong Zhou
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Yu Qian
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Wenwen Wei
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Xiangjie Lin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Shihui Mao
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongChina
| |
Collapse
|
25
|
Wang L, Tian S, Ruan S, Wei J, Wei S, Chen W, Hu H, Qin W, Li Y, Yuan H, Mao J, Xu Y, Xie J. Neuroprotective effects of cordycepin on MPTP-induced Parkinson's disease mice via suppressing PI3K/AKT/mTOR and MAPK-mediated neuroinflammation. Free Radic Biol Med 2024; 216:60-77. [PMID: 38479634 DOI: 10.1016/j.freeradbiomed.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.
Collapse
Affiliation(s)
- Linhai Wang
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Shu Tian
- Inner Mongolia Kunming Cigarette Limited Liability Company, Huhhot, Inner Mongolia Autonomous Region, China.
| | - Sisi Ruan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Jingjing Wei
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Sijia Wei
- Xinxiang Central Hospital, Xinxiang, Hennan, China.
| | - Weiwei Chen
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Hangcui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Yan Li
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Hang Yuan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Jian Mao
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Jianping Xie
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| |
Collapse
|
26
|
Sun D, Zhang Z, Yu X, Li H, Wang X, Chen L. The mechanism of UNC-51-like kinase 1 and the applications of small molecule modulators in cancer treatment. Eur J Med Chem 2024; 268:116273. [PMID: 38432059 DOI: 10.1016/j.ejmech.2024.116273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China
| | - Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinbo Yu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
27
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
28
|
Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, Tanaka M, Satoh-Asahara N. Imeglimin Exhibits Novel Anti-Inflammatory Effects on High-Glucose-Stimulated Mouse Microglia through ULK1-Mediated Suppression of the TXNIP-NLRP3 Axis. Cells 2024; 13:284. [PMID: 38334676 PMCID: PMC10854746 DOI: 10.3390/cells13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemiological risk factor for dementia and has been implicated in multifactorial pathologies, including neuroinflammation. In the present study, we aimed to elucidate the potential anti-inflammatory effects of imeglimin, a novel antidiabetic agent, on high-glucose (HG)-stimulated microglia. Mouse microglial BV2 cells were stimulated with HG in the presence or absence of imeglimin. We examined the effects of imeglimin on the levels of proinflammatory cytokines, intracellular reactive oxygen species (ROS), mitochondrial integrity, and components related to the inflammasome or autophagy pathways in these cells. Our results showed that imeglimin suppressed the HG-induced production of interleukin-1beta (IL-1β) by reducing the intracellular ROS levels, ameliorating mitochondrial dysfunction, and inhibiting the activation of the thioredoxin-interacting protein (TXNIP)-NOD-like receptor family pyrin domain containing 3 (NLRP3) axis. Moreover, the inhibitory effects of imeglimin on the TXNIP-NLRP3 axis depended on the imeglimin-induced activation of ULK1, which also exhibited novel anti-inflammatory effects without autophagy induction. These findings suggest that imeglimin exerted novel suppressive effects on HG-stimulated microglia through the ULK1-TXNIP-NLRP3 axis, and may, thereby, contribute to the development of innovative strategies to prevent T2DM-associated cognitive impairment.
Collapse
Affiliation(s)
- Hisashi Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Kaori Iwashita
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Masayo Iwasa
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Sayaka Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Rehabilitation, Health Science University, Minamitsuru-gun 401-0380, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
29
|
Wang J, Zheng F, Wang D, Yang Q. Regulation of ULK1 by WTAP/IGF2BP3 axis enhances mitophagy and progression in epithelial ovarian cancer. Cell Death Dis 2024; 15:97. [PMID: 38286802 PMCID: PMC10824720 DOI: 10.1038/s41419-024-06477-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
There is a pressing need for innovative therapeutic strategies for patients with epithelial ovarian cancer (EOC). Previous studies have shown that UNC-51-like kinase 1 (ULK1), a serine/threonine kinase, is crucial in regulating cellular autophagy and mitophagy across various tumor types. However, the clinical implications, biological functions, and potential mechanisms of ULK1 in EOC remain poorly understood. This study demonstrates that ULK1 expression is upregulated in EOC tissue samples and EOC cell lines, with increased ULK1 expression correlating with poor prognosis. Functionally, overexpressed ULK1 enhances the proliferation and migration abilities of EOC cells both in vitro and in vivo. Mechanistically, ULK1 was identified as an m6A target of WTAP. WTAP-mediated m6A modification of ULK1 enhanced its mRNA stability in an IGF2BP3-dependent manner, leading to elevated ULK1 expression and enhanced mitophagy in EOC. In summary, our research reveals that the WTAP/IGF2BP3-ULK1 axis significantly influences protective mitophagy in EOC, contributing to its progression. Therefore, the regulatory mechanisms and biological function of ULK1 identify it as a potential molecular target for therapeutic intervention in EOC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fei Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
30
|
Chen HL, Jin WL. Diapause-like Drug-Tolerant Persister State: The Key to Nirvana Rebirth. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:228. [PMID: 38399515 PMCID: PMC10890489 DOI: 10.3390/medicina60020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Cancer is one of the leading causes of death in the world. Various drugs have been developed to eliminate it but to no avail because a tumor can go into dormancy to avoid therapy. In the past few decades, tumor dormancy has become a popular topic in cancer therapy. Recently, there has been an important breakthrough in the study of tumor dormancy. That is, cancer cells can enter a reversible drug-tolerant persister (DTP) state to avoid therapy, but no exact mechanism has been found. The study of the link between the DTP state and diapause seems to provide an opportunity for a correct understanding of the mechanism of the DTP state. Completely treating cancer and avoiding dormancy by targeting the expression of key genes in diapause are possible. This review delves into the characteristics of the DTP state and its connection with embryonic diapause, and possible treatment strategies are summarized. The authors believe that this review will promote the development of cancer therapy.
Collapse
Affiliation(s)
- Han-Lin Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Dwivedi R, Baindara P. Differential Regulation of TFEB-Induced Autophagy during Mtb Infection and Starvation. Microorganisms 2023; 11:2944. [PMID: 38138088 PMCID: PMC10746089 DOI: 10.3390/microorganisms11122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Through the promotion of phagolysosome formation, autophagy has emerged as a crucial mechanism to eradicate intracellular Mycobacterium tuberculosis (Mtb). A cell-autonomous host defense mechanism called lysosome biogenesis and autophagy transports cytoplasmic cargos and bacterial phagosomes to lysosomes for destruction during infection. Similar occurrences occurred in stressful or starvation circumstances and led to autophagy, which is harmful to the cell. It is interesting to note that under both hunger and infection states, the transcription factor EB (TFEB) acts as a master regulator of lysosomal activities and autophagy. This review highlighted recent research on the multitier regulation of TFEB-induced autophagy by a variety of host effectors and Mtb sulfolipid during Mtb infection and starvation. In general, the research presented here sheds light on how lysosome biogenesis and autophagy are differentially regulated by the TFEB during Mtb infection and starvation.
Collapse
Affiliation(s)
- Richa Dwivedi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
32
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
33
|
Sallam AM, Abou-Souliman I, Reyer H, Wimmers K, Rabee AE. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci Rep 2023; 13:20086. [PMID: 37973848 PMCID: PMC10654701 DOI: 10.1038/s41598-023-46997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | | | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
34
|
Yang Y, Ji C, Zhong Q, Yan H, Wang J. In silico approaches for the identification of novel ULK1 inhibitors: pharmacophore model, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 42:13372-13385. [PMID: 37904331 DOI: 10.1080/07391102.2023.2275182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
The serine/threonine kinase unc-51-like autophagy activating kinase 1 (ULK1) has been regarded as an attractive target for tumor therapy. In this study, in silico approaches, such as the pharmacophore-based virtual screening strategy, molecular docking and molecular dynamics (MD) simulations, were applied to develop novel potential ULK1 inhibitors. The pharmacophore models based on known aminopyrimidine ULK1 inhibitors were constructed to screen the dataset of 1.68 million compounds, which were obtained via screening the 2.30 million compounds in ChEMBL database by Lipinski's rule of five. Seven novel compounds and 1 known ULK1 inhibitor stand out for the strong virtual biological activity by molecular docking, cluster analysis, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation and Absorption Distribution Metabolism Excretion Toxicity (ADMET) prediction. Their results of MD included principal component analysis (PCA) and Free Energy Landscapes surface (FELs) indicated that the protein-ligand complex was stable in simulated trajectories of 100 ns. The binding free energy (BFE) calculations showed that a total of 6 novel compounds (CL130, CL834, CL961, CL966, CL163 and CL329) with the stable binding state and stronger BFE (-61.17 to -37.01 kcal/mol) than that of original ligand 3RF (-36.66 kcal/mol). With reference to the ULK1 inhibition of 3RF (IC50 = 160 nM), it can be inferred that these compounds could be used as a new type of potential ULK1 inhibitors and be worthy of further investigation for tumor treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yifan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| | - Cuicui Ji
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, P. R. China
| | - Hong Yan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| | - Juan Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| |
Collapse
|
35
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
37
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
38
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
39
|
Tang B, Luo Z, Zhang R, Zhang D, Nie G, Li M, Dai Y. An update on the molecular mechanism and pharmacological interventions for Ischemia-reperfusion injury by regulating AMPK/mTOR signaling pathway in autophagy. Cell Signal 2023; 107:110665. [PMID: 37004834 DOI: 10.1016/j.cellsig.2023.110665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
AMP-activated protein kinase (5'-adenosine monophosphate-activated protein kinase, AMPK)/mammalian target of rapamycin (mTOR) is an important signaling pathway maintaining normal cell function and homeostasis in vivo. The AMPK/mTOR pathway regulates cellular proliferation, autophagy, and apoptosis. Ischemia-reperfusion injury (IRI) is secondary damage that frequently occurs clinically in various disease processes and treatments, and the exacerbated injury during tissue reperfusion increases disease-associated morbidity and mortality. IRI arises from multiple complex pathological mechanisms, among which cell autophagy is a focus of recent research and a new therapeutic target. The activation of AMPK/mTOR signaling in IRI can modulate cellular metabolism and regulate cell proliferation and immune cell differentiation by adjusting gene transcription and protein synthesis. Thus, the AMPK/mTOR signaling pathway has been intensively investigated in studies focused on IRI prevention and treatment. In recent years, AMPK/mTOR pathway-mediated autophagy has been found to play a crucial role in IRI treatment. This article aims to elaborate the action mechanisms of AMPK/mTOR signaling pathway activation in IRI and summarize the progress of AMPK/mTOR-mediated autophagy research in the field of IRI therapy.
Collapse
Affiliation(s)
- Bin Tang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Zhijian Luo
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Rong Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Dongmei Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Cheng Du, Sichuan Province 61000, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
40
|
Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J, Wu C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm Sin B 2023; 13:2107-2123. [DOI: 10.1016/j.apsb.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
|
41
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Khairnar SI, Kulkarni YA, Singh K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch Pharm Res 2022; 45:704-730. [DOI: 10.1007/s12272-022-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
|