1
|
Surendran A, Tintu R, Das KS, Nair VJA, Varghese P. Biomedical and Anticancer Potential of Green Synthesized Chalcogenide Zinc Sulfide Nanoparticles Using Different Plant Extracts as the Capping Agent. BRAZILIAN JOURNAL OF PHYSICS 2024; 54:224. [DOI: 10.1007/s13538-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025]
|
2
|
Singh V, Pandit C, Pandit S, Roy A, Rustagi S, Awwad NS, Ibrahium HA, Anand J, Malik S, Yadav KK, Tambuwala M. Deciphering the Mechanisms and Biotechnological Implications of Nanoparticle Synthesis Through Microbial Consortia. J Basic Microbiol 2024; 64:e2400035. [PMID: 39004868 DOI: 10.1002/jobm.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 07/16/2024]
Abstract
Nanomaterial synthesis is a growing study area because of its extensive range of uses. Nanoparticles' high surface-to-volume ratio and rapid interaction with various particles make them appealing for diverse applications. Traditional physical and chemical methods for creating metal nanoparticles are becoming outdated because they involve complex manufacturing processes, high energy consumption, and the formation of harmful by-products that pose major dangers to human health and the environment. Therefore, there is an increasing need to find alternative, cost-effective, dependable, biocompatible, and environmentally acceptable ways of producing nanoparticles. The process of synthesizing nanoparticles using microbes has become highly intriguing because of their ability to create nanoparticles of varying sizes, shapes, and compositions, each with unique physicochemical properties. Microbes are commonly used in nanoparticle production because they are easy to work with, can use low-cost materials, such as agricultural waste, are cheap to scale up, and can adsorb and reduce metal ions into nanoparticles through metabolic activities. Biogenic synthesis of nanoparticles provides a clean, nontoxic, ecologically friendly, and sustainable method using renewable ingredients for reducing metals and stabilizing nanoparticles. Nanomaterials produced by bacteria can serve as an effective pollution control method due to their many functional groups that can effectively target contaminants for efficient bioremediation, aiding in environmental cleanup. At the end of the paper, we will discuss the obstacles that hinder the use of biosynthesized nanoparticles and microbial-based nanoparticles. The paper aims to explore the sustainability of microorganisms in the burgeoning field of green nanotechnology.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Microbiology, School of Allied health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Chetan Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Department of Biology, Nuclear Materials Authority, El Maadi, Egypt
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Murtaza Tambuwala
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| |
Collapse
|
3
|
D’Souza JN, Nagaraja GK, Navada MK, Kouser S. Zinc-Doping as a Strategy to Enhance Antimicrobial and Dye Degradation Properties of Magnesium Oxide Nanoparticles Sythesized from Sauropus androgynus (L.) Phytochemicals. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2024; 49:9593-9609. [DOI: 10.1007/s13369-024-08968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/11/2024] [Indexed: 01/06/2025]
|
4
|
Jia S, Wang J, Li S, Wang X, Liu Q, Li Y, Shad M, Ma B, Wang L, Li C, Li X. Genetically encoded zinc-binding collagen-like protein hybrid hydrogels for wound repair. Int J Biol Macromol 2024; 254:127592. [PMID: 37913885 DOI: 10.1016/j.ijbiomac.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Incorporating zinc oxide nanoparticles (ZnOnps) into collagen is a promising strategy for fabricating biomaterials with excellent antibacterial activity, but modifications are necessary due to the low zinc binding affinity of native collagen, which can cause disturbances to the functions of both ZnOnps and collagen and result in heterogeneous effects. To address this issue, we have developed a genetically encoded zinc-binding collagen-like protein, Zn-eCLP3, which was genetically modified by Scl2 collagen-like protein. Our study found that Zn-eCLP3 has a binding affinity for zinc that is 3-fold higher than that of commercialized type I collagen, as determined by isothermal titration calorimetry (ITC). Using ZnOnps-coordinated Zn-eCLP3 protein and xanthan gum, we prepared a hydrogel that showed significantly stronger antibacterial activity compared to a collagen hydrogel prepared in the same manner. In vitro cytocompatibility tests were conducted to assess the potential of the Zn-eCLP3 hydrogel for wound repair applications. In vivo experiments, which involved an S. aureus-infected mouse trauma model, showed that the application of the Zn-eCLP3 hydrogel resulted in rapid wound regeneration and increased expression of collagen-1α and cytokeratin-14. Our study highlights the potential of Zn-eCLP3 and the hybrid hydrogel for further studies and applications in wound repair.
Collapse
Affiliation(s)
- Shuang Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Jie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, 20 Zhaowuda Road, Hohhot 010021, Inner Mongolia, China
| | - Xiaojie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, China
| | - Yimiao Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Man Shad
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Bin Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Liyao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, China.
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Institutes of Biomedical Sciences, Inner Mongolia University, China.
| |
Collapse
|
5
|
Bordin ER, Ramsdorf WA, Lotti Domingos LM, de Souza Miranda LP, Mattoso Filho NP, Cestari MM. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119396. [PMID: 37890295 DOI: 10.1016/j.jenvman.2023.119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The rapid advancement of nanotechnology has contributed to the development of several products that are being released to the consumer market without careful analysis of their potential impact on the environment. Zinc oxide nanoparticles (ZnO-NPs) are used in several fields and are applied in consumer products, technological innovations, and biomedicine. In this sense, this study aims to compile existing knowledge regarding the effects of ZnO-NPs on non-target organisms, with the goal of ensuring the safety of human health and the environment. To achieve this objective, a systematic review of the available data on the toxicity of these nanomaterials to freshwater and marine/estuarine aquatic organisms was carried out. The findings indicate that freshwater invertebrates are the most commonly used organisms in ecotoxicological tests. The environmental sensitivity of the studied species was categorized as follows: invertebrates > bacteria > algae > vertebrates. Among the most sensitive species at each trophic level in freshwater and marine/estuarine environments are Daphnia magna and Paracentrotus lividus; Escherichia coli and Vibrio fischeri; Scenedesmus obliquus and Isochrysis galbana; and Danio rerio and Rutilus caspicus. The primary mechanisms responsible for the toxicity of ZnO-NPs involve the release of Zn2+ ions and the generation of reactive oxygen species (ROS). Thus, the biosynthesis of ZnO-NPs has been presented as a less toxic form of production, although it requires further investigation. Therefore, the synthesis of the information presented in this review can help to decide which organisms and which exposure concentrations are suitable for estimating the toxicity of nanomaterials in aquatic ecosystems. It is expected that this information will serve as a foundation for future research aimed at reducing the reliance on animals in ecotoxicological testing, aligning with the goal of promoting the sustainable advancement of nanotechnology.
Collapse
Affiliation(s)
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology (UTFPR), Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
6
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Jeyavani J, Sibiya A, Gopi N, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Riaz MN, Palaniappan B, Govindarajan M, Vaseeharan B. Ingestion and impacts of water-borne polypropylene microplastics on Daphnia similis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13483-13494. [PMID: 36136182 DOI: 10.1007/s11356-022-23013-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Polypropylene microplastics are the leading contaminant in aquatic environments, although research on their toxicity remains scarce. The proposed research focuses on the harmful consequences of acute exposure to polypropylene microplastics in Daphnia similis. This work converts widely available polypropylene bags into microplastics using xylene. FTIR findings demonstrated the lack of xylene residue in the produced polypropylene microplastic particles, which were spherical and ranged in size from 11.86 to 44.62 µm (FE-SEM). The results indicate that acute exposure to polypropylene microplastics causes immobility in D. similis. Ingestion of microplastics enhances the generation of reactive oxygen species (ROS), as shown by biochemical studies. Due to the production of free radicals in D. similis, the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and a non-antioxidant enzyme of reduced glutathione (GSH) and also oxidative stress effects in lipid (lipid peroxidation - LPO), protein (carbonyl protein - CP) were increased. Additionally, the amount of the neurotransmitter enzyme acetylcholinesterase (AChE) activity was decreased. These findings indicate that the accumulation of polypropylene microplastics in the bodies of filter-feeding organisms should aggravate toxicity in the freshwater environment.
Collapse
Affiliation(s)
- Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Balasubramanian Palaniappan
- Department of Clinical and Translational Science, Marshall University Joan C. Edwards School of Medicine, 1700 Byrd Biotech Science Center, Huntington, WV, 25755, USA
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, 608 002, Annamalai Nagar, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
8
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|
9
|
Sidhu AK, Verma N, Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.801620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The biomedical properties of nanoparticles have been the area of focus for contemporary science; however, there are issues concerning their long-term toxicities. Recent trends in nanoparticle fabrication and surface manipulation, the use of distinctive biogenic capping agents, have allowed the preparation of nontoxic, surface-functionalized, and monodispersed nanoparticles for medical applications. These capping agents act as stabilizers or binding molecules that prevent agglomeration and steric hindrance, alter the biological activity and surface chemistry, and stabilize the interaction of nanoparticles within the preparation medium. Explicit features of nanoparticles are majorly ascribed to the capping present on their surface. The present review article is an attempt to compile distinctive biological capping agents deployed in the synthesis of metal nanoparticles along with the medical applications of these capped nanoparticles. First, this innovative review highlights the various biogenic capping agents, including biomolecules and biological extracts of plants and microorganisms. Next, the therapeutic applications of capped nanoparticles and the effect of biomolecules on the efficiency of the nanoparticles have been expounded. Finally, challenges and future directions on the use of biological capping agents have been concluded. The goal of the present review article is to provide a comprehensive report to researchers who are looking for alternative biological capping agents for the green synthesis of important metallic nanoparticles.
Collapse
|
10
|
Lizundia E, Luzi F, Puglia D. Organic waste valorisation towards circular and sustainable biocomposites. GREEN CHEMISTRY 2022; 24:5429-5459. [DOI: 10.1039/d2gc01668k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Organic waste valorisation into biopolymers and nanofillers potentially lowers the pressure on non-renewable resources, avoids the generation of waste-streams and opens new opportunities to develop multifunctional bio-based products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100, Terni, Italy
| |
Collapse
|
11
|
Fuentes S, Espinoza D, León J. Synthesis, Characterization and Optical Properties of ZnO Nanoparticles Doped with Er and Yb. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5714-5722. [PMID: 33980385 DOI: 10.1166/jnn.2021.19489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper discusses the structure, particle morphology, and optical properties of un-doped ZnO and ZnO doped with Er3+ and Yb3+ lanthanide ion nanoparticles (NPs) through a process denominated sol-gel-hydrothermal. According to the pattern of X-ray diffraction, ZnO:Er and ZnO:Yb is formed by a single-phase wurtzite structure with crystallites sized ~65 nm on average, and Er or Yb dopant ions in the hexagonal structure of ZnO, specifically in its distorted lattice sites. The results also suggest the possible role of oxygen vacancies or Ox- (defects) in the energy transfer from ZnO to the Er or Yb ions with a decrease of 3.18 eV and 3.19 eV in bandgap values to a red shift.
Collapse
Affiliation(s)
- S Fuentes
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile
| | - D Espinoza
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile
| | - J León
- Departamento de Química, Facultad de Ciencias, Universidad de Antofagasta, Antofagasta, 1240000, Chile
| |
Collapse
|
12
|
Vijayakumar S, González-Sánchez ZI, Malaikozhundan B, Saravanakumar K, Divya M, Vaseeharan B, Durán-Lara EF, Wang MH. Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. var. grossum (L.) Sendt) and Their in Vitro Evaluation. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01870-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 2021; 49:953-964. [PMID: 33729443 PMCID: PMC8106505 DOI: 10.1042/bst20200896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Research into the development of sustainable biomaterials is increasing in both interest and global importance due to the increasing demand for materials with decreased environmental impact. This research field utilises natural, renewable resources to develop innovative biomaterials. The development of sustainable biomaterials encompasses the entire material life cycle, from desirable traits, and environmental impact from production through to recycling or disposal. The main objective of this review is to provide a comprehensive definition of sustainable biomaterials and to give an overview of the use of natural proteins in biomaterial development. Proteins such as collagen, gelatin, keratin, and silk, are biocompatible, biodegradable, and may form materials with varying properties. Proteins, therefore, provide an intriguing source of biomaterials for numerous applications, including additive manufacturing, nanotechnology, and tissue engineering. We give an insight into current research and future directions in each of these areas, to expand knowledge on the capabilities of sustainably sourced proteins as advanced biomaterials.
Collapse
Affiliation(s)
- H. Agnieray
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - J.L. Glasson
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - Q. Chen
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - M. Kaur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L.J. Domigan
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Sustainable Rabbit Skin Glue to Produce Bioactive Nanofibers for Nonactive Wound Dressings. MATERIALS 2020; 13:ma13235388. [PMID: 33260877 PMCID: PMC7730916 DOI: 10.3390/ma13235388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
This paper assessed the collagen glue (Col) from rabbit skin for use as a raw material in combination with different water-based dispersants of antimicrobial agents such as ZnO NPs, TiO2 NPs doped with nitrogen and Ag NPs (TiO2-N-Ag NPs), and chitosan (CS) for the production of biocompatible and antimicrobial nanofibers. The electrospun nanofibers were investigated by scanning electron microscopy (SEM), attenuated total reflectance in conjunction with Fourier-transform infrared spectroscopy (ATR-FT-IR) analyses and antioxidant activity. The biocompatibility of electrospun nanofibers was investigated on cell lines of mouse fibroblast NCTC (clone L929) using MTT test assays. Antimicrobial activity was performed against Escherichia coli and Staphylococcus aureus bacteria and Candida albicans pathogenic fungus. Electrospun antimicrobial nanofibers based on collagen glue achieved reduction in the number of viable microorganisms against both fungi and bacteria and exhibited multiple inhibitory actions of fungal and bacterial strains. The electrospun nanofibers showed average dimension sizes in the range of 30–160 nm. The results indicated that both Col/TiO2-N-Ag NPs and Col/CS formulations are suitable for cell proliferation and may be useful for producing of nonactive wound dressings.
Collapse
|
16
|
Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
18
|
Vannozzi L, Gouveia P, Pingue P, Canale C, Ricotti L. Novel Ultrathin Films Based on a Blend of PEG- b-PCL and PLLA and Doped with ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21398-21410. [PMID: 32302103 DOI: 10.1021/acsami.0c00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, a novel nanofilm type is proposed based on a blend of poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-b-PCL) and poly(l-lactic acid), doped with zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1, 1, and 10 mg/mL). All nanofilm types were featured by a thickness value of ∼500 nm. Increasing ZnO NP concentrations implied larger roughness values (∼22 nm for the bare nanofilm and ∼67 nm for the films with 10 mg/mL of NPs), larger piezoelectricity (average d33 coefficient for the film up to ∼1.98 pm/V), and elastic modulus: the nanofilms doped with 1 and 10 mg/mL of NPs were much stiffer than the nondoped controls and nanofilms doped with 0.1 mg/mL of NPs. The ZnO NP content was also directly proportional to the material melting point and crystallinity and inversely proportional to the material degradation rate, thus highlighting the stabilization role of ZnO particles. In vitro tests were carried out with cells of the musculoskeletal apparatus (fibroblasts, osteoblasts, chondrocytes, and myoblasts). All cell types showed good adhesion and viability on all substrate formulations. Interestingly, a higher content of ZnO NPs in the matrix demonstrated higher bioactivity, boosting the metabolic activity of fibroblasts, myoblasts, and chondrocytes and enhancing the osteogenic and myogenic differentiation. These findings demonstrated the potential of these nanocomposite matrices for regenerative medicine applications, such as tissue engineering.
Collapse
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| | - Pedro Gouveia
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin D02 YN77, Ireland
| | - Pasqualantonio Pingue
- NEST, Scuola Normale Superiore and CNR Istituto Nanoscienze, Piazza San Silvestro 12, 56127 Pisa (PI), Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertá 33, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
| |
Collapse
|
19
|
Li H, Chen Y, Lu W, Xu Y, Guo Y, Yang G. Preparation of Electrospun Gelatin Mat with Incorporated Zinc Oxide/Graphene Oxide and Its Antibacterial Activity. Molecules 2020; 25:E1043. [PMID: 32110923 PMCID: PMC7179230 DOI: 10.3390/molecules25051043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Current wound dressings have poor antimicrobial activities and are difficult to degrade. Therefore, biodegradable and antibacterial dressings are urgently needed. In this article, we used the hydrothermal method and side-by-side electrospinning technology to prepare a gelatin mat with incorporated zinc oxide/graphene oxide (ZnO/GO) nanocomposites. The resultant fibers were characterized by field emission environment scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). Results indicated that the gelatin fibers had good morphology, and ZnO/GO nanocomposites were uniformly dispersed on the fibers. The loss of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) viability were observed to more than 90% with the incorporation of ZnO/GO. The degradation process showed that the composite fibers completely degraded within 7 days and had good controllable degradation characteristics. This study demonstrated the potential applicability of ZnO/GO-gelatin mats with excellent antibacterial properties as wound dressing material.
Collapse
Affiliation(s)
- Honghai Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (Y.C.); (G.Y.)
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (Y.C.); (G.Y.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (Y.C.); (G.Y.)
| | - Yisheng Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (Y.C.); (G.Y.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (Y.C.); (G.Y.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Biopolymer K-carrageenan wrapped ZnO nanoparticles as drug delivery vehicles for anti MRSA therapy. Int J Biol Macromol 2019; 144:9-18. [PMID: 31821826 DOI: 10.1016/j.ijbiomac.2019.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 02/03/2023]
Abstract
Kappa-Carrageenan wrapped ZnO nanoparticles (KC-ZnO NPs) was synthesized, physico-chemically characterized and evaluated their biocompatibility and antimicrobial therapy against MRSA. XRD showed the highly crystalline and hexagonal phase structure of ZnO NPs. FETEM confirmed the spherical and hexagonal shaped particle with the mean size of 97.03 ± 9.05 nm. The synthesized KC-ZnO NPs exhibited significant antibacterial activity against MRSA. The biofilm growth of MRSA was greatly inhibited at 100 μg/ml as observed through live and dead cell assay. KC-ZnO NPs have shown invitro anti-inflammatory activity (82%) at 500 μg/ml. KC-ZnO NPs was non-toxic to NIH3T3 mouse embryonic fibroblasts cell lines. Further, no apoptotic and necrotic mediated death in NIH3T3 mouse embryonic fibroblasts cells were noticed by flow cytometric analysis. KC-ZnO NPs have good biocompatibility as recorded by the least hemolysis percentage (<3%) up to 100 μg/ml, which is much lesser than the acceptable limit. In addition, ecosafety analysis has shown that KC-ZnO NPs and kappa karrageenan (0-500 μg/ml) caused no mortality of A. salina after 48 h. However, bare zinc acetate has shown 35% mortality of A. salina after 48 h. The results conclude that KC-ZnO NPs could be a novel antibacterial therapy for the treatment of MRSA associated infectious.
Collapse
|
21
|
Liang W, Zhang Y, Song L, Li Z. 2,3'4,4',5-Pentachlorobiphenyl induces hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent glycolysis. Toxicol Lett 2019; 313:108-119. [PMID: 31251971 DOI: 10.1016/j.toxlet.2019.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs) and are associated with the progression of many cancers, including liver cancer. The present study investigated the effect of 2,3'4,4',5-pentachlorobiphenyl (PCB118) on hepatocellular carcinoma cell proliferation and its underlying mechanisms. The results indicated that PCB118 exposure promotes the proliferation and glycolysis of hepatocellular carcinoma SMMC-7721 cells. Moreover, PCB118 exposure increased the expression level of pyruvate kinase M2 (PKM2) and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the induction of cell proliferation and glycolysis by PCB118. PCB118 stimulated reactive oxygen species (ROS) production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Treatment with the antioxidants N-acetyl-L-cysteine (NAC) and superoxide dismutase (SOD) prevented PCB118-induced effects on PKM2, cell proliferation and glycolysis. Furthermore, we found that PCB118 activated NADPH oxidase through the aryl hydrocarbon receptor (AhR) in SMMC-7721 cells. Consistently, treatment with AhR shRNA suppressed PCB118-induced effects on PKM2, cell proliferation and glycolysis. Overall, these results indicated that PCB118 promotes HCC cell proliferation via PKM2-dependent upregulation of glycolysis, which is mediated by AhR/NADPH oxidase-induced ROS production.
Collapse
Affiliation(s)
- Wenli Liang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yuting Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
22
|
Rekha R, Divya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Pavela R, Vaseeharan B. Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111620. [PMID: 31522113 DOI: 10.1016/j.jphotobiol.2019.111620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
Abstract
Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Mani Divya
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
23
|
Yang J, Gao L, Yu P, Kosgey JC, Jia L, Fang Y, Xiong J, Zhang F. In vitro synergy of azole antifungals and methotrexate against Candida albicans. Life Sci 2019; 235:116827. [PMID: 31479680 DOI: 10.1016/j.lfs.2019.116827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aims to evaluate the effective of azoles and MTX for patients with invasive candidiasis. METHODS We used the disk diffusion assay and the checkerboard assay to evaluate the in vitro interactions between MTX and antifungals. In addition, we used the transmission electron microscopy to observe the ultrastructure of the effect of MTX and fluconazole on Candida albicans. RESULTS The rates of synergy for the combination of MTX with fluconazole (FLC), itraconazole (ITC), and voriconazole (VRZ) were 91.3%, 65.2%, and 87% in checkerboard testing. No antagonism was found between methotrexate and azole antifungals in any of the strains. Furthermore, MTX treated C. albicans showed extensive cell wall vacuolations and the inhibition of blastospores growth, as observed using transmission electron microscopy. There was an apparent destruction of the cell membrane and cell wall resulting in the destruction of cytoplasm, a phenomenon observed when MTX was combined with azoles. CONCLUSION This study provides evidence that the combination of azoles and MTX is effective for patients with invasive candidiasis, which on the other hand, will reduce the side effects of the drugs.
Collapse
Affiliation(s)
- Jianxun Yang
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China.
| | - Lei Gao
- Microscopy Core Facility, Westlake University, Hangzhou 310024, China
| | - Pei Yu
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China
| | - Janet Cheruiyot Kosgey
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Lina Jia
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Yong Fang
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Jikui Xiong
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China
| | - Fengmin Zhang
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| |
Collapse
|
24
|
Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 2019; 180:411-428. [DOI: 10.1016/j.colsurfb.2019.05.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
|
25
|
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym 2019; 223:115128. [PMID: 31427012 DOI: 10.1016/j.carbpol.2019.115128] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Nanoparticle delivery systems have been widely investigated as new vaccines strategy to enhance the immune responses to antigens against infectious diseases. The positively charged nanoparticles could efficiently improve the immune responses due to targeting and activating the antigen-presenting cells. In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) was encapsulated into Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, and the polyethylenimine, one of the cationic polymers, was used to coat nanoparticles to develop a new nanoparticle delivery system (ASP-PLGA-PEI) with positively charged. The ASP-PLGA-PEI nanoparticles significantly activated macrophages, and promoted the expression of the MHCII and CD86 and the production of IL-1β and IL-12p70 cytokines of macrophages. Furthermore, the antigen adsorbed on the surface of the ASP-PLGA-PEI nanoparticles enhanced the antigen uptake by macrophages. Moreover, the mice immunized with PCV2 antigen adsorbed ASP-PLGA-PEI nanoparticles significantly enhanced PCV2-specific IgG immune response and the levels of cytokines, induced a mixed Th1/Th2 immune response with Th1 bias compared with other groups. These findings demonstrate that the positively charged nanoparticles (ASP-PLGA-PEI) have the potential to serve as an effective vaccine delivery and adjuvant system to induce vigorous and long-term immune responses.
Collapse
|
26
|
Zhu Y, Liu X, Hu Y, Wang R, Chen M, Wu J, Wang Y, Kang S, Sun Y, Zhu M. Behavior, remediation effect and toxicity of nanomaterials in water environments. ENVIRONMENTAL RESEARCH 2019; 174:54-60. [PMID: 31029942 DOI: 10.1016/j.envres.2019.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanotechnology has been developing continuously. Due to their advantageous huge specific surface areas, microinterface characteristics, remediation ability and potential environmental risks, nanomaterials have become a hot topic in the field of environmental research. With the mass production and use of nanomaterials, they will inevitably be discharged or leaked into the water environment. In this paper, we will describe some typical nanomaterials, such as nanoscale zero valent iron (nZVI), graphene nanomaterials (GNMs), TiO2 nanoparticles (NPs), ZnO NPs, Fe3O4 NPs, carbon nanotubes (CNTs), Ag NPs, and other nanomaterials in water environments, focusing on the positive and negative effects of some nanomaterials in water environments. The remediation function and the impact of nanomaterials in water environments, including behavior of nanomaterials and their toxicity to aquatic organisms will be discussed. This will be of great significance for our subsequent research on nanomaterials.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yali Hu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Rui Wang
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jianhua Wu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shuang Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mengxi Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
27
|
Chen Y, Lu W, Guo Y, Zhu Y, Song Y. Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E525. [PMID: 30987113 PMCID: PMC6523526 DOI: 10.3390/nano9040525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte™ Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yi Zhu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
28
|
Muñoz-Bonilla A, Echeverria C, Sonseca Á, Arrieta MP, Fernández-García M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E641. [PMID: 30791651 PMCID: PMC6416599 DOI: 10.3390/ma12040641] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
This article concisely reviews the most recent contributions to the development of sustainable bio-based polymers with antimicrobial properties. This is because some of the main problems that humanity faces, nowadays and in the future, are climate change and bacterial multi-resistance. Therefore, scientists are trying to provide solutions to these problems. In an attempt to organize these antimicrobial sustainable materials, we have classified them into the main families; i.e., polysaccharides, proteins/polypeptides, polyesters, and polyurethanes. The review then summarizes the most recent antimicrobial aspects of these sustainable materials with antimicrobial performance considering their main potential applications in the biomedical field and in the food industry. Furthermore, their use in other fields, such as water purification and coating technology, is also described. Finally, some concluding remarks will point out the promise of this theme.
Collapse
Affiliation(s)
- Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Águeda Sonseca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marina P Arrieta
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
29
|
Li C, Zhang H, Gong X, Li Q, Zhao X. Synthesis, characterization, and cytotoxicity assessment of N-acetyl-l-cysteine capped ZnO nanoparticles as camptothecin delivery system. Colloids Surf B Biointerfaces 2019; 174:476-482. [DOI: 10.1016/j.colsurfb.2018.11.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
|
30
|
Brazuna LP, Tabuti TG, Silva ADP, Tada DB, Politi MJ, Bacani R, Triboni ER. Effect of lithium and sodium ions on the size and morphology of ZnO nanoparticles synthesized by a glycerol–urea route. NEW J CHEM 2019. [DOI: 10.1039/c9nj04331d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of NaCl and LiCl salts to glycerol–urea synthesis leads to the formation of rods and small spheres of ZnO-NPs.
Collapse
Affiliation(s)
- Lorena Portela Brazuna
- Escola de Engenharia de Lorena da Universidade de São Paulo
- Departamento de Engenharia Química (DEQUI)
- Estrada Municipal do Campinho
- Lorena
- Brazil
| | - Thiago Galeote Tabuti
- Escola de Engenharia de Lorena da Universidade de São Paulo
- Departamento de Engenharia Química (DEQUI)
- Estrada Municipal do Campinho
- Lorena
- Brazil
| | - Adrielle de Paula Silva
- Universidade Federal de São Paulo
- Campus São José dos Campos (UNIFESP-SJC)
- São José dos Campos
- Brazil
| | - Dayane Batista Tada
- Universidade Federal de São Paulo
- Campus São José dos Campos (UNIFESP-SJC)
- São José dos Campos
- Brazil
| | - Mário José Politi
- Laboratory of Photochemistry and Fast Kinetics Biochemistry and Chemistry Departments
- Institute of Chemistry
- 748, São Paulo
- Brazil
| | - Rebeca Bacani
- Escola de Engenharia de Lorena da Universidade de São Paulo
- Departamento de Engenharia Química (DEQUI)
- Estrada Municipal do Campinho
- Lorena
- Brazil
| | - Eduardo Rezende Triboni
- Escola de Engenharia de Lorena da Universidade de São Paulo
- Departamento de Engenharia Química (DEQUI)
- Estrada Municipal do Campinho
- Lorena
- Brazil
| |
Collapse
|