1
|
Dragun Z, Kiralj Z, Ivanković D, Bilić B, Kazazić S, Kazazić S. Iron-binding biomolecules in the soluble hepatic fraction of the northern pike (Esox lucius): two-dimensional chromatographic separation with mass spectrometry detection. Anal Bioanal Chem 2024; 416:5097-5109. [PMID: 39046506 DOI: 10.1007/s00216-024-05446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Iron plays vital roles in important biological processes in fish, but can be toxic in high concentrations. The information on metalloproteins that participate in maintenance of Fe homeostasis in an esocid fish, the northern pike, as an important freshwater bioindicator species, are rather scarce. The aim of this study was to identify main cytosolic constituents that sequester Fe in the northern pike liver. The method applied consisted of two-dimensional HPLC separation of Fe-binding biomolecules, based on anion-exchange followed by size-exclusion fractionation. Apparent molecular masses of two main Fe-metalloproteins isolated by this procedure were ~360 kDa and ~50 kDa, with the former having more acidic pI, and indicated presence of ferritin and hemoglobin, respectively. MALDI-TOF-MS provided confirmation of ferritin subunit with a m/z peak at 20.65 kDa, and hemoglobin with spectra containing main m/z peak at 16.1 kDa, and smaller peaks at 32.1, 48.2, and 7.95 kDa (single-charged Hb-monomer, dimer, and trimer, and double-charged monomer, respectively). LC-MS/MS with subsequent MASCOT database search confirmed the presence of Hb-β subunits and pointed to close relation between esocid and salmonid fishes. Further efforts should be directed towards optimization of the conditions for metalloprotein analysis by mass spectrometry, to extend the knowledge on intracellular metal-handling mechanisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Zoran Kiralj
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Dušica Ivanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Branka Bilić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Saša Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Snježana Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
2
|
Li SC, Gu LH, Wang YF, Wang LM, Chen L, Giesy JP, Tuo X, Xu WL, Wu QH, Liu YQ, Wu MH, Diao YY, Zeng HH, Zhang QB. A proteomic study on gastric impairment in rats caused by microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169306. [PMID: 38103614 DOI: 10.1016/j.scitotenv.2023.169306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 μg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 μg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 μg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Hong Gu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yan-Fang Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Liang Chen
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi-Qing Liu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming-Huo Wu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yang-Yang Diao
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, China
| | - Hao-Hang Zeng
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
He Y, Shen A, Salam M, Liu M, Wei Y, Yang Y, Li H. Microcystins-Loaded Aged Nanoplastics Provoke a Metabolic Shift in Human Liver Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10521-10531. [PMID: 37449315 DOI: 10.1021/acs.est.3c00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Studies concerning the toxicity of pollutant-loaded nanoplastics (NPs) toward humans are still in their infancy. Here, we evaluated the adsorption of microcystins (MCs) by pristine and aged polystyrene nanoplastics (PSNPs), prepared MCs-loaded aged PSNPS (1, 5, 10, 15, and 19 μg/mg), and systematically mapped the key molecular changes induced by aged and MCs-loaded PSNPs to human hepatoblastoma (HepG2) cells. According to the results, MC-LR adsorption is increased 2.64-fold by aging, and PSNP accumulation is detected in HepG2 cells. The cytotoxicity of the MC-LR-loaded aged PSNPs showed a positive relationship with the MC-LR amount, as the cell viability in the 19 μg/mg loading treatment (aPS-MC19) was 10.84% lower than aged PSNPs; meanwhile, more severe oxidative damage was observed. Primary approaches involved stressing the endoplasmic reticulum and reducing protein synthesis that the aged PSNPs posed for HepG2 cells, while the aggravated cytotoxicity in aPS-MC19 treatment was a combined result of the metabolic energy disorder, oxidative damage, endoplasmic reticulum stress, and downregulation of the MC-LR target protein. Our results confirm that the aged PSNPs could bring more MC-LR into the HepG2 cells, significantly interfere with biological processes, and provide new insight into deciphering the risk of NPs to humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| |
Collapse
|
4
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Poirier DG, Bhavsar SP, Sibley PK. Fish tissue accumulation and proteomic response to microcystins is species-dependent. CHEMOSPHERE 2022; 287:132028. [PMID: 34474382 DOI: 10.1016/j.chemosphere.2021.132028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 μg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
6
|
Lu X, Tian J, Wen H, Jiang M, Liu W, Wu F, Yu L, Zhong S. Microcystin-LR-regulated transcriptome dynamics in ZFL cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:222-232. [PMID: 31136897 DOI: 10.1016/j.aquatox.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic hepatotoxin that poses great hazards to aquatic organisms and even human health. The zebrafish liver cell line (ZFL) is a valuable model for investigating toxicity and metabolism of toxicants. However, the toxicity of MC-LR and its effects on gene transcription of ZFL cells remains to be characterized. In this study, we determined the toxicity of MC-LR for ZFL cells and investigated the effects of MC-LR on cellular transcriptome dynamics. The EC50 of MC-LR for ZFL cells was 80.123 μg/mL. The ZFL cells were exposed to 10 μg/mL MC-LR for 0, 1, 3, 6, 12 or 24 h, and RNA-sequencing was performed to analyze gene transcription. A total of 10,209 genes were found to be regulated by MC-LR. The numbers of up- and down-regulated genes at different time points ranged from 2179 to 3202 and from 1501 to 2597, respectively. Furthermore, 1543 genes underwent differential splicing (AS) upon MC-LR exposure, of which 620 were not identified as differentially expressed gene (DEG). The effects of MC-LR on cellular functions were highly time-dependent. MAPK (mitogen-activated protein kinase) and FoxO (forkhead box O) signaling pathways were the most prominent pathways activated by MC-LR. Steroid biosynthesis and terpenoid backbone biosynthesis were the most enriched for the down-regulated genes. A gene regulatory network was constructed from the expression profile datasets and the candidate master transcription factors were identified. Our results shed light on the molecular mechanisms of MC-LR cellular toxicity and the transcriptome landscapes of ZFL cells upon MC-LR toxicity.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan 430071, Hubei, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China.
| |
Collapse
|
7
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
8
|
Proteomic evidences for microcystin-RR-induced toxicological alterations in mice liver. Sci Rep 2018; 8:1310. [PMID: 29358693 PMCID: PMC5778043 DOI: 10.1038/s41598-018-19299-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
This study deals with the isolation and purification of an important variant of microcystins namely microcystin-RR (MCYST-RR) from Microcystis aeruginosa and reports its effects on mice liver protein profile and cellular functions. Protein profiling by 2-dimensional gel electrophoresis revealed changes in the number and accumulation of protein spots in liver of mice treated with different concentrations of MCYST-RR. Untreated (control) mice liver showed 368 protein spots while the number was 355, 348 and 332 in liver of mice treated with 200, 300 and 400 µg kg body wt−1 of MCYST-RR respectively. Altogether 102, 97, and 92 spots were differentially up-accumulated and 93, 91, and 87 spots were down- accumulated respectively with the treatment of 200, 300, 400 µg kg body wt−1. Eighteen differentially accumulated proteins present in all the four conditions were identified by MALDI-TOF MS. Of these eighteen proteins, 12 appeared to be involved in apoptosis/toxicological manifestations. Pathway analysis by Reactome and PANTHER database also mapped the identified proteins to programmed cell death/apoptosis clade. That MCYST-RR induces apoptosis in liver tissues was also confirmed by DNA fragmentation assay. Results of this study elucidate the proteomic basis for the hepatotoxicity of MCYST-RR which is otherwise poorly understood till date.
Collapse
|
9
|
Zheng JL, Yuan SS, Shen B, Wu CW. Organ-specific effects of low-dose zinc pre-exposure on high-dose zinc induced mitochondrial dysfunction in large yellow croaker Pseudosciaena crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:653-661. [PMID: 27909949 DOI: 10.1007/s10695-016-0319-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
The study was carried out to evaluate the effects of low-dose zinc (Zn) pre-exposure on survival rate, new Zn accumulation, and mitochondrial bioenergetics in the liver and spleen of large yellow croaker exposed to high-dose Zn. To the end, fish were pre-exposed to 0 and 2 mg L-1 Zn for 48 h and post-exposed to 0 and 12 mg L-1 Zn for 48 h. Twelve milligrams Zn per liter exposure alone reduced survival rate, but the effect did not appear in the 2 mg L-1 Zn pre-exposure groups. Two milligrams per liter Zn pre-exposure also ameliorated 12 mg Zn L-1 induced new Zn accumulation, reactive oxygen species (ROS) levels, and mitochondrial swelling in the liver. However, these effects did not appear in the spleen. In the liver, 2 mg L-1 Zn pre-exposure apparently relieved 12 mg L-1 Zn induced down-regulation of activities of ATP synthase (F-ATPase), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). The mRNA levels of these genes remained relatively stable in fish exposed to 12 mg L-1 Zn alone, but increased in fish exposed to 12 mg L-1 Zn with 2 mg L-1 Zn pre-treatment. In the spleen, 2 mg Zn L-1 pre-exposure did not mitigate the down-regulation of mRNA levels of genes and activities of relative enzymes induced by 12 mg L-1 Zn. In conclusion, our study demonstrated low-dose zinc pre-exposure ameliorated high-dose zinc induced mitochondrial dysfunction in the liver but not in the spleen of large yellow croaker, indicating an organ-specific effect.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
10
|
Cai Y, Zhang C, Hao L, Chen J, Xie P, Chen Z. Systematic identification of seven ribosomal protein genes in bighead carp and their expression in response to microcystin-LR. J Toxicol Sci 2016; 41:293-302. [PMID: 26961614 DOI: 10.2131/jts.41.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microcystin-LR (MCLR) is one of the most toxic cyanotoxins produced in algal blooms. The toxic effects of MCLR on the expression of some organelles genes (mitochondrion, endoplasmic reticulum, and cytoskeleton etc) have been widely investigated, but little is known how it impacts on the expression of ribosomal genes. In this study we identified seven ribosomal protein genes RPS6, RPS12, RPS24, RPS27a, RPL12, RPL27 and RPL29 in bighead carp (Aristichthys nobilis), whose expression was regulated by MCLR. The amino acid sequences of those 7 genes shared more than 90% identity with corresponding sequences from zebrafish, and were well conserved throughout evolution. The 3D structure prediction showed that the structures of these ribosomal proteins were conserved, but had species specificity. Q-PCR analysis revealed that expression of seven genes changed dramatically at 3 hr, then went back to a moderate change- level at 24 hr in almost all tested tissues (liver, kidney, intestine, heart, spleen and gill) post MCLR injection, but in brain expression of the seven genes stayed same as the normal level. This study will help us to know not only about the evolution and functions of ribosomal proteins in anti-MCLR response in bighead carp, but also about the MCLR toxicity and its impact on aquaculture and human health.
Collapse
Affiliation(s)
- Yan Cai
- School of Petrolchemical Engneering, Changzhou University, China
| | | | | | | | | | | |
Collapse
|
11
|
Tuo X, Chen J, Zhao S, Xie P. Chemical proteomic analysis of the potential toxicological mechanisms of microcystin-RR in zebrafish (Danio rerio) liver. ENVIRONMENTAL TOXICOLOGY 2016; 31:1206-1216. [PMID: 25854999 DOI: 10.1002/tox.22128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Microcystins (MCs) are common toxins produced by freshwater cyanobacteria, and they represent a potential health risk to aquatic organisms and animals, including humans. Specific inhibition of protein phosphatases 1 and 2A is considered the typical mechanism of MCs toxicity, but the exact mechanism has not been fully elucidated. To further our understanding of the toxicological mechanisms induced by MCs, this study is the first to use a chemical proteomic approach to screen proteins that exhibit special interactions with MC-arginine-arginine (MC-RR) from zebrafish (Danio rerio) liver. Seventeen proteins were identified via affinity blocking test. Integration of the results of previous studies and this study revealed that these proteins play a crucial role in various toxic phenomena of liver induced by MCs, such as the disruption of cytoskeleton assembly, oxidative stress, and metabolic disorder. Moreover, in addition to inhibition of protein phosphate activity, the overall toxicity of MCs was simultaneously modulated by the distribution of MCs in cells and their interactions with other target proteins. These results provide new insight into the mechanisms of hepatotoxicity induced by MCs. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1206-1216, 2016.
Collapse
Affiliation(s)
- Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
- Basic Chemistry Experimental Center, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Sujuan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| |
Collapse
|
12
|
Faltermann S, Grundler V, Gademann K, Pernthaler J, Fent K. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:77-87. [PMID: 26748408 DOI: 10.1016/j.aquatox.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
Microcystin (MC) and nodularin are structurally similar cyanobacterial toxins that inhibit protein phosphatases. Additional modes of action are poorly known, in particular for nodularin. In our associated work, we showed that active cellular uptake is mediated by the organic anion transporting polypeptide drOatp1d1 in zebrafish (Faltermann et al., 2016). Here, we assessed the transcriptional expression of three genes encoding three uptake transporters during embryonic development from 24h post fertilization (hpf) to 168 hpf. Transcripts of drOatp1d1 and drOatp2b1 are present at 24 hpf. The abundance increased after hatching and remained about constant up to 168 hpf. Transcripts of drOatp2b1 were most abundant, while drOapt1f transcripts showed very low relative abundance compared to drOatp1d1 and drOatp2b1. We further demonstrated the uptake of fluorescent labeled MC-LR in eleuthero-embryos and its accumulation in the glomerulus of the pronephros. An important molecular effect of MC-LR in human liver cells is the induction of endoplasmic reticulum (ER)-stress. Here, we investigated, whether MC-LR and nodularin similarly lead to induction of ER-stress in zebrafish by analyzing changes of mRNA levels of genes indicative of ER-stress. In zebrafish liver organ cultures short- and long-term exposures to 0.15 and 0.3 μmol L(-1) MC-LR, and 0.5 and 1 μM L(-1) nodularin led to significant transcriptional induction of several ER-stress marker genes, including the chaperone glucose regulated protein 78 (bip), the spliced form of x-box binding protein (xbp-1s), the CCAAT-enhancer-binding protein homologous protein (chop) and activating transcription factor 4 (atf4). Furthermore, strong transcriptional changes occurred for tumor necrosis factor alpha (tnfa) and dual specificity phosphatase 5 (dusp5), associated with mitogen activated protein kinase (MAPK) pathway. However, no alterations in transcript levels of pro-apoptotic genes Bcl-2 like protein 4 (bax) and p53 occurred. In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling.
Collapse
Affiliation(s)
- Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; University of Zürich, Institute of Plant Biology, Limnological Station, Seestrasse 187, 8802 Kilchberg, Switzerland
| | - Verena Grundler
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Karl Gademann
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Jakob Pernthaler
- University of Zürich, Institute of Plant Biology, Limnological Station, Seestrasse 187, 8802 Kilchberg, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zurich (ETHZ), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, Universitätsstrasse 16, 8092 Zürich, Switzerland.
| |
Collapse
|
13
|
Valério E, Campos A, Osório H, Vasconcelos V. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon 2016; 112:22-8. [PMID: 26806210 DOI: 10.1016/j.toxicon.2016.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 02/01/2023]
Abstract
Some of the most common toxins present in freshwater, in particular microcystins (MCs), are produced by cyanobacteria. These toxins have a negative impact on human health, being associated with episodes of acute hepatotoxicity and being considered potentially carcinogenic to humans. To date the exact mechanisms of MC-induced toxicity and tumor promotion were not completely elucidated. To get new insights underlying microcystin-LR (MCLR) molecular mechanisms of toxicity we have performed the proteomic profiling using two-dimensional electrophoresis and MALDI-TOF/TOF of Saccharomyces cerevisiae cells exposed for 4 h-1 nM and 1 μM of MCLR, and compared them to the control (cells not exposed to MCLR). We identified 14 differentially expressed proteins. The identified proteins are involved in metabolism, genotoxicity, cytotoxicity and stress response. Furthermore, we evaluated the relative expression of yeast's PP1 and PP2A genes and also of genes from the Base Excision Repair (BER) DNA-repair system, and observed that three out of the five genes analyzed displayed dose-dependent responses. Overall, the different proteins and genes affected are related to oxidative stress and apoptosis, thus reinforcing that it is probably the main mechanism of MCLR toxicity transversal to several organisms, especially at lower doses. Notwithstanding these MCLR responsive proteins could be object of further studies to evaluate their suitability as biomarkers of exposure to the toxin.
Collapse
Affiliation(s)
- Elisabete Valério
- Unidade de Água e Solo, Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Hugo Osório
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| |
Collapse
|
14
|
Kohn YY, Symonds JE, Kleffmann T, Nakagawa S, Lagisz M, Lokman PM. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1403-1417. [PMID: 26183261 DOI: 10.1007/s10695-015-0095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.
Collapse
Affiliation(s)
- Yair Y Kohn
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
- Arava Research and Development Station, Hatzeva, Israel
| | - Jane E Symonds
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand.
| |
Collapse
|
15
|
Shi Y, Jiang J, Shan Z, Bu Y, Deng Z, Cheng Y. Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:511-519. [PMID: 25586193 DOI: 10.1007/s10646-014-1399-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
Microcystins (MCs) are a group of cyclic heptapeptide hepatotoxic peptides produced by cyanobacteria. Microcystins-LR (MC-LR) can inhibit the activities of protein phosphatase type 1 and type 2A (PP1 and PP2A) and induce excessive production of reactive oxygen species (ROS). However, the detailed toxicological mechanism involving oxidative stress in carp (Cyprinus carpio L.) remains largely unclear. In our present study, the effects of sublethal intraperitoneal doses of MC-LR on the oxidative stress and pathological changes in carp liver were investigated. No significant changes of xanthine oxidase were observed, suggesting it might not contribute to over-production of ROS in the liver of fish during 48 h exposure to sublethal intraperitoneal doses of MC-LR. Superoxide dismutase activity in the 50 μg kg(-1) group was significantly induced at 1-24 h. The strongest inhibition of the catalase activity was shown at 48 h after 120 μg kg(-1) MC-LR exposure, with an inhibition rate of 33.7% compared to the control group. In general, a significant depletion of intracellular reduced glutathione was found at 5-12 h after 50 and 120 μg kg(-1) MC-LR exposure, which was mainly due to the conjugation reaction to MC-LR catalyzed by glutathione-S-transferase and its subsequent excretion. Oxidative damages induced by MC-LR were evidenced by the significant elevation in malondialdehyde levels. In addition, a series of histopathological alterations in fish livers were observed, and the most severe hepatic injuries were found at 5-12 h, which could contribute to the efflux of intracellular GSH. Our study further supports the important role of oxidative stress involved in MC-LR induced liver injury in aquatic organisms.
Collapse
Affiliation(s)
- Yue Shi
- Engineering Institute of Engineer Corporations, PLA University of Science & Technology, Nanjing, 210007, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Jiang J, Wang X, Shan Z, Yang L, Zhou J, Bu Y. Proteomic analysis of hepatic tissue of Cyprinus carpio L. exposed to cyanobacterial blooms in Lake Taihu, China. PLoS One 2014; 9:e88211. [PMID: 24558380 PMCID: PMC3928196 DOI: 10.1371/journal.pone.0088211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L.) in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs), major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS). MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH), directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms.
Collapse
Affiliation(s)
- Jinlin Jiang
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, People's Republic of China
- * E-mail: (JJ); (XW)
| | - Xiaorong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JJ); (XW)
| | - Zhengjun Shan
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Junying Zhou
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, People's Republic of China
| | - Yuanqin Bu
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Malécot M, Guével B, Pineau C, Holbech BF, Bormans M, Wiegand C. Specific proteomic response of Unio pictorum mussel to a mixture of glyphosate and microcystin-LR. J Proteome Res 2013; 12:5281-92. [PMID: 23972258 DOI: 10.1021/pr4006316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyanobacterial toxins and pesticides regularly impact freshwaters. Microcystin-LR is one of the most toxic and common cyanobacterial toxins whereas glyphosate is the active ingredient of a widely use herbicide. As filter feeders, freshwater mussels are particularly exposed. Like many native bivalve species, Unio pictorum suffers from a continuous decline in Europe. In order to get a deeper insight of its response to contaminants, U. pictorum was exposed to either 10 μg L(-1) of microcystin-LR or 10 μg L(-1) of glyphosate or a mixture of both. Proteins of the digestive glands were extracted and analyzed by DIGE. Gel analysis revealed 103 spots with statistical variations, and the response seems to be less toward glyphosate than to microcystin-LR. Specific spots have variations only when exposed to the mixture, showing that there is an interaction of both contaminants in the responses triggered. The proteins of 30 spots have been identified. They belong mostly to the cytoskeleton family, but proteins of the oxidative pathway, detoxification, and energetic metabolism were affected either by glyphosate or microcystin-LR or by the mixture. These results demonstrate the importance to study contaminants at low concentrations representative of those found in the field and that multicontaminations can lead to different response pathways.
Collapse
Affiliation(s)
- Mélodie Malécot
- Université Européenne de Bretagne , 5 Boulevard Laënnec, 35000 Rennes, France
| | | | | | | | | | | |
Collapse
|
18
|
Pavagadhi S, Balasubramanian R. Toxicological evaluation of microcystins in aquatic fish species: current knowledge and future directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:1-16. [PMID: 23948073 DOI: 10.1016/j.aquatox.2013.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Microcystins (MCs) are algal toxins produced intracellularly within the algal cells, and are subsequently released into the aquatic systems. An increase in the frequency and intensity of occurrence of harmful algal blooms has directed the global attention towards the presence of MCs in aquatic systems. The effects of MCs on fish have been verified in a number of studies including histological, biochemical and behavioral effects. The toxicological effects of MCs on different organs of fish are related to the exposure route (intraperitoneal injection, feeding or immersion), the mode of uptake (passive or active transport) as well as biotransformation and bioaccumulation capabilities by different organs. This paper reviews the rapidly expanding literature on the toxicological evaluation of MCs in fish from both field studies and controlled laboratory experimental investigations, integrates the current knowledge available about the mechanisms involved in MC-induced effects on fish, and points out future research directions from a cross-disciplinary perspective. In addition, the need to carry out systematic fish toxicity studies to account for possible interactions between MCs and other environmental pollutants in aquatic systems is discussed.
Collapse
Affiliation(s)
- Shruti Pavagadhi
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | | |
Collapse
|
19
|
Meneely JP, Elliott CT. Microcystins: measuring human exposure and the impact on human health. Biomarkers 2013; 18:639-49. [DOI: 10.3109/1354750x.2013.841756] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
He J, Chen J, Wu L, Li G, Xie P. Metabolic Response to Oral Microcystin-LR Exposure in the Rat by NMR-Based Metabonomic Study. J Proteome Res 2012; 11:5934-46. [DOI: 10.1021/pr300685g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jun He
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Jun Chen
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| | - Laiyan Wu
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- College of Chemistry and Materials
Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guangyu Li
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
- Fisheries College of Huazhong Agricultural University, Wuhan, People's
Republic of China
| | - Ping Xie
- Donghu Experimental Station
of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and
Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072,
People's Republic of China
| |
Collapse
|
21
|
Wei L, Hoole D, Sun B. Identification of apoptosis-related genes and transcription variations in response to microcystin-LR in zebrafish liver. Toxicol Ind Health 2012; 30:777-84. [PMID: 23064767 DOI: 10.1177/0748233712462443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence that the effects of microcystin-LR (MC-LR) are closely related to apoptosis. This study utilized microarray to identify the apoptosis-related genes induced by MC-LR in zebrafish liver. The messenger RNA abundance of some apoptosis-related genes was found to be increased, including five tumor necrosis factor (TNF)-related members (apoptosis regulatory protein siva, tumor necrosis factor-α (tnfa) TNF (ligand) superfamily member 10 (tnfsf10), TNF-inducible protein 6 (tnfaip6) and TNF receptor associated factor 2 binding protein (traf2bp)), three p53-related genes (tumor protein p53 inducible nuclear protein 1 (tp53inp1), p53-induced protein phosphatase 1 (ppm1d) and a novel apoptosis stimulating protein of p53 (aspp2)), bcl 2 family members (proapoptosis gene bax and antiapoptosis gene mcl 1), caspases (caspase y (caspy) and a PYD and CARD domain-containing protein (pycard)) and the transforming growth factor beta (TGF-β) induced apoptosis protein 2 (taip2). Real-time polymerase chain reaction was used to study the kinetic transcriptional changes in seven apoptosis-related genes. Elevated transcription of p53, tp53inp1, mcl 1 and taip2 could only be detected at 6 h, increased transcription of the antagonist molecules, bcl 2 and bax could be detected at most time points and the significant change of caspy could be found at 48 h and 72 h after stimulation. Taken together, the results obtained in the present study clearly demonstrate that large amount of apoptosis-related genes are involved in the regulation of MC-LR-induced apoptosis.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dave Hoole
- School of Life Sciences, Keele University, Keele, Staffordshire, UK
| | - Baojian Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Menezes C, Alverca E, Dias E, Sam-Bento F, Pereira P. Involvement of endoplasmic reticulum and autophagy in microcystin-LR toxicity in Vero-E6 and HepG2 cell lines. Toxicol In Vitro 2012; 27:138-48. [PMID: 23010415 DOI: 10.1016/j.tiv.2012.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
Abstract
This work investigates the involvement of the endoplasmic reticulum (ER) and autophagy in microcystin-LR (MCLR) toxicity in Vero-E6 and HepG2 cell lines. Additionally, morphological alterations induced by MCLR in lysosomes and mitochondria were studied. Cytotoxicity evaluation showed that pure MCLR and MCLR from LMECYA110 extract induce concentration dependent viability decays after 24h exposure. HepG2 cells showed an increased sensitivity to MCLR than Vero cells, with lower cytotoxic thresholds and EC(50) values. Conversely, LC3B immunofluorescence showed that autophagy is triggered in both cell lines as a survival response to low MCLR concentrations. Furthermore, MCLR induced a MCLR concentration-dependent decrease of GRP94 expression in HepG2 cells while in Vero cells no alteration was observed. This suggests the involvement of the ER in HepG2 apoptosis elicited by MCLR, while in Vero cells ER destructuration could be a consequence of cytoskeleton inflicted damages. Additionally, in both cell lines, lysosomal destabilization preceded mitochondrial impairment which occurred at high toxin concentrations. Although not an early cellular target of MCLR, mitochondria appears to serve as central mediators of different signaling pathways elicited by the organelles involved in MCLR toxicity. As a result, kidney and hepatic cell lines exhibit cell type and dose-dependent mechanisms to overcome MCLR toxicity.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Health Institute Dr Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
23
|
Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. SENSORS 2012; 12:12741-71. [PMID: 23112741 PMCID: PMC3478868 DOI: 10.3390/s120912741] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
Abstract
Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of “adverse outcome pathways (AOP)” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.
Collapse
|
24
|
Zeller P, Quenault H, Huguet A, Blanchard Y, Fessard V. Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 82:13-21. [PMID: 22721844 DOI: 10.1016/j.ecoenv.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) giving rise to more than 90 MC variants, however most of the studies to date have focused on the most toxic variant: microcystin LR (MC-LR). Ingestion is the major route of human exposure to MCs and several in vivo studies have demonstrated macroscopic effects on the gastro-intestinal tract. However, little information exists concerning the pathways affected by MC variants on intestinal cells. In the current study, we have investigated the effects of MC-RR and MC-LR on the human intestinal cell line Caco-2 using a non-selective method and compared their response at the pangenomic scale. The cells were incubated for 4h or 24h with a range of non-toxic concentrations of MC-RR or MC-LR. Minimal effects were observed after short term exposures (4h) to either MC variant. In contrast, dose dependent modulations of gene transcription levels were observed with MC-RR and MC-LR after 24h. The transcriptomic profiles induced by MC-RR were quite similar to those induced by MC-LR, suggestive of a largely common mechanism of toxicity. However, changes in total gene expression were more pronounced following exposure to MC-LR compared to MC-RR, as revealed by functional annotation. MC-LR affected two principal pathways, the oxidative stress response and cell cycle regulation, which did not elicit significant alteration following MC-RR exposure. This work is the first comparative description of the effects of MC-LR and MC-RR in a human intestinal cell model at the pangenomic scale. It has allowed us to propose differences in the mechanism of toxicity for MC-RR and MC-LR. These results illustrate that taking into account the toxicity of MC variants remains a key point for risk assessment.
Collapse
Affiliation(s)
- Perrine Zeller
- Anses, Fougères laboratory, Contaminant Toxicology Unit, La Haute Marche, BP 90203, 35302 Fougères Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Marie B, Huet H, Marie A, Djediat C, Puiseux-Dao S, Catherine A, Trinchet I, Edery M. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:39-48. [PMID: 22414781 DOI: 10.1016/j.aquatox.2012.02.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Cyanobacterial toxic blooms often occur in freshwater lakes and constitute a potential health risk to human populations, as well as to fish and other aquatic organisms. Microcystin-LR (the cyanotoxin most commonly detected in the freshwater environment) is a potent hepatotoxin, deregulating the kinase pathway by inhibiting phosphatases 1 and 2A. Although toxicological effects have been clearly linked to the in vitro exposure of fish to purified microcystins, cyanotoxins are produced by the cyanobacteria together with numerous other potentially toxic molecules, and their overall and specific implications for the health of fish have still not been clearly established and remain puzzlingly difficult to assess. The medaka fish (Oryzias latipes) was chosen as an in vitro model for studying the effects of a cyanobacterial bloom on liver protein contents using a gel free quantitative approach, iTRAQ, in addition to pathology examinations on histological preparations. Fish were gavaged with 5 μL cyanobacterial extracts (Planktothrix agardhii) from a natural bloom (La Grande Paroisse, France) containing 2.5 μg equiv. MC-LR. 2h after exposure, the fish were sacrificed and livers were collected for analysis. Histological observations indicate that hepatocytes present glycogen storage loss, and cellular damages, together with immunological localization of MCs. Using a proteomic approach, 304 proteins were identified in the fish livers, 147 of them with a high degree of identification confidence. Fifteen of these proteins were statistically significantly different from those of controls (gavaged with water only). Overall, these protein regulation discrepancies clearly indicate that oxidative stress and lipid regulation had occurred in the livers of the exposed medaka fish. In contrast to previous pure microcystin-LR gavage experiments, marked induction of vitellogenin 1 protein was observed for the first time with a cyanobacterial extract. This finding was confirmed by ELISA quantification of vitellogenin liver content, suggesting that the Planktothrix bloom extract had induced the occurrence of an endocrine-disrupting effect.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245 CNRS Molécules de Communication et Adaptation des Microorganismes, Équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 Rue Buffon, F-75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Costa PM, Chicano-Gálvez E, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, Alhama-Carmona J, Lopez-Barea J, DelValls TA, Costa MH. Hepatic proteome changes in Solea senegalensis exposed to contaminated estuarine sediments: a laboratory and in situ survey. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1194-1207. [PMID: 22362511 DOI: 10.1007/s10646-012-0874-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments. Changes in liver cytosolic protein regulation patterns were determined by a combination of two-dimensional electrophoresis with de novo sequencing by tandem mass spectrometry. From the forty-one cytosolic proteins found to be deregulated, nineteen were able to be identified, taking part in multiple cellular processes such as anti-oxidative defence, energy production, proteolysis and contaminant catabolism (especially oxidoreductase enzymes). Besides a clear distinction between animals exposed to the reference and contaminated sediments, differences were also observed between laboratory- and in situ-tested fish. Soles exposed in the laboratory to the contaminated sediments failed to induce, or even markedly down-regulated, many proteins, with the exception of a peroxiredoxin (an anti-oxidant enzyme) and a few others, when compared to reference fish. In situ exposure to the contaminated sediments revealed significant up-regulation of basal metabolism-related enzymes, comparatively to the reference condition. Down-regulation of basal metabolism enzymes, related to energy production and gene transcription, in fish exposed in the laboratory to the contaminated sediments, may be linked to sediment-bound contaminants and likely compromised the organisms' ability to deploy adequate responses against insult.
Collapse
Affiliation(s)
- Pedro M Costa
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da, IMAR-Instituto do Mar, Universidade Nova de Lisboa, Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hauser-Davis RA, de Campos RC, Ziolli RL. Fish metalloproteins as biomarkers of environmental contamination. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:101-123. [PMID: 22488605 DOI: 10.1007/978-1-4614-3137-4_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish are well-recognized bioindicators of environmental contamination. Several recent proteomic studies have demonstrated the validity and value of using fish in the search and discovery of new biomarkers. Certain analytical tools, such as comparative protein expression analyses, both in field and lab exposure studies, have been used to improve the understanding of the potential for chemical pollutants to cause harmful effects. The metallomic approach is in its early stages of development, but has already shown great potential for use in ecological and environmental monitoring contexts. Besides discovering new metalloproteins that may be used as biomarkers for environmental contamination, metallomics can be used to more comprehensively elucidate existing biomarkers, which may enhance their effectiveness. Unfortunately, metallomic profiling for fish has not been explored, because only a few fish metalloproteins have thus far been discovered and studied. Of those that have, some have shown ecological importance, and are now successfully used as biomarkers of environmental contamination. These biomarkers have been shown to respond to several types of environmental contamination, such as cyanotoxins, metals, and sewage effluents, although many do not yet possess any known function. Examples of successes include MMPs, superoxide dismutases, selenoproteins, and iron-bound proteins. Unfortunately, none of these have, as yet, been extensively studied. As data are developed for them, valuable new information on their roles in fish physiology and in inducing environmental effects should become available.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, CEP: 22453-900, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
28
|
Regulation of heat shock protein 27 phosphorylation during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line. Toxicol Lett 2011; 207:270-7. [DOI: 10.1016/j.toxlet.2011.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/24/2022]
|
29
|
Pathological modifications following sub-chronic exposure of medaka fish (Oryzias latipes) to microcystin-LR. Reprod Toxicol 2011; 32:329-40. [PMID: 21839164 DOI: 10.1016/j.reprotox.2011.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 06/15/2011] [Accepted: 07/25/2011] [Indexed: 12/29/2022]
Abstract
Microcystins (MCs) are toxic monocyclic heptapeptides produced by many cyanobacteria. MCs, especially MC-LR, cause toxic effects in animals and are a recognized potent cause of environmental stress and health hazard in aquatic ecosystems when heavy blooms of cyanobacteria appear. Consequently, one of the major problems is the chronic exposure of fish to cyanotoxins in their natural environment. The present experiment involving chronic exposure confirmed initial findings on acute exposure to MC contamination: exacerbated physiological stress and tissue damage in several tissues of exposed medaka fish. The gonads were affected specifically. In female gonads the modifications included reduction of the vitellus storage, lysis of the gonadosomatic tissue and disruption of the relationships between the follicular cells and the oocytes. In the males, spermatogenesis appeared to be disrupted. This is the first report showing that a cyanotoxin can affect reproductive function, and so can impact on fish reproduction and thus fish stocks.
Collapse
|
30
|
Malécot M, Marie A, Puiseux-Dao S, Edery M. iTRAQ-based proteomic study of the effects of microcystin-LR on medaka fish liver. Proteomics 2011; 11:2071-8. [DOI: 10.1002/pmic.201000512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/20/2011] [Accepted: 02/17/2011] [Indexed: 11/07/2022]
|
31
|
Li G, Chen J, Xie P, Jiang Y, Wu L, Zhang X. Protein expression profiling in the zebrafish (Danio rerio
) embryos exposed to the microcystin-LR. Proteomics 2011; 11:2003-18. [DOI: 10.1002/pmic.201000442] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 01/22/2011] [Accepted: 02/01/2011] [Indexed: 11/06/2022]
|
32
|
Karim M, Puiseux-Dao S, Edery M. Toxins and stress in fish: proteomic analyses and response network. Toxicon 2011; 57:959-69. [PMID: 21457724 DOI: 10.1016/j.toxicon.2011.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 12/16/2022]
Abstract
Fish models are increasingly used in toxicological studies in the laboratory as well as in the field. In addition to contributing to the analysis of toxicity mechanisms, one major aim is to select biomarkers from among the metabolic responses to toxic agents observed that could be useful for surveying the aquatic environment. Since proteomics is a developing field in toxicological research, it seems opportune to explore the data obtained using this approach. This article proposes an overview of proteomic studies of fish exposed to environmental stressors comprising a cyanotoxin and the response networks observed. We tend to take a broad view of how proteins communicate and function within the cell, often encompassing large numbers of proteins that operate in pathways. We start by presenting and discussing the data from four experiments in which the medaka fish was treated under the same conditions with the cyanotoxin, microcystin-LR (MC-LR). Liver proteins were analyzed using two techniques: 2D electrophoresis and LCMSMS. In the second and main part of our paper, the proteomic data obtained from fish contaminated with chemicals, including those reported above concerning the medaka fish intoxicated with MC-LR, are considered in the round in order to identify fish responses to chemical stress. A tentative general overview of how groups of proteins work together depending on exposure and/or subcellular location is proposed, with the inclusion of MC-LR data obtained in mice for comparison.
Collapse
Affiliation(s)
- Mezhoud Karim
- UMR 7245 CNRS-USM 0505 Molécules de communication et adaptation des micro-organismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris cedex 05, France
| | | | | |
Collapse
|
33
|
Sanchez BC, Ralston-Hooper K, Sepúlveda MS. Review of recent proteomic applications in aquatic toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:274-282. [PMID: 21072841 DOI: 10.1002/etc.402] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Over the last decade, the environmental sciences have witnessed an incredible movement towards the utilization of high-throughput molecular tools that are capable of detecting simultaneous changes of hundreds, and even thousands, of molecules and molecular components after exposure of organisms to different environmental stressors. These techniques have received a great deal of attention because they not only offer the potential to unravel novel mechanisms of physiological and toxic action but are also amenable to the discovery of biomarkers of exposure and effects. In this article, we review the state of knowledge of one of these tools in ecotoxicological research: proteomics. We summarize the state of proteomics research in fish, and follow with studies conducted with aquatic invertebrates. A brief discussion on proteomic methods is also presented. We conclude with some ideas for future proteomic studies with fish and aquatic invertebrates.
Collapse
|
34
|
Garcia-Reyero N, Perkins EJ. Systems biology: leading the revolution in ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:265-273. [PMID: 21072840 DOI: 10.1002/etc.401] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The rapid development of new technologies such as transcriptomics, proteomics, and metabolomics (Omics) are changing the way ecotoxicology is practiced. The data deluge has begun with genomes of over 65 different aquatic species that are currently being sequenced, and many times that number with at least some level of transcriptome sequencing. Integrating these top-down methodologies is an essential task in the field of systems biology. Systems biology is a biology-based interdisciplinary field that focuses on complex interactions in biological systems, with the intent to model and discover emergent properties of the system. Recent studies demonstrate that Omics technologies provide valuable insight into ecotoxicity, both in laboratory exposures with model organisms and with animals exposed in the field. However, these approaches require a context of the whole animal and population to be relevant. Powerful approaches using reverse engineering to determine interacting networks of genes, proteins, or biochemical reactions are uncovering unique responses to toxicants. Modeling efforts in aquatic animals are evolving to interrelate the interacting networks of a system and the flow of information linking these elements. Just as is happening in medicine, systems biology approaches that allow the integration of many different scales of interaction and information are already driving a revolution in understanding the impacts of pollutants on aquatic systems.
Collapse
|
35
|
Zhang XX, Zhang Z, Fu Z, Wang T, Qin W, Xu L, Cheng S, Yang L. Stimulation effect of microcystin-LR on matrix metalloproteinase-2/-9 expression in mouse liver. Toxicol Lett 2010; 199:377-82. [DOI: 10.1016/j.toxlet.2010.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 12/12/2022]
|
36
|
Wang M, Wang D, Lin L, Hong H. Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. CHEMOSPHERE 2010; 81:716-724. [PMID: 20800265 DOI: 10.1016/j.chemosphere.2010.07.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/20/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
Microcystin-LR (MCLR) is a commonly encountered blue-green algal hepatotoxin and a known inhibitor of cellular protein phosphatase (PP), however, little is known about its neurotoxicity. This study investigated the protein profiles of zebrafish (Danio rerio) brains chronically exposed to MCLR concentrations (2 or 20 μg L(-1)) using the proteomic approach. The results showed that MCLR strikingly enhanced toxin accumulation and the PP activity in zebrafish brains after 30 d exposure. Comparison of two-dimensional electrophoresis protein profiles of MCLR exposed and non-exposed zebrafish brains revealed that the abundance of 30 protein spots was remarkably altered in response to MCLR exposure. These proteins are involved in cytoskeleton assembly, macromolecule metabolism, oxidative stress, signal transduction, and other functions (e.g. transporting, protein degradation, apoptosis and translation), indicating that MCLR toxicity in the fish brain is complex and diverse. The chronic neurotoxicity of MCLR might initiate the PP pathway via an upregulation of PP2C in the zebrafish brain, in addition to the reactive oxygen species pathway. Additionally, the increase of vitellogenin abundance in MCLR exposed zebrafish brains suggested that MCLR might mimic the effects of endocrine disrupting chemicals. This study demonstrated that MCLR causes neurotoxicity in zebrafish at the proteomic level, which provides a new insight into MCLR toxicity in aquatic organisms and human beings.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Varó I, Rigos G, Navarro JC, del Ramo J, Calduch-Giner J, Hernández A, Pertusa J, Torreblanca A. Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: a proteomic approach. CHEMOSPHERE 2010; 80:570-577. [PMID: 20451238 DOI: 10.1016/j.chemosphere.2010.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
Gilthead sea bream Sparus aurata is the most commercialized Mediterranean aquacultured fish species. Ivermectin has recently (experimentally) started to be used to control ectoparasitic infestations in Mediterranean cultured marine fish. The potential hepatotoxicity of ivermectin was investigated in gilthead sea bream juveniles (35g) following oral administration at the recommended dose of 0.2 mgkg(-1) fish for 10d. Difference Gel Electrophoresis Technology (DIGE) was used to study the effect of this treatment in gilthead sea bream liver protein profile under routine culture conditions. The 2D-DIGE protein maps obtained were analyzed using the DeCyder 6.5 software. The results obtained showed significant changes in the expression of 36 proteins respect to the control group. Among these proteins, six increased in abundance, and 30 decreased. Spot showing differential expression respect to the control were analyzed by mass spectrometry and database search, which resulted in three positive identifications corresponding to hepatic proteins involved in lipid metabolism (apoA-I), oxidative stress responses and energy generation (beta-globin, ATP synthase subunit beta). These proteins have not been previously associated to invermectin effect.
Collapse
Affiliation(s)
- I Varó
- Department of Functional Biology, University of Valencia. Dr. Moliner, Spain.
| | | | | | | | | | | | | | | |
Collapse
|