1
|
Le TTY, Milen N, Grabner D, Hendriks AJ, Peijnenburg WJGM, Sures B. Delineation of the exposure-response causality chain of chronic copper toxicity to the zebra mussel, Dreissena polymorpha, with a TK-TD model based on concepts of biotic ligand model and subcellular metal partitioning model. CHEMOSPHERE 2022; 286:131930. [PMID: 34426290 DOI: 10.1016/j.chemosphere.2021.131930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
A toxicokinetic-toxicodynamic model was constructed to delineate the exposure-response causality. The model could be used: to predict metal accumulation considering the influence of water chemistry and biotic ligand characteristics; to simulate the dynamics of subcellular partitioning considering metabolism, detoxification, and elimination; and to predict chronic toxicity as represented by biomarker responses from the concentration of metals in the fraction of potentially toxic metal. The model was calibrated with data generated from an experiment in which the Zebra mussel Dreissena polymorpha was exposed to Cu at nominal concentrations of 25 and 50 μg/L and with varied Na+ concentrations in water up to 4.0 mmol/L for 24 days. Data used in the calibration included physicochemical conditions of the exposure environment, Cu concentrations in subcellular fractions, and oxidative stress-induced responses, i.e. glutathione-S-transferase activity and lipid peroxidation. The model explained the dynamics of subcellular Cu partitioning and the effect mechanism reasonably well. With a low affinity constant for Na + binding to Cu2+ uptake sites, Na + had limited influence on Cu2+ uptake at low Na+ concentrations in water. Copper was taken up into the metabolically available pool (MAP) at a largely higher rate than into the cellular debris. Similar Cu concentrations were found in these two fractions at low exposure levels, which could be attributed to sequestration pathways (metabolism, detoxification, and elimination) in the MAP. However, such sequestration was inefficient as shown by similar Cu concentrations in detoxified fractions with increasing exposure level accompanied by the increasing Cu concentration in the MAP.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany.
| | - Nachev Milen
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, 6525, HP Nijmegen, the Netherlands
| | - Willie J G M Peijnenburg
- Center for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, 3720, BA, the Netherlands; Institute for Environmental Sciences, Leiden University, 2311 EZ, Leiden, the Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| |
Collapse
|
2
|
Qiu H, Liu W, Yan Y, Long J, Xie X. Effects of waterborne cadmium exposure on Spinibarbus sinensis hepatopancreas and kidney: Mitochondrial cadmium accumulation and respiratory metabolism. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109115. [PMID: 34153506 DOI: 10.1016/j.cbpc.2021.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
To examine the relationship between heavy metal accumulation in mitochondria and their respiration function in fish during in vivo exposure, juvenile Spinibarbus sinensis were exposed to different waterborne cadmium (Cd) concentrations for up to 28 days. We measured the state III respiration rate and cytochrome c oxidase (CCO) activity of mitochondria in hepatopancreas and kidney and the accumulated Cd concentrations in mitochondria and heat-stable protein (HSP) fractions. Dose- and time-dependent Cd accumulation occurred at different levels in both organs, but was lower in hepatopancreas. When hepatopancreas mitochondrial Cd concentrations in Cd-exposed groups were > 5.5 μg/g dwt, their state III respiration rates were significantly lower than the control. CCO activity of hepatopancreas mitochondria exhibited decreasing dose- and time-dependent trends. However, kidney mitochondria respiratory activities were not affected significantly by Cd exposure. Cd concentrations in kidney HSP fraction were 2-5 times higher than in hepatopancreas under all exposure conditions, and were mainly present as non-deleterious metallothionein (MT)-Cd complexes. These results suggest that Cd accumulation occurred in hepatopancreas and kidney mitochondria of S. sinensis following waterborne Cd exposure, which significantly inhibited the respiration function of hepatopancreas mitochondria but did not have a deleterious effect on kidney mitochondria. The inhibitory pattern of hepatopancreas mitochondrial Cd concentrations related to function exhibited threshold and saturation effects, suggesting the capacity of S. sinensis to manage Cd toxicity. The difference in the relative proportion of Cd occurring as MT-Cd complexes in organs likely causes the organ-specific effects of Cd on hepatopancreas and kidney mitochondrial function.
Collapse
Affiliation(s)
- Hanxun Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China
| | - Wenming Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yulian Yan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China
| | - Jing Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China
| | - Xiaojun Xie
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Okoye CN, Stevens D, Kamunde C. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors. Free Radic Biol Med 2021; 164:439-456. [PMID: 33383085 DOI: 10.1016/j.freeradbiomed.2020.12.234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Oxygen (O2) deprivation and metals are common environmental stressors and their exposure to aquatic organisms can induce oxidative stress by disrupting cellular reactive oxygen species (ROS) homeostasis. Mitochondria are a major source of ROS in the cell wherein a dozen sites located on enzymes of the electron transport system (ETS) and substrate oxidation produce superoxide anion radicals (O2˙‾) or hydrogen peroxide (H2O2). Sites located on ETS enzymes can generate ROS by forward electron transfer (FET) and reverse electron transfer (RET) reactions; however, knowledge of how exogenous stressors modulate site-specific ROS production is limited. We investigated the effects of anoxia-reoxygenation and cadmium (Cd) on H2O2 emission in fish liver mitochondria oxidizing glutamate-malate, succinate or palmitoylcarnitine-malate. We find that anoxia-reoxygenation attenuates H2O2 emission while the effect of Cd depends on the substrate, with monotonic responses for glutamate-malate and palmitoylcarnitine-malate, and a biphasic response for succinate. Anoxia-reoxygenation exerts a substrate-dependent inhibition of mitochondrial respiration which is more severe with palmitoylcarnitine-malate compared with succinate or glutamate-malate. Additionally, specific mitochondrial ROS-emitting sites were sequestered using blockers of electron transfer and the effects of anoxia-reoxygenation and Cd on H2O2 emission were evaluated. Here, we find that site-specific H2O2 emission capacities depend on the substrate and the direction of electron flow. Moreover, anoxia-reoxygenation alters site-specific H2O2 emission rates during succinate and glutamate-malate oxidation whereas Cd imposes monotonic or biphasic H2O2 emission responses depending on the substrate and site. Contrary to our expectation, anoxia-reoxygenation blunts the effect of Cd. These results suggest that the effect of exogenous stressors on mitochondrial oxidant production is governed by their impact on energy conversion reactions and mitochondrial redox poise. Moreover, direct increased ROS production seemingly does not explain the increased adverse effects associated with combined exposure of aquatic organisms to Cd and low dissolved oxygen levels.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada; Department of Veterinary Obstetrics and Reproductive Diseases. Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
4
|
Pilehvar A, Cordery KI, Town RM, Blust R. The synergistic toxicity of Cd(II) and Cu(II) to zebrafish (Danio rerio): Effect of water hardness. CHEMOSPHERE 2020; 247:125942. [PMID: 32069721 DOI: 10.1016/j.chemosphere.2020.125942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have evaluated the interactive toxicity of Cu(II) and Cd(II) in water with different hardness levels using adult zebrafish (Danio rerio). Zebrafish were exposed to Cd(II) (0.2-22 μM) or Cu(II) (0.1-8 μM) in single or binary exposures in very soft, moderately hard or very hard water. The whole body burdens of Cd(II) and Cu(II) reflect the net effect of biouptake and elimination, mortality was the indicator of toxicity, and whole body major ion content was measured to assess ion regulatory functions. Cu(II) was found to be more toxic than Cd(II) for zebrafish, and Cu(II) and Cd(II) exhibited a significant synergistic effect. The toxicity of metal ions increased upon decreasing the ionic strength of the exposure medium, probably due to elevated competition between metal ions with other cations in hard water and increased activity of Ca2+ pathways in soft water treatments. Whole body metal accumulation and the accumulation rate of both Cu and Cd increased as the metal ion concentration in the exposure medium increased. Nevertheless, neither parameter explained the observed synergistic effect on mortality. Finally, we observed a significant loss of whole body Na+ in fish which died during the metal exposure compared to surviving fish, irrespective of exposure conditions. Such an effect was not observed for other major cations (K+, Ca2+ and Mg2+). This observation suggests that, under the applied exposure conditions, survival was correlated to the capacity of the organism to maintain Na+ homeostasis.
Collapse
Affiliation(s)
- Ali Pilehvar
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Katherine I Cordery
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
5
|
Defo MA, Gendron AD, Head J, Pilote M, Turcotte P, Marcogliese DJ, Houde M. Cumulative effects of cadmium and natural stressors (temperature and parasite infection) on molecular and biochemical responses of juvenile rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105347. [PMID: 31715476 DOI: 10.1016/j.aquatox.2019.105347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/06/2023]
Abstract
The simultaneous presence of natural and anthropogenic stressors in aquatic ecosystems can challenge the identification of factors causing decline in fish populations. These stressors include chemical mixtures and natural abiotic and biotic factors such as water temperature and parasitism. Effects of cumulative stressors may vary from antagonism to synergism at the organismal or population levels and may not be predicted from exposure to individual stressors. This study aimed to evaluate the combined effects of chronic exposure to cadmium (Cd) and elevated water temperature (23 °C) or parasite infection in juvenile rainbow trout (Oncorhynchus mykiss) using a multi-level biological approach, including RNA-sequencing. Fish were exposed to diet-borne Cd (6 μg Cd/g wet feed), individually and in combination with thermal (23 °C) or parasitic stressors, for 28 days. The parasite challenge consisted of a single exposure to glochidia (larvae) of the freshwater mussel (Strophitus undulatus), which encysts in fish gills, fins and skin. Results indicated lower fish length, weight, and relative growth rate in fish exposed to a higher water temperature (23 °C). Body condition and hepatosomatic index of trout were, however, higher in the 23 °C temperature treatment compared to the control fish kept at 15 °C. Exposure to thermal stress or parasitism did not influence tissue Cd bioaccumulation. More than 700 genes were differentially transcribed in fish exposed to the individual thermal stress treatment. However, neither Cd exposure nor parasite infection affected the number of differentially transcribed genes, compared to controls. The highest number of differentially transcribed genes (969 genes) was observed in trout exposed to combined Cd and high temperature stressors; these genes were mainly related to stress response, protein folding, calcium metabolism, bone growth, energy metabolism, and immune system; functions overlapped with responses found in fish solely exposed to higher water temperature. Only 40 genes were differentially transcribed when fish were exposed to Cd and glochidia and were related to the immune system, apoptosis process, energy metabolism and malignant tumor. These results suggest that dietary Cd may exacerbate the temperature stress and, to a lesser extent, parasitic infection stress on trout transcriptomic responses. Changes in the concentrations of liver ethoxyresorufin-o-deethylase, heat shock protein 70 and thiobarbituric acid reactive substances coupled to changes in the activities of cellular glutathione S-transferase and glucose-6-phosphate dehydrogenase were also observed at the cellular level. This study may help understand effects of freshwater fish exposure to cumulative stressors in a changing environment.
Collapse
Affiliation(s)
- Michel A Defo
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada.
| | - Andrée D Gendron
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Jessica Head
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Martin Pilote
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Patrice Turcotte
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - David J Marcogliese
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada; St. Andrews Biological Station, 125 Marine Science Drive, St. Andrews, NB, E5B 0E4, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| |
Collapse
|
6
|
Okoye CN, MacDonald-Jay N, Kamunde C. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105264. [PMID: 31377504 DOI: 10.1016/j.aquatox.2019.105264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A by-product of mitochondrial substrate oxidation and electron transfer to generate cellular energy (ATP) is reactive oxygen species (ROS). Superoxide anion radical and hydrogen peroxide (H2O2) are the proximal ROS produced by the mitochondria. Because low levels of ROS serve critical regulatory roles in cell physiology while excessive levels or inappropriately localized ROS result in aberrant physiological states, mitochondrial ROS need to be tightly regulated. While it is known that regulation of mitochondrial ROS involves balancing the rates of production and removal, the effects of stressors on these processes remain largely unknown. To illuminate how stressors modulate mitochondrial ROS homeostasis, we investigated the effects of temperature and cadmium (Cd) on H2O2 emission and consumption in rainbow trout liver mitochondria. We show that H2O2 emission rates increase with temperature and Cd exposure. Energizing mitochondria with malate-glutamate or succinate increased the rate of H2O2 emission; however, Cd exposure imposed different patterns of H2O2 emission depending on the concentration and substrate. Specifically, mitochondria respiring on malate-glutamate exhibited a saturable graded concentration-response curve that plateaued at 5 μM while mitochondria respiring on succinate had a biphasic concentration-response curve characterized by a spike in the emission rate at 1 μM Cd followed by gradual diminution at higher Cd concentrations. To explain the observed substrate- and concentration-dependent effects of Cd, we sequestered specific mitochondrial ROS-emitting sites using blockers of electron transfer and then tested the effect of the metal. The results indicate that the biphasic H2O2 emission response imposed by succinate is due to site IIF but is further modified at sites IQ and IIIQo. Moreover, the saturable graded H2O2 emission response in mitochondria energized with malate-glutamate is consistent with effect of Cd on site IF. Additionally, Cd and temperature acted cooperatively to increase mitochondrial H2O2 emission suggesting that increased toxicity of Cd at high temperature may be due to increased oxidative insult. Surprisingly, despite their clear stimulatory effect on H2O2 emission, Cd, temperature and bioenergetic status did not affect the kinetics of mitochondrial H2O2 consumption; the rate constants and half-lives for all the conditions tested were similar. Overall, our study indicates that the production processes of rainbow trout liver mitochondrial H2O2 metabolism are highly responsive to stressors and bioenergetics while the consumption processes are recalcitrant. The latter denotes the presence of a robust H2O2 scavenging system in liver mitochondria that would maintain H2O2 homeostasis in the face of increased production and reduced scavenging capacity.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Nicole MacDonald-Jay
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
7
|
Sandhu N, Liang L, McGeer J, Dores RM, Vijayan MM. Cadmium disrupts melanocortin 2 receptor signaling in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:26-33. [PMID: 30685544 DOI: 10.1016/j.aquatox.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Cadmium is an endocrine disruptor and inhibits corticosteroid production, but the mechanisms are far from clear. We tested the hypothesis that sublethal exposure to environmentally realistic levels of cadmium impairs cortisol production by disrupting the melanocortin 2 receptor (MC2R) signaling in rainbow trout (Oncorhynchus mykiss). Fish were exposed to sublethal concentrations of cadmium (0.75 or 2.0 μg/L) in a flow-through system for 7 d and subjected to an acute secondary stressor to evoke a cortisol response. Cadmium exposure for 7 d did not affect plasma cortisol concentrations, but head kidney mc2r mRNA levels were higher than in control fish. The cortisol stress performance to a secondary-stressor was attenuated in the cadmium groups, and this corresponded with transient reduction in transcript abundance of mc2r and the gene encoding its accessory protein MRAP1 but not MRAP2 in the head kidney. Furthermore, in vivo cadmium exposure attenuated the adrenocorticotropic hormone (ACTH)-, but not 8-br-cAMP-stimulated cortisol production in head kidney slices ex vivo. This corresponded with reduced transcript abundance of mc2r and mrap1, but not mrap2 in these tissue slices. Also, reporter assays with CHO cells transiently transfected with rainbow trout mc2r and zebrafish mrap1 revealed a dose-independent inhibition in ACTH-stimulated luciferase activity by cadmium. Collectively, waterborne exposure to environmentally realistic concentration of cadmium compromises the stressor-induced cortisol response, and a mode of action involves the disruption of MC2R signaling in rainbow trout.
Collapse
Affiliation(s)
- Navdeep Sandhu
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Liang Liang
- Department of Biology, University of Denver, Denver, CO, 80208-9010, USA
| | - James McGeer
- Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Robert M Dores
- Department of Biology, University of Denver, Denver, CO, 80208-9010, USA
| | | |
Collapse
|
8
|
Powolny T, Scheifler R, Raoul F, Fritsch C. Is blood a reliable indicator of trace metal concentrations in organs of small mammals? CHEMOSPHERE 2019; 217:320-328. [PMID: 30419386 DOI: 10.1016/j.chemosphere.2018.10.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
In wildlife ecotoxicology, the rationale for using blood rather than other body fluids or tissues is that sampling blood is a minimally invasive technique without animal mortality, providing both ethical and scientific benefits. To date, few studies are available on the relationships between blood and organ metal concentrations of small mammals living in contaminated sites. The present work aimed to study the relationships between the concentrations of 18 essential and nonessential metals in blood and their concentrations in the liver and kidneys, two accumulation and target organs, in wood mice from a former lead and zinc smelter, Metaleurop Nord, in northern France. The results from Se, Pb and Tl indicate that blood levels may be used to predict concentrations in organs of small mammals. Conversely, for Cd, Cu, Fe, Mo, Ti and Zn, blood concentrations were poorly or not related to liver and kidney concentrations. In addition to accurately predicting the concentrations of some metals in target organs, blood can provide important information about the physiological and biochemical status of organisms, but further toxicokinetic research is required to develop the use of blood sampling as a minimally invasive biomonitoring and ecotoxicological method in wildlife.
Collapse
Affiliation(s)
- Thibaut Powolny
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté Usc INRA, 25030 Besançon Cedex, France.
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté Usc INRA, 25030 Besançon Cedex, France
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté Usc INRA, 25030 Besançon Cedex, France
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté Usc INRA, 25030 Besançon Cedex, France
| |
Collapse
|
9
|
Lam CM, Lai HY. Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:563-570. [PMID: 30029102 DOI: 10.1016/j.ecoenv.2018.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
A plant's tolerance to heavy metals (HMs) and its detoxification mechanisms are associated with the subcellular distribution of HMs and their chemical forms. In this study, water spinach (Ipomoea aquatica Forsk.) was grown in two soils contaminated with a single HM (cadmium, Cd) or combined HMs (Cd and nickel, Ni). Inoculation of arbuscular mycorrizal fungi (AMF) was conducted to increase the accumulation of phosphorus (P) in plants. One major exception was to decrease the migration and accumulation of HMs in edible parts by the formation of P-HM complexes. The effects of blanching and simulated digestion on bioaccessibility were also assessed. The experimental results showed that the water spinach species used in this study had a high capacity to accumulate HMs. AMF treatment improved water spinach growth and decreased the accumulation of Ni but not that of Cd. Soluble and inorganic Cd and Ni were the major subcellular fractions and chemical forms in water spinach; these two HMs also exhibited higher migration capacities in comparison to chromium (Cr). Relative to raw tissues, 45-84% of Cd, Cr, and Ni were leached after blanching. Approximately 32-55%, 16-50%, and 27-40% of Cd, Cr, and Ni, respectively, were bioaccessible and could be metabolized by in vitro digestive fluids.
Collapse
Affiliation(s)
- Chun-Ming Lam
- Department of Post-Modern Agriculture, MingDao University, 369 Wenhua Rd., Peetow, Changhua County 523, Taiwan
| | - Hung-Yu Lai
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan.
| |
Collapse
|
10
|
Dragun Z, Filipović Marijić V, Krasnići N, Ivanković D, Valić D, Žunić J, Kapetanović D, Smrzlić IV, Redžović Z, Grgić I, Erk M. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:537-549. [PMID: 28918336 DOI: 10.1016/j.ecoenv.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Nesrete Krasnići
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Jakov Žunić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Damir Kapetanović
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Irena Vardić Smrzlić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Zuzana Redžović
- University of Zagreb; Faculty of Science; Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Ivana Grgić
- University of Zagreb; Faculty of Science; Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Marijana Erk
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| |
Collapse
|
11
|
McRae NK, Gaw S, Glover CN. Effects of waterborne cadmium on metabolic rate, oxidative stress, and ion regulation in the freshwater fish, inanga (Galaxias maculatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:1-9. [PMID: 29120705 DOI: 10.1016/j.aquatox.2017.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The freshwater fish Galaxias maculatus (inanga) is a widespread Southern hemisphere species, but despite its habitation of lowland near-coastal waters with a high potential for cadmium contamination, nothing is known regarding its sensitivity to this toxic trace metal. Acute (96h) exposures were therefore performed to determine sublethal responses of inanga to waterborne cadmium at a regulatory trigger value (nominally 0.2μgL-1; measured 1μgL-1), an environmental level (measured at 2.5μgL-1), and an effect level (measured at 10μgL-1). Whole body (tissue remaining following excision of kidney and liver) cadmium burden remained constant up until an exposure concentration of 10μgL-1, at which point cadmium concentration increased significantly. A transient effect of cadmium on metabolic rate was observed, with an impaired oxygen consumption noted at 2.5, but not 1 or 10, μg L-1. Cadmium did not impair influx rates of either sodium or calcium, and no effects of cadmium on oxidative stress parameters (catalase activity, lipid peroxidation) were noted in the kidney. However, at cadmium concentrations of 2.5 and 10μgL-1, lipid peroxidation in the liver increased, concomitant with a decline in hepatic catalase activity. These data indicate that there are significant differences in the mechanisms of cadmium toxicity in inanga, relative to better-studied Northern hemisphere species, especially with respect to ionoregulatory impacts. However, effects were induced at cadmium concentrations unlikely to be encountered in any but the most highly contaminated waterways, and thus our data suggest that current trigger values for cadmium concentrations in Australian and New Zealand waters are likely to be protective of inanga.
Collapse
Affiliation(s)
- Nicole K McRae
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Sally Gaw
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Ju YR, Yang YF, Tsai JW, Cheng YH, Chen WY, Liao CM. Evaluation on subcellular partitioning and biodynamics of pulse copper toxicity in tilapia reveals impacts of a major environmental disturbance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17407-17417. [PMID: 28589284 DOI: 10.1007/s11356-017-9421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, Republic of China
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
13
|
Onukwufor JO, Stevens D, Kamunde C. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:129-141. [PMID: 27893995 DOI: 10.1016/j.aquatox.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/16/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Although aquatic organisms face multiple environmental stressors that may interact to alter adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is limited. We investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) and temperature on mitochondrial function. Liver mitochondria from juvenile rainbow trout were exposed to Cd (0-20μM) and H-R (0 and 5min) at 5, 13 and 25°C followed by measurements of mitochondrial Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS release and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed reduction of maximal complex I (CI) respiration whereas at low temperature 5 and 10μM stimulated maximal CI respiration post H-R. The basal respiration showed a biphasic response at high temperatures with low Cd concentrations reducing the stimulatory effect of H-R and high concentrations enhancing this effect. At low temperature Cd monotonically enhanced H-R-induced stimulation of basal respiration. Cd and H-R reduced both the P/O ratio and the RCR at all 3 temperatures. Temperature rise alone increased mitochondrial Cd load and toxicity, but combined H-R and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the mitochondrial dysfunction. Mitochondrial dysfunction induced by H-R was associated with swelling of the organelle and blocking of conversion of CІ D to A form. However, low amounts of Cd protected against H-R induced swelling and prevented the inhibition of H-R-induced CI D to A transition. Both H-R and Cd dissipated mitochondrial membrane potential Δψm and damaged mitochondrial structure. We observed increased reactive oxygen species (H2O2) release that together with the protection afforded by EGTA, vitamin E and N-acetylcysteine against the Δψm dissipation suggested direct involvement of Cd and oxidative stress. Overall, our findings indicate that mitochondrial sensitivity to Cd toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial Cd load did not always explain this effect.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
14
|
Chen BC, Lai HY. Subcellular Distribution of Cadmium in Two Paddy Rice Varieties with Different Cooking Methods. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/as.2016.76040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Araújo O, Pereira P, Cesário R, Pacheco M, Raimundo J. The sub-cellular fate of mercury in the liver of wild mullets (Liza aurata)--Contribution to the understanding of metal-induced cellular toxicity. MARINE POLLUTION BULLETIN 2015; 95:412-418. [PMID: 25861722 DOI: 10.1016/j.marpolbul.2015.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions.
Collapse
Affiliation(s)
- Olinda Araújo
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 4050-123 Porto, Portugal.
| | - Patrícia Pereira
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rute Cesário
- Centro de Química Estrutural, Instituto Superior técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 4050-123 Porto, Portugal
| |
Collapse
|
16
|
Meador JP. Tissue concentrations as the dose metric to assess potential toxic effects of metals in field-collected fish: Copper and cadmium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1309-1319. [PMID: 25939475 DOI: 10.1002/etc.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
The present study examined the available literature linking whole-body tissue concentrations with toxic effects in fish species for copper and cadmium. The variability in effect concentration for both copper and cadmium among species occurred within an order of magnitude for all responses, whereas the range for lethal toxicity based on water exposure spanned approximately 4 to 5 orders of magnitude. Fish tissue concentrations causing adverse effects were just above background concentrations, occurring between 1 μg/g and 10 μg/g for copper and 0.1 μg/g to 4 μg/g for cadmium. The results also show that salmonids are especially sensitive to cadmium, which appears to be a function of chemical potency. No studies were found that indicated adverse effects without increases in whole-body concentration of these metals. This narrow range for dose-response implies that a toxicological spillover point occurs when the detoxification capacity of various tissues within the animal are exceeded, and this likely occurs at a similar whole-body concentration for all naïvely exposed fish species. Elevated whole-body concentrations in fish from the field may be indicative of possible acclimation to metals that may or may not result in effects for target species. Acclimation concentrations may be useful in that they signal excessive metal concentrations in water, sediment, or prey species for a given site and indicate likely toxic effects for species unable to acclimate to excess metal exposure. Using tissue residues as the dose metric for these metals provides another line of evidence for assessing impaired ecosystems and greater confidence that hazard concentrations are protective for all fish species.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
17
|
Fan W, Xu Z, Wang WX. Contrasting metal detoxification in polychaetes, bivalves and fish from a contaminated bay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:62-68. [PMID: 25528420 DOI: 10.1016/j.aquatox.2014.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Jinzhou Bay in Bohai, Northern China, is historically contaminated with metals, but the organisms living in such contaminated environments are much less well studied. In this study, we contrasted the different subcellular and detoxification responses of polychaetes, bivalves and fish collected from different contaminated sites in Jinzhou Bay. In polychaete Neanthes japonica, metal-rich granule (MRG) was the main biologically detoxified metal compartment, and metallothionein-like protein (MTLP) detoxified a relatively smaller fraction of accumulated metals. The importance of MRG increased whereas that of MTLP decreased with increasing metal bioaccumulation. Detoxification in the two bivalves was similar to that in the polychaetes. However, the MRG appeared to play only a minor role in metal binding and detoxification in the gills and livers of fish, whereas MTLP was the dominating detoxification pool. Cellular debris was an important pool binding with metals in the three marine animals. Our study highlighted the contrasting cellular binding and detoxification among different marine organisms living in contaminated environments.
Collapse
Affiliation(s)
- Wenhong Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China
| | - Zhizhen Xu
- Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labor Protection, Beijing 100054, PR China
| | - Wen-Xiong Wang
- Division of Life Science, State Key Laboratory of Marine Pollution, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Leonard EM, Banerjee U, D'Silva JJ, Wood CM. Chronic nickel bioaccumulation and sub-cellular fractionation in two freshwater teleosts, the round goby and the rainbow trout, exposed simultaneously to waterborne and dietborne nickel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:141-153. [PMID: 24880786 DOI: 10.1016/j.aquatox.2014.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/16/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
Rainbow trout and round goby were exposed for 30 days to waterborne and dietary Ni in combination at two waterborne concentration ranges (6.2-12 μmol/L, 68-86 μmol/L), the lower of which is typical of contaminated environments. The prey (black worms; Lumbriculus variegatus) were exposed for 48 h in the effluent of the fish exposure tanks before being fed to the fish (ration=2% body weight/day). Ni in gills, gut, and prey was fractionated into biologically inactive metal [BIM=metal-rich granules (MRG) and metallothionein-like proteins (MT)] and biologically active metal [BAM=organelles (ORG) and heat-denaturable proteins (HDP)]. Gobies were more sensitive than trout to chronic Ni exposure. Possibly, this greater sensitivity may have been due to the goby's pre-exposure to pollutants at their collection site, as evidenced by ∼2-fold greater initial Ni concentrations in both gills and gut relative to trout. However, this was followed by ∼2-16× larger bioaccumulation in both the gills and the gut during the experimental exposure. On a subcellular level, ∼3-40× more Ni was associated with the BAM fraction of goby in comparison to trout. Comparison of the fractional distribution of Ni in the prey versus the gut tissue of the predators suggested that round goby were more efficient than rainbow trout in detoxifying Ni taken up from the diet. Assessing sub-cellular distribution of Ni in the gills and gut of two fish of different habitat and lifestyles revealed two different strategies of Ni bioaccumulation and sub-cellular distribution. On the one hand, trout exhibited an ability to regulate gill Ni bioaccumulation and maintain the majority of the Ni in the MT fraction of the BIM. In contrast goby exhibited large Ni spillovers to both the HDP and ORG fractions of the BAM in the gill. However, the same trend was not observed in the gut, where the potential acclimation of goby to pollutants from their collection site may have aided their ability to regulate Ni spillover to the BAM more so than in trout. Overall, chronic mortality observed in goby may be associated more with Ni bioaccumulation in gills than in gut; the former at either 4-d or 30-d was predictive of chronic Ni toxicity. BIM and BAM fractions of the goby gills were equally predictive of chronic (30-d) mortality. However, critical body residue (CBR50) values of the BIM fraction were ∼2-4× greater than CBR50 values of the BAM fraction, suggesting that goby are more sensitive to Ni bioaccumulation in the BAM fraction. There was insufficient mortality in trout to assess whether Ni bioaccumulation was predictive of chronic mortality.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Life Science Building 208 1280 Main St. W., Hamilton, ON, Canada L8S 4K1.
| | - Upasana Banerjee
- Department of Biology, McMaster University, Life Science Building 208 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| | - Joshua J D'Silva
- Department of Biology, McMaster University, Life Science Building 208 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| | - Chris M Wood
- Department of Biology, McMaster University, Life Science Building 208 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
19
|
Marasinghe Wadige CPM, Maher WA, Taylor AM, Krikowa F. Exposure-dose-response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:361-371. [PMID: 24834859 DOI: 10.1016/j.aquatox.2014.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
To understand how benthic biota may respond to the additive or antagonistic effects of metal mixtures in the environment it is first necessary to examine their responses to the individual metals. In this context, laboratory controlled single metal-spiked sediment toxicity tests are useful to assess this. The exposure-dose-response relationships of Hyridella australis to cadmium-spiked sediments were, therefore, investigated in laboratory microcosms. H. australis was exposed to individual cadmium spiked sediments (<0.05 (control), 4±0.3 (low) and 15±1 (high) μg/g dry mass) for 28 days. Dose was measured as cadmium accumulation in whole soft body and individual tissues at weekly intervals over the exposure period. Dose was further examined as sub-cellular localisation of cadmium in hepatopancreas tissues. The biological responses in terms of enzymatic and cellular biomarkers were measured in hepatopancreas tissues at day 28. H. australis accumulated cadmium from spiked sediments with an 8-fold (low exposure organisms) and 16-fold (high exposure organisms) increase at day 28 compared to control organisms. The accumulated tissue cadmium concentrations reflected the sediment cadmium exposure at day 28. Cadmium accumulation in high exposure organisms was inversely related to the tissue calcium concentrations. Gills of H. australis showed significantly higher cadmium accumulation than the other tissues. Accumulated cadmium in biologically active and biologically detoxified metal pools was not significantly different in cadmium exposed organisms, which suggests that H. australis has some tolerance to cadmium. The metallothionein like protein fraction played an important role in the sequestration and detoxification of cadmium and the amount sequestered in this fraction increased with increased cadmium exposure. The highest percentage of biologically active cadmium was associated with the lysosome+microsome and mitochondrial fractions. Cadmium concentrations in these two fractions of cadmium exposed organisms were significantly higher with respect to controls. Total antioxidant capacity decreased with increased cadmium exposure and tissue dose. Lipid peroxidation increased and lysosomal membrane stability decreased significantly with increased cadmium exposure and tissue dose. Based on exposure-dose-response analysis in this study, H. australis would be a suitable organism for assessing cadmium sediment exposure and toxicity.
Collapse
Affiliation(s)
| | - William A Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Anne M Taylor
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Frank Krikowa
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
Sandhu N, McGeer JC, Vijayan MM. Exposure to environmental levels of waterborne cadmium impacts corticosteroidogenic and metabolic capacities, and compromises secondary stressor performance in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:20-27. [PMID: 24269906 DOI: 10.1016/j.aquatox.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
The physiological responses to waterborne cadmium exposure have been well documented; however, few studies have examined animal performances at low exposure concentrations of this metal. We tested the hypothesis that longer-term exposure to low levels of cadmium will compromise the steroidogenic and metabolic capacities, and reduce the cortisol response to a secondary stressor in fish. To test this, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to 0 (control), 0.75 or 2.0 μg/L waterborne cadmium in a flow-through system and were sampled at 1, 7 and 28 d of exposure. There were only very slight disturbances in basal plasma cortisol, lactate or glucose levels in response to cadmium exposure over the 28 d period. Chronic cadmium exposure significantly affected key genes involved in corticosteroidogenesis, including melanocortin 2 receptor, steroidogenic acute regulatory protein and cytochrome P450 side chain cleavage enzyme. At 28 d, the high cadmium exposure group showed a significant drop in the glucocorticoid receptor and mineralocorticoid receptor protein expressions in the liver and brain, respectively. There were also perturbations in the metabolic capacities in the liver and gill of cadmium-exposed trout. Subjecting these fish to a secondary handling disturbance led to a significant attenuation of the stressor-induced plasma cortisol, glucose and lactate levels in the cadmium groups. Collectively, although trout appears to adjust to subchronic exposure to low levels of cadmium, it may be at the cost of impaired interrenal steroidogenic and tissue-specific metabolic capacities, leading to a compromised secondary stress performance in rainbow trout.
Collapse
Affiliation(s)
- Navdeep Sandhu
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James C McGeer
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | | |
Collapse
|
21
|
Onukwufor JO, MacDonald N, Kibenge F, Stevens D, Kamunde C. Effects of hypoxia-cadmium interactions on rainbow trout (Oncorhynchus mykiss) mitochondrial bioenergetics: attenuation of hypoxia-induced proton leak by low doses of cadmium. ACTA ACUST UNITED AC 2013; 217:831-40. [PMID: 24265424 DOI: 10.1242/jeb.093344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The goal of the present study was to elucidate the modulatory effects of cadmium (Cd) on hypoxia/reoxygenation-induced mitochondrial dysfunction in light of the limited understanding of the mechanisms of multiple stressor interactions in aquatic organisms. Rainbow trout (Oncorhynchus mykiss) liver mitochondria were isolated and energized with complex I substrates (malate-glutamate), and exposed to hypoxia (0>PO2<2 Torr) for 0-60 min followed by reoxygenation and measurement of coupled and uncoupled respiration and complex I enzyme activity. Thereafter, 5 min hypoxia was used to probe interactions with Cd (0-20 μmol l(-1)) and to test the hypothesis that deleterious effects of hypoxia/reoxygenation on mitochondria were mediated by reactive oxygen species (ROS). Hypoxia/reoxygenation inhibited state 3 and uncoupler-stimulated (state 3u) respiration while concomitantly stimulating states 4 and 4ol (proton leak) respiration, thus reducing phosphorylation and coupling efficiencies. Low doses of Cd (≤5 μmol l(-1)) reduced, while higher doses enhanced, hypoxia-stimulated proton leak. This was in contrast to the monotonic enhancement by Cd of hypoxia/reoxygenation-induced reductions of state 3 respiration, phosphorylation efficiency and coupling. Mitochondrial complex I activity was inhibited by hypoxia/reoxygenation, hence confirming the impairment of at least one component of the electron transport chain (ETC) in rainbow trout mitochondria. Similar to the effect on state 4 and proton leak, low doses of Cd partially reversed the hypoxia/reoxygenation-induced complex I activity inhibition. The ROS scavenger and sulfhydryl group donor N-acetylcysteine, administrated immediately prior to hypoxia exposure, reduced hypoxia/reoxygenation-stimulated proton leak without rescuing the inhibited state 3 respiration, suggesting that hypoxia/reoxygenation influences distinct aspects of mitochondria via different mechanisms. Our results indicate that hypoxia/reoxygenation impairs the ETC and sensitizes mitochondria to Cd via mechanisms that involve, at least in part, ROS. Moreover, we provide, for the first time in fish, evidence for a hormetic effect of Cd on mitochondrial bioenergetics--the attenuation of hypoxia/reoxygenation-stimulated proton leak and partial rescue of complex I inhibition by low Cd doses.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | | | | | | | | |
Collapse
|
22
|
Barbee NC, Greig A, Swearer SE. Validating the use of embryonic fish otoliths as recorders of sublethal exposure to copper in estuarine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:441-446. [PMID: 23628888 DOI: 10.1016/j.envpol.2013.03.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
In this study we explore the use of fish otoliths ('earbones') as a tool for detecting exposure to heavy metals in sediments. Because otoliths are metabolically inert and incorporate chemical impurities during growth, they can potentially provide a more permanent record of pollutant exposure history in aquatic environments than soft tissues. To validate this technique we cultured embryos of a native Australian fish, the common Galaxias (Galaxias maculatus), in the laboratory on sediments spiked with copper in a concentration gradient. Our aims were to test whether exposure to copper contaminated sediments is recorded in the otoliths of embryos and determine over what range in concentrations we can detect differences in exposure. We found elevated copper levels in otoliths of embryos exposed to high copper concentrations in sediments, suggesting that otoliths can be used as a tool to track a history of exposure to elevated copper levels in the environment.
Collapse
Affiliation(s)
- Nicole C Barbee
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
23
|
Frelon S, Mounicou S, Lobinski R, Gilbin R, Simon O. Subcellular fractionation and chemical speciation of uranium to elucidate its fate in gills and hepatopancreas of crayfish Procambarus clarkii. CHEMOSPHERE 2013; 91:481-490. [PMID: 23332674 DOI: 10.1016/j.chemosphere.2012.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
Knowledge of the organ and subcellular distribution of metals in organisms is fundamental for the understanding of their uptake, storage, elimination and toxicity. Detoxification via MTLP and MRG formation and chelation by some proteins are necessary to better assess the metal toxic fraction in aquatic organisms. This work focused on uranium, natural element mainly used in nuclear industry, and its subcellular fractionation and chemical speciation to elucidate its accumulation pattern in gills and hepatopancreas of crayfish Procambarus clarkii, key organs of uptake and detoxification, respectively. Crayfish waterborne exposure was performed during 4 and 10d at 0, 30, 600 and 4000 μg UL(-1). After tissue dissection, uranium subcellular fractionation was performed by successive ultracentrifugations. SEC-ICP MS was used to study uranium speciation in cytosolic fraction. The uranium subcellular partitioning patterns varied according to the target organ studied and its biological function in the organism. The cytosolic fraction accounted for 13-30% of the total uranium amount in gills and 35-75% in hepatopancreas. The uranium fraction coeluting with MTLPs in gills and hepatopancreas cytosols showed that roughly 55% of uranium remained non-detoxified and thus potentially toxic in the cytosol. Furthermore, the sum of uranium amount in organelle fractions and in the non-detoxified part of cytosol, possibly equivalent to available fraction, accounted for 20% (gills) and 57% (hepatopancreas) of the total uranium. Finally, the SEC-ICP MS analysis provided information on potential competition of U for biomolecules similar than the ones involved in endogenous essential metal (Fe, Cu) chelation.
Collapse
Affiliation(s)
- S Frelon
- IRSN/PRP-ENV/SERIS, Laboratoire de Biogéochimie, Biodisponibilité et Transfert des Radionucléides, BP3, 13115 St Paul lez Durance, France.
| | | | | | | | | |
Collapse
|
24
|
Ju YR, Chen WY, Liao CM. Assessing human exposure risk to cadmium through inhalation and seafood consumption. JOURNAL OF HAZARDOUS MATERIALS 2012; 227-228:353-361. [PMID: 22677056 DOI: 10.1016/j.jhazmat.2012.05.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/16/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
The role of cadmium (Cd) bioaccessibility in risk assessment is less well studied. The aim of this study was to assess human health risk to Cd through inhalation and seafood consumption by incorporating bioaccessibility. The relationships between trophically available Cd and bioaccessibility were constructed based on available experimental data. We estimated Cd concentrations in human urine and blood via daily intake from seafood consumption and inhalation based on a physiologically-based pharmacokinetic (PBPK) model. A Hill-based dose-response model was used to assess human renal dysfunction and peripheral arterial disease risks for long-term Cd exposure. Here we showed that fish had higher bioaccessibility (~83.7%) than that of shellfish (~73.2%) for human ingestion. Our results indicated that glomerular and tubular damage among different genders and smokers ranged from 18.03 to 18.18%. Our analysis showed that nonsmokers had 50% probability of peripheral arterial disease level exceeding from 3.28 to 8.80%. Smoking populations had 2-3 folds higher morbidity risk of peripheral arterial disease than those of nonsmokers. Our study concluded that the adverse effects of Cd exposure are exacerbated when high seafood consumption coincides with cigarette smoking. Our work provides a framework that could more accurately address risk dose dependency of Cd hazard.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
25
|
Eyckmans M, Blust R, De Boeck G. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:97-107. [PMID: 22542735 DOI: 10.1016/j.aquatox.2012.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 05/31/2023]
Abstract
Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 μg/l (0.79 μM) Cu for 24h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills and liver of these fish species strongly reflects their capacity to handle Cu excess and is one of the greatest contributors to their difference in sensitivity to Cu.
Collapse
Affiliation(s)
- Marleen Eyckmans
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Ronny Blust
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
26
|
Adiele RC, Stevens D, Kamunde C. Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 2012; 26:164-73. [DOI: 10.1016/j.tiv.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/25/2011] [Accepted: 10/28/2011] [Indexed: 12/14/2022]
|
27
|
Oyoo-Okoth E, Admiraal W, Osano O, Kraak MHS, Gichuki J, Ogwai C. Parasites modify sub-cellular partitioning of metals in the gut of fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:76-84. [PMID: 22100616 DOI: 10.1016/j.aquatox.2011.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/06/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.
Collapse
Affiliation(s)
- Elijah Oyoo-Okoth
- Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret, Kenya.
| | | | | | | | | | | |
Collapse
|
28
|
Cirillo T, Amodio Cocchieri R, Fasano E, Lucisano A, Tafuri S, Ferrante MC, Carpenè E, Andreani G, Isani G. Cadmium accumulation and antioxidant responses in Sparus aurata exposed to waterborne cadmium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:118-126. [PMID: 21553241 DOI: 10.1007/s00244-011-9676-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/18/2011] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), a nonessential trace element, is rapidly accumulated by most living organisms and subsequently exerts its toxicity at different molecular levels. This study exposed gilthead sea bream (Sparus aurata) to waterborne 0.1 mg/l Cd for 11 days and investigated the Cd accumulation pattern, lipid oxidation, and response of antioxidant defences. At the end of the experiment, mean Cd concentrations in gills and liver, the organs most prone to metal accumulation, were 209.4 and 371.7 ng/g ww, respectively. Muscle did not show any Cd retention during the 11 days of exposure. In liver, the cytosolic fraction of the metal was chelated into the nontoxic form by metallothionein (MT), a specific Cd-inducible protein. Zn and Cu concentrations were not influenced by Cd exposure. Glutathione (GSH) concentrations and the antioxidant enzyme activities of GSH reductase and GSH peroxidase showed an overall decreasing trend. In addition, lipid and aqueous hydroperoxide levels did not show any significant variation. Oxidative stress indirectly generated by Cd seems to be compensated for by the different biochemical systems tailored to decrease cellular damage. In particular, the negative effects of Cd accumulation in tissues were probably counteracted by the induction of MT.
Collapse
Affiliation(s)
- T Cirillo
- Department of Food Science, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Onsanit S, Wang WX. Sequestration of total and methyl mercury in different subcellular pools in marine caged fish. JOURNAL OF HAZARDOUS MATERIALS 2011; 198:113-122. [PMID: 22056886 DOI: 10.1016/j.jhazmat.2011.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Mercury contamination is an important issue in marine fish, and can cause toxicity to human by fish consumption. Many studies have measured the mercury concentrations in fish and estimated the threshold levels of its risk to human, but the mercury sequestration in different subcellular pools of fish is unclear. In this study, we investigated the concentration and distribution of total mercury (THg) and methylmercury (MeHg) in different subcellular fractions in the farmed red seabream, red drum, and black seabream from Fujian marine fish farms, China. We found that both THg and MeHg were dominantly bound with the cellular debris, followed by metallothionein-like protein>metal-rich granule>heat-denatured protein>organelles pools. In general, Hg bound with the metal-sensitive fraction was small, indicating that Hg may have little toxicity to the fish (muscle). For the first time we showed that MTLP fraction had the highest % of total Hg as MeHg (88-91%) among all the subcellular fractions. Furthermore, the mercury concentration and subcellular distribution in the black seabream were both dependent on the fish size. Subcellular study may shed light on the detoxification of marine fish to Hg exposure and the potential bioavailability to humans due to fish consumption.
Collapse
Affiliation(s)
- Sarayut Onsanit
- State Key Laboratory for Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, China
| | | |
Collapse
|
30
|
Adiele RC, Stevens D, Kamunde C. Cadmium- and calcium-mediated toxicity in rainbow trout (Oncorhynchus mykiss) in vivo: interactions on fitness and mitochondrial endpoints. CHEMOSPHERE 2011; 85:1604-1613. [PMID: 21885087 DOI: 10.1016/j.chemosphere.2011.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/30/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
Rainbow trout were exposed to sublethal waterborne Cd (5 and 10 μg L(-1)) and dietary Ca (60 mg g(-1)), individually and in combination, for 30 d to elucidate the interactive effects and evaluate the toxicological significance of mitochondrial responses to these cations in vivo. Indices of fish condition and mortality were measured and livers, centers of metabolic homeostasis, were harvested to assess mitochondrial function and cation accumulation. All indices of condition assessed (body weight, hepatosomatic index and condition factor) were reduced in all the treatment groups. Mortality occurred in the Cd-exposed groups with dietary Ca partly protecting against and enhancing it in the lower and higher Cd exposure, respectively. State 3 mitochondrial respiration was inhibited by 30%, 35% and 40% in livers of fish exposed to Ca, Cd and Cd+Ca, respectively, suggesting reduced ATP turnover and/or impaired substrate oxidation. While the phosphorylation efficiency was unaffected, state 4 and state 4+ (+ oligomycin) respirations were inhibited by all the exposures. Mitochondrial coupling was reduced and transiently restored denoting partially effective compensatory mechanisms to counteract Cd/Ca toxicity. The respiratory dysfunction was associated with accumulation of both Cd and Ca in the mitochondria. Although fish that survived acute effects of Cd and Ca exposure apparently made adjustments to energy generation such that liver mitochondria functioned more efficiently albeit at reduced capacity, reduced fitness was persistent possibly due to increased demands for maintenance and defense against toxicity. Overall, interactions between Cd and Ca on condition indices and mitochondrial responses were competitive or cooperative depending on exposure concentrations and duration.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | | | | |
Collapse
|
31
|
Liao CM, Ju YR, Chen WY. Subcellular partitioning links BLM-based toxicokinetics for assessing cadmium toxicity to rainbow trout. ENVIRONMENTAL TOXICOLOGY 2011; 26:600-609. [PMID: 20549614 DOI: 10.1002/tox.20584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/19/2010] [Accepted: 02/11/2010] [Indexed: 05/29/2023]
Abstract
The purpose of this article was to develop an integrated-scale toxicological model to investigate the impact of cadmium (Cd) toxicity on rainbow trout (Oncorhynchus mykiss) based on recent published experimental data. This model was generated from three different types of functional relationship: biotic ligand model (BLM), damage assessment model (DAM), and subcellular partitioning model (SPM), both of key toxicological determinants involved and of functional connections between them. Toxicokinetic parameters of uptake rate constant (k(1)) and elimination rate constant (k(2)) in gill, liver, and subcellular fractions were derived. A negative correlation between gill binding fraction of Cd and bioaccumulation factor was found. Detoxifying ability (% detoxified in liver metabolically detoxified pool (MDP)) and k(2) were negatively correlated, indicating that increasing % detoxified in MDP can compensate for lower k(2). This finding suggests a potential tradeoff between the abilities of elimination and detoxification for Cd. Yet, compensation between the ability to eliminate Cd and the ability to recover Cd-induced damage was not found. However, changes in k(2) and recovery rate constant (k(r)) can shift the dynamics of Cd susceptibility probability. This analysis implicates that once k(2) is determined experimentally, the values of k(r) and % detoxified in MDP can be predicted by the proposed k(2)-k(r) and k(2)-% detoxified relationships. This study suggests that the mechanistic linking of BLM-based DAM and SPM can incorporate the organ- and cell-scale exposure experimental data to investigate the mechanisms of ecophysiological response for aquatic organisms exposed to metal stressors.
Collapse
Affiliation(s)
- Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China.
| | | | | |
Collapse
|
32
|
Ju YR, Chen WY, Singh S, Liao CM. Trade-offs between elimination and detoxification in rainbow trout and common bivalve molluscs exposed to metal stressors. CHEMOSPHERE 2011; 85:1048-1056. [PMID: 21840032 DOI: 10.1016/j.chemosphere.2011.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/09/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
The purpose of this paper was to examine trade-offs between elimination and detoxification in rainbow trout and three common bivalve molluscs (clam, oyster, and scallop) exposed to cadmium (Cd), copper (Cu), and zinc (Zn) based on recent reported experimental data. We incorporated metal influx threshold with subcellular partitioning to estimate rate constants of detoxification (k(d)) and elimination (k₂). We found that the relationships between k₂ and k(d) were negative for rainbow trout and positive for bivalve molluscs. However, the relationships between k(d) and % metal in metabolically detoxified pool were found positive for rainbow trout and negative for bivalve molluscs. Our results also indicated that rainbow trout had higher accumulation (~60-90%) in metabolically active pool when exposed to essential metals of Cu and Zn and had only 10-50% accumulation in response to non-essential metal of Cd. Based on a cluster analysis, this study indicated that similarity of physiological regulations among study species was found between Cd and Zn. Our study suggested that detoxification can be predicted by an elimination-detoxification scheme with the known elimination rate constant. We concluded that quantification of trade-offs between subcellular partitioning and detoxification provides valuable insights into the ecotoxicology of aquatic organisms and enhances our understanding of the subcellular biology of trace metals.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
33
|
Kamunde C, MacPhail R. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:518-527. [PMID: 21907009 DOI: 10.1016/j.aquatox.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken together these results show both competitive and cooperative interactions dependent on the subcellular fraction, metal, exposure duration and relative metal exposure concentrations. Competitive interactions likely result from ionic mimicry with the metals displacing each other from common binding sites, whereas cooperative interactions suggest increased abundance of metal binding sites and/or existence of metal-specific non-interacting binding sites in some of the fractions. Moreover, the changes in subcellular distribution of the biometals Cu and Zn due to Cd exposure together with the shifts of the metals between MAP and MDP observed may have toxicological consequences.
Collapse
Affiliation(s)
- Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada.
| | | |
Collapse
|
34
|
Chen BC, Chen WY, Ju YR, Tsai JW, Jou LJ, Singh S, Liao CM. Combining bioaccumulation and coping mechanism to enhance long-term site-specific risk assessment for zinc susceptibility of bivalves. CHEMOSPHERE 2011; 84:707-715. [PMID: 21486676 DOI: 10.1016/j.chemosphere.2011.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 03/02/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this study is to conduct a long-term site-specific risk assessment for zinc (Zn) susceptibility of bivalves, green mussel Perna viridis and hard clam Ruditapes philippinarum, based on published experimental data by linking the biologically-based damage assessment model with the subcellular partitioning concept. A comprehensive risk modeling framework was developed to predict susceptibility probability of two bivalve species exposed to waterborne Zn. The results indicated that P. viridis accumulates more Zn toxicity, whereas both toxic potency and the recovery rate of Zn are higher for R. philippinarum. We found that negative linear correlations exist in elimination-recovery and elimination-detoxification relationships, whereas a positive linear correlation was observed in recovery-detoxification relationships for bivalves exposed to waterborne Zn. Simulation results showed that the spatial differences of susceptibility primarily resulted from the variation of waterborne Zn concentration under field conditions. We found that R. philippinarum is more susceptible of Zn than P. viridis under the same exposure condition. Results also suggested that Zn posed no significant susceptibility risk to two bivalve species in Taiwan. We suggested that these two species can be used to biomonitor the water quality on Taiwan coastal areas.
Collapse
Affiliation(s)
- Bo-Ching Chen
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
35
|
Huang X, Fang CW, Guo YW, Huang HQ. Differential protein expression of kidney tissue in the scallop Patinopecten yessoensis under acute cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1232-1237. [PMID: 21377207 DOI: 10.1016/j.ecoenv.2011.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 05/30/2023]
Abstract
Morphological and proteomic changes in the kidney of scallops exposed to acute cadmium chloride (CdCl₂) were observed, analyzed and compared with those in the non-exposed control group. Under microscopy the paraffin-embedded sections of the kidney revealed that the microstructure of the tissue had been severely deformed after Cd exposure. Two dimensional electrophoresis, MALDI-TOF mass spectrometry and database searches showed 13 differentially expressed protein spots, of which 11 were up-regulated, while two were down-regulated. Among these proteins, guanylate kinase (GK) and C₂H₂-type zinc finger protein are considered to be tightly connected with Cd toxicity. Further studies using quantitative PCR method validated that the GK mRNA was induced under Cd stress. Other proteins identified which had some relevance to Cd toxicity are also discussed. We suggested that differential proteins such as GK could play a potential role as novel biomarkers for monitoring the level of Cd contamination in seawater.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|
36
|
Kamunde C, MacPhail R. Effect of humic acid during concurrent chronic waterborne exposure of rainbow trout (Oncorhynchus mykiss) to copper, cadmium and zinc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:259-269. [PMID: 20970854 DOI: 10.1016/j.ecoenv.2010.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
The effects of commercial dissolved organic carbon (DOC) in moderating accumulation, biochemical responses and toxicity of a waterborne mixture of copper (Cu), cadmium (Cd) and zinc (Zn) were investigated during a chronic exposure. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to a ternary metals mixture containing (nominal concentrations in μg/l): Cu 30, Cd 15, and Zn 150 in hard water (260 mg/l as CaCO(3)) with and without addition of 5 mg/l DOC as Aldrich humic acid (HA) for 28 days. Mortality, growth, metals accumulation, ionoregulatory impairment, and oxidative stress response were measured. While growth was unaffected, 19% mortality occurred during the first week of the exposure in fish exposed to the metals mixture without added HA. The early mortality was associated with transitory whole-body sodium (Na) loss and inhibition of branchial Na(+), K(+)-ATPase activity. Although these ionoregulatory responses mechanistically suggested that Cu was the more potent toxicant than either Cd or Zn, they were not correlated uniquely with elevated tissue Cu concentrations. The effects of HA on accumulation were metal-specific and depended on the organ examined and exposure duration. Specifically, Zn accumulation occurred only in the gill early in the exposure and HA reversed it, while protection against accumulation was absent or complete for Cu and absent or partial for Cd, dependent on tissue and exposure duration. The computed ambient free metal ion activities could explain the Cd but not the Cu and Zn accumulation indicating the involvement of physiological regulatory mechanisms in defining accumulation of essential metals. Surprisingly, the metals mixture (with and without added HA) reduced the concentrations of malondialdehyde (MDA) in gill suggesting induction of reductive rather than oxidative stress. Overall these data indicate that the free metal ion activity alone is not universally a good predictor of metals mixture accumulation and chronic effects nor does consideration of the mechanisms of toxicity unambiguously identify the more potently toxic metal in a mixture.
Collapse
Affiliation(s)
- Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.
| | | |
Collapse
|
37
|
Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B. Cadmium-Induced Autophagy in Rat Kidney: An Early Biomarker of Subtoxic Exposure. Toxicol Sci 2011; 121:31-42. [DOI: 10.1093/toxsci/kfr031] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Liao CM, Ju YR, Chen WY, Chen BC. Assessing the impact of waterborne and dietborne cadmium toxicity on susceptibility risk for rainbow trout. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:503-513. [PMID: 21094514 DOI: 10.1016/j.scitotenv.2010.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to use a risk-based integrated-scale toxicological model to examine the impact of waterborne and dietborne cadmium (Cd) toxicity on rainbow trout (Oncorhynchus mykiss) susceptibility appraised with recent published data. A probabilistic assessment model was performed to estimate Cd susceptibility risk. The dose-response models were constructed based on two endpoints of % Cd in metabolically active pool (MAP) and susceptibility time that causes 50% effect (ST50). We further constructed an elimination-detoxification-recovery scheme to enhance the model predictive ability. We found a 95% probability of % Cd in gill and liver MAP exceeding 47-49% and it was likely (70% probability) to have exceeded 52-55%, but it was unlikely (30% probability) to have exceeded 56-60%. In contrast to gill and liver, gut had a relative lower Cd susceptibility risk (15-17% Cd in MAP) with a longer ST50. We suggested that the proposed probabilistic risk assessment framework can incorporate the elimination-detoxification-recovery scheme to help government based biomonitoring and bioassessment programs to prevent potential aquatic ecosystems and human health consequences.
Collapse
Affiliation(s)
- Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, ROC.
| | | | | | | |
Collapse
|
39
|
|
40
|
Adiele RC, Stevens D, Kamunde C. Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:319-327. [PMID: 20036780 DOI: 10.1016/j.aquatox.2009.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/10/2009] [Accepted: 11/25/2009] [Indexed: 05/28/2023]
Abstract
The interactive effects of cadmium (Cd) and calcium (Ca) on energy metabolism in rainbow trout liver mitochondria were studied to test the prediction that Ca would protect against Cd-induced mitochondrial liability. Isolated rainbow trout liver mitochondria were energized with malate and glutamate and exposed to increasing concentrations (5-100 microM) of Cd and Ca singly and in combination at 15 degrees C. Accumulation of Cd and Ca in the mitochondria and mitochondrial respiration (oxygen consumption) rates were measured. Additionally, un-energized mitochondria were incubated with low doses (1 microM) of Cd and Ca singly and in combination, with time-course measurements of cation accumulation/binding and oxygen consumption rates. In energized actively phosphorylating mitochondria, the uptake rates of both Cd and Ca were dose-dependent and enhanced when administered concurrently. Upon low-dose incubation, Cd accumulation was rapid and peaked in 5 min, while no appreciable uptake of Ca occurred. Functionally, the resting (state 4, ADP-limited) respiration rate was not affected in the dose-response exposure, but it decreased remarkably on low-dose incubation. Adenosine diphosphate (ADP)-stimulated respiration (state 3) rate was impaired dose-dependently with maximal inhibitions (at the highest dose, 100 microM) of 32, 64 and 73% for Ca, Cd, and combined exposures, respectively. The combined effects of Ca and Cd suggested synergistic (more than additive) action and partial additivity of effects at low and higher doses of the two cations, respectively. Moreover, on a molar basis, Cd was twice as toxic as Ca to rainbow trout liver mitochondria and when combined, approximately 90% of the effects were attributable to Cd. The coupling efficiency, as measured by respiratory control ratio (RCR) and phosphorylation efficiency, measured as ADP/O ratio, both decreased as the exposure dosage and duration increased. In addition, Cd and Ca exposure decreased mitochondrial proton leak (state 4+ respiration) rates on prolonged exposure possibly by inhibiting processes that generate mitochondrial membrane potential, the force that drives proton leak. Overall these data suggest that the widely accepted theme that Ca and Cd are competitive antagonists does not hold for mitochondrial effects and that Cd and Ca cooperate to impair oxidative phosphorylation in rainbow trout liver mitochondria.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada
| | | | | |
Collapse
|
41
|
Lattuca M, Malanga G, Hurtado CA, Pérez A, Calvo J, Puntarulo S. Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:406-11. [DOI: 10.1016/j.cbpb.2009.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|