1
|
Tian Y, Xie L, Hao S, Zhou X. Application of selenium to reduce heavy metal(loid)s in plants based on meta-analysis. CHEMOSPHERE 2024; 364:143150. [PMID: 39181458 DOI: 10.1016/j.chemosphere.2024.143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Agricultural soils are currently at risk of pollution from toxic heavy metal(loid)s (HMs) due to human activities, resulting in the excessive accumulation of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) in food plants. This poses significant risks to human health. Exogenous selenium (Se) has been proposed as a potential solution to reduce HMs accumulation in plants. However, there is currently a lack of comprehensive quantitative overview regarding its influence on the accumulation of HMs in plants. This study utilized meta-analysis to consolidate the existing knowledge on the impact of Se amendments on plant HMs accumulation from contaminated soil media. The present study conducted a comprehensive meta-analysis on literature published prior to December 2023, investigating the effects of different factors on HMs accumulation by meta-subgroup analysis and meta-regression model. Se application showed an inhibitory effect on plant uptake of Hg (28.9%), Cr (25.5%), Cd (25.2%), Pb (22.0%), As (18.3%) and Cu (6.00%) concentration. There was a significant difference in the levels of HMs between treatments with Se application and those without Se application in various plant organs. The percentage changes in the HMs contents of the organs varied from -13.0% to -22.0%. Compared with alkaline soil (pH > 8), Se application can reduce more HMs contents in plants in acidic soil (pH < 5.5) and neutral soil (pH = 5.5-8). For daily food plants(e.g. rice, wheat and corn), Se application can reduce HMs contents in Oryza sp., Triticum sp. and Zea sp., ranging from 14.0-20.0%. Our study emphasizes that the impact of Se on reducing HMs depends on the single or combined effects of Se concentration, plant organs, plant genera and soil pH condition.
Collapse
Affiliation(s)
- Ye Tian
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
3
|
Elazab D, Lambardi M, Capuana M. In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3387. [PMID: 37836127 PMCID: PMC10574448 DOI: 10.3390/plants12193387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Heavy metals are among the most common and dangerous contaminants; their action on plants, as well as the possibility for plants to effectively absorb and translocate them, have been studied for several years, mainly for exploitation in phytoremediation, an environmentally friendly and potentially effective technology proposed and studied for the recovery of contaminated soils and waters. In this work, the analysis has focused on the studies developed using in vitro techniques on the possibilities of mitigating, in plants, the stress due to the presence of heavy metals and/or improving their absorption. These objectives can be pursued with the use of different substances and organisms, which have been examined in detail. The following are therefore presented in this review: an analysis of the role of metals and metalloids; the use of several plant growth regulators, with their mechanisms of action in different physiological phases of the plant; the activity of bacteria and fungi; and the role of other effective compounds, such as ascorbic acid and glutathione.
Collapse
Affiliation(s)
- Doaa Elazab
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
- Department of Pomology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Maurizio Lambardi
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
| | - Maurizio Capuana
- IBBR—Institute of Biosciences and Bioresources, National Research Council (CNR), 50019 Florence, Italy
| |
Collapse
|
4
|
Wu Y, Zuo C, Zhang W, Zhang L. Selenium alleviates cadmium and copper toxicity in Gracilaria lemaneiformis (rhodophyta) with contrasting detoxification strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106545. [PMID: 37120956 DOI: 10.1016/j.aquatox.2023.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se) is a beneficial element for plants, and can be used to mitigate the toxicity of heavy metals. However, the detoxification of Se in macroalgae, a crucial part of aquatic ecosystem productivity, has rarely been reported. In the present study, a red macroalga Gracilaria lemaneiformis was exposed to non-essential metal cadmium (Cd) or essential metal copper (Cu) with addition of different levels of Se. We then examined the changes in growth rate, metal accumulation, metal uptake rate, subcellular distribution, as well as thiol compound induction in this alga. Se addition alleviated Cd/Cu-induced stress in G. lemaneiformis by regulating cellular metal accumulation and intracellular detoxification. Specifically, supplementation of low-level Se displayed a significant decrease in Cd accumulation, and thus alleviated the growth inhibition induced by Cd. This may be caused by the inhibitory effect of endogenous Se instead of exogenous Se on Cd uptake. Although Se addition increased bioaccumulation of Cu in G. lemaneiformis, the important intracellular metal chelators, phytochelatins (PCs), were massively induced to alleviate Cu-induced growth inhibition. High-dose Se addition did not deteriorate but failed to normalize the growth of algae under metal stress conditions. Reduction in Cd accumulation or induction of PCs by Cu could not suppress the toxicity of Se above safe levels. Se addition also altered metal subcellular distribution in G. lemaneiformis, which might affect the subsequent metal trophic transfer. Our results demonstrated that the detoxification strategies of Se between Cd and Cu were different in macroalgae. Elucidating the protective mechanisms of Se against metal stress may help us better apply Se to regulate metal accumulation, toxicity, and transfer in aquatic environment.
Collapse
Affiliation(s)
- Yun Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Chenchen Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
5
|
Zhang H, Yao G, He M. Transcriptome analysis of gene expression profiling from the deep sea in situ to the laboratory for the cold seep mussel Gigantidas haimaensis. BMC Genomics 2022; 23:828. [DOI: 10.1186/s12864-022-09064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The deep-sea mussel Gigantidas haimaensis is a representative species from the Haima cold seep ecosystem in the South China Sea that establishes endosymbiosis with chemotrophic bacteria. During long-term evolution, G. haimaensis has adapted well to the local environment of cold seeps. Until now, adaptive mechanisms responding to environmental stresses have remained poorly understood.
Results
In this study, transcriptomic analysis was performed for muscle tissue of G. haimaensis in the in situ environment (MH) and laboratory environment for 0 h (M0), 3 h (M3) and 9 h (M9), and 187,368 transcript sequences and 22,924 annotated differentially expressed genes (DEGs) were generated. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DEGs were enriched with a broad spectrum of biological processes and pathways, including those associated with antioxidants, apoptosis, chaperones, immunity and metabolism. Among these significantly enriched pathways, protein processing in the endoplasmic reticulum and metabolism were the most affected metabolic pathways. These results may imply that G. haimaensis struggles to support the life response to environmental change by changing gene expression profiles.
Conclusion
The present study provides a better understanding of the biological responses and survival strategies of the mussel G. haimaensis from deep sea in situ to the laboratory environment.
Collapse
|
6
|
Trombini C, Rodríguez-Moro G, Ramírez Acosta S, Gómez Ariza JL, Blasco J, García-Barrera T. Single and joint effects of cadmium and selenium on bioaccumulation, oxidative stress and metabolomic responses in the clam Scrobicularia plana. CHEMOSPHERE 2022; 308:136474. [PMID: 36126739 DOI: 10.1016/j.chemosphere.2022.136474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a vital trace element for many living organisms inclusive of aquatic species. Although the antagonistic action of this element against other pollutants has been previously described for mammals and birds, limited information on the join effects in bivalves is available. To this end, bivalves of the species Scrobicularia plana were exposed to Se and Cd individually and jointly. Digestive glands were analysed to determine dose-dependent effects, the potential influence of Se on Cd bioaccumulationas well as the possible recover of the oxidative stress and metabolic alterations induced by Cd. Selenium co-exposure decreased the accumulation of Cd at low concentrations. Cd exposure significantly altered the metabolome of clams such as aminoacyltRNA biosynthesis, glycerophospholipid and amino acid metabolism, while Se co-exposure ameliorated several altered metabolites such asLysoPC (14:0), LysoPE (20:4), LysoPE (22:6), PE (14:0/18:0), PE (20:3/18:4) andpropionyl-l-carnitine.Additionally, Se seems to be able to regulate the redox status of the digestive gland of clams preventing the induction of oxidativedamage in this organ. This study shows the potential Se antagonism against Cd toxicity in S. plana and the importance to study join effects of pollutants to understand the mechanism underlined the effects.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Sara Ramírez Acosta
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - José Luis Gómez Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain.
| |
Collapse
|
7
|
McLaughlin QR, Gunderson MP. Effects of selenium treatment on endogenous antioxidant capacity in signal crayfish (Pacifastacus leniusculus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109324. [PMID: 35248758 PMCID: PMC9055979 DOI: 10.1016/j.cbpc.2022.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
Selenium is an essential element that plays a role in numerous physiological processes and is critical for the maintenance of a strong endogenous antioxidant system. Previous work by our research group reported that the organophosphate pesticide dimethoate decreased glutathione S-transferase activity (GST) in signal crayfish (Pacifastacus leniusculus) collected from the Boise River (Idaho, USA). The goals of this study were to examine whether: 1) sodium selenite modulated the endogenous antioxidants glutathione (GSH), metallothionein (MT), and glutathione S-transferase (GST), thus suggesting a mechanism of antioxidant activity, 2) dimethoate exposure (pro-oxidant stressor) decreased GST activity in a localized population of signal crayfish collected from the Snake River (Idaho, USA), and 3) investigate whether selenium cotreatment ameliorated the adverse effects of dimethoate on GST activity due to the antioxidant properties associated with selenium. Selenium and dimethoate treatments (and co-treatments) did not modulate GSH or MT concentrations at the doses tested in this study. Furthermore, neither selenium nor dimethoate was factors influencing GST activity, and no interaction was found between the treatments. While our results did not support our predictions, they are suggestive and future studies examining the protective role of selenium in pro-oxidant exposure in this species are warranted. Population-specific responses as well as seasonal variations in endogenous antioxidant expression should be considered in future experiments.
Collapse
Affiliation(s)
- Quinlan R McLaughlin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, United States of America
| | - Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, United States of America.
| |
Collapse
|
8
|
Xu Z, Liu J, Wang E, Zhao C, Hu X, Chu KH, Wang L. Detoxification and recovery after cadmium exposure in the freshwater crab Sinopotamon henanense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58050-58067. [PMID: 34101120 DOI: 10.1007/s11356-021-14528-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a common pollutant in the aquatic environment, which puts the health and safety of aquatic organisms and humans at risk. In the present study, the freshwater crab Sinopotamon henanense was exposed to Cd (0, 50, 100, and 500 μg·L-1) for 14 d (0-14th d), followed by 21 d (14-35th d) of depuration. The changes in Cd bioaccumulation, microstructure, biomacromolecules (polysaccharides, neutral lipids, DNA and total proteins), and biochemical parameters (SOD, CAT, GR, TrxR, MDA and AChE) in the gills and hepatopancreas were tested. The injured microstructure, activated antioxidant system, increased MDA, and inhibited AChE of the gills and hepatopancreas responded with progressive bioaccumulation of Cd. Meanwhile, the polysaccharides and neutral lipids in the hepatopancreas reduced and DNA synthesis enhanced. During depuration, more than 58.80 ± 8.53% and 13.84 ± 12.11% of Cd was excreted from the gills and hepatopancreas, respectively. Recovery of microstructure and biomacromolecules as well as alleviated oxidative damage and neurotoxicity were also found in these two organs. Additionally, based on PCA, Ihis, GR and MDA were identified as the optimal biomarkers indicating the health status of crabs. In conclusion, S. henanense could resist Cd stress through antioxidant defence and self-detoxification.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Jing Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Chenyun Zhao
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Xuelei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, Guangdong Province, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
9
|
Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R, Zheng S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123570. [PMID: 32745877 DOI: 10.1016/j.jhazmat.2020.123570] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 05/07/2023]
Abstract
Since selenium (Se) was shown to be an essential element for humans in 1957, the biofortification of Se to crops via foliar spraying or soil fertilization has been performed for several decades to satisfy the daily nutritional need of humans. Appropriate doses of Se were found to counteract a number of abiotic and biotic stresses, such as exposure to heavy metals (metalloids) (HMs), via influencing the regulation of antioxidant systems, by stimulation of photosynthesis, by repair of damaged cell structures and functions, by regulating the metabolism of some substances and the rebalancing of essential elements in plant tissues. However, few concerns were paid on why and how Se could reduce the uptake of a variety of HMs. This review will mainly address the migration and transformation of HMs regulated by Se in the soil-plant system in order to present a hypothesis of why and how Se can reduce the uptake of HMs in plants. The following aspects will be examined in greater detail, including 1) how the soil characteristics influences the ability of Se to reduce the bioavailability of HMs in soils and their subsequent uptake by plants, which include soil Se speciation, pH, water regime, competing ions and microbes; 2) how the plant root system influenced by Se affects the uptake or the sequestration of HMs, such as root morphology, root iron plaques and root cell wall; 3) how Se combines with HMs and then sequesters them in plant cells; 4) how Se competes with arsenic (As) and thereby reduces As uptake in plants; 5) how Se regulates the expression of genes encoding functions involved in uptake, translocation and sequestration of HMs by Se in plants.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YuanPing Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanShuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - ZeYing Wu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - RunXiang Ni
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| |
Collapse
|
10
|
Hasanuzzaman M, Nahar K, García-Caparrós P, Parvin K, Zulfiqar F, Ahmed N, Fujita M. Selenium Supplementation and Crop Plant Tolerance to Metal/Metalloid Toxicity. FRONTIERS IN PLANT SCIENCE 2021; 12:792770. [PMID: 35046979 PMCID: PMC8761772 DOI: 10.3389/fpls.2021.792770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
Selenium (Se) supplementation can restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element essential for the functioning of the human physiology and is a beneficial element for plants. Low concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various ways. Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the outcome of improvement of various physiological features. Photosynthesis has been improved by Se supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained enzymatic activity, improved stomatal function, and photosystem activity. By modulating the antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of plants. However, excessive concentration of Se exerts toxic effects on plants. This review presents the role of Se for improving plant tolerance to metal/metalloid stress.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- *Correspondence: Mirza Hasanuzzaman
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Masayuki Fujita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
- Masayuki Fujita
| |
Collapse
|
11
|
Vernon EL, Moore MN, Bean TP, Jha AN. Evaluation of interactive effects of phosphorus-32 and copper on marine and freshwater bivalve mollusks. Int J Radiat Biol 2020; 98:1106-1119. [PMID: 32970511 DOI: 10.1080/09553002.2020.1823032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Contaminants seldom occur in isolation in the aquatic environment. While pollution of coastal and inland water bodies has received considerable attention to date, there is limited information on potential interactive effects between radionuclides and metals. Whether by accidental or controlled release, such contaminants co-exist in aquatic ecosystems and can pose an enhanced threat to biota. Using a range of biological responses, the study aimed to evaluate relative interactive effects on representative freshwater and marine bivalve species. METHODS An integrated, multi-biomarker approach was adopted to investigate response to copper (Cu, 18 μg L-1), a known environmentally relevant genotoxic metal and differing concentrations of phosphorus-32 (32P; 0.1 and 1 mGy d-1), alone and in combination in marine (Mytilus galloprovincialis) and freshwater (Dreissena polymorpha) mussels. Genetic and molecular biomarkers were determined post-exposure and included DNA damage (as measured by the comet assay), micronuclei (MN) formation, γ-H2AX foci induction and the expression of key stress-related genes (i.e. hsp70/90, sod, cat, gst). RESULTS Overall, using a tissue-specific (i.e. gill and digestive gland) approach, genotoxic response was reflective of exposures where Cu had a slight additive effect on 32P-induced damage across the species (but not all), cell types and dose rates. Multivariate analysis found significant correlations between comet and γ-H2AX assays, across both the tissues. Transcriptional expression of selected genes were generally unaltered in response to contaminant exposures, independent of species or tissues. CONCLUSIONS Our study is the first to explore the interactive effects of ionizing radiation (IR) and Cu on two bivalve species representing two ecological habitats. The complexity of IR-metal interactions demonstrate that extrapolation of findings obtained from single stressor studies into field conditions could be misrepresentative of real-world environments. In turn, environmental protective strategies deemed suitable in protecting biota from a single, isolated stressor may not be wholly adequate.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.,European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Truro, UK.,Plymouth Marine Laboratory, Plymouth, UK
| | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Qiang J, Duan XJ, Zhu CK, He J, Bao JW, Tao YF, Zhu HJ, Xu P. Selenium-Cultured Potamogeton maackianus in the Diet Can Alleviate Oxidative Stress and Immune Suppression in Chinese Mitten Crab ( Eriocheir sinensis) Under Copper Exposure. Front Physiol 2020; 11:713. [PMID: 32655418 PMCID: PMC7325926 DOI: 10.3389/fphys.2020.00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/29/2020] [Indexed: 11/14/2022] Open
Abstract
Selenium (Se) is an essential trace element for aquatic animals. The aquatic plant Potamogeton maackianus is an important natural food of Chinese mitten crab (Eriocheir sinensis). The aim of this study was to determine whether the antioxidant and immune responses of Chinese mitten crab are affected by including Se-cultured P. maackianus in the diet. Three groups of P. maackianus were cultured at levels of 0.02 mg/kg Se, 8.83 mg/kg Se, and 16.92 mg/kg Se, and the plants in these groups were used in experimental diets fed to crabs (dietary Se content of 0.05, 0.43, and 0.82 mg/kg, respectively). Compared with crabs in the 0.05 mg/kg group, those in the 0.82 mg/kg group showed significantly increased specific growth rate, protease and lipase activities, triglyceride and cholesterol contents, and Se content in the hepatopancreas and muscle (P < 0.05); increased activities of glutathione peroxidase, glutathione reductase, and catalase in the antioxidant system; increased transcript levels of MT (encoding metallothionein); and decreased malondialdehyde content (P < 0.05). At the end of the rearing experiment, the crabs in the different groups were exposed to copper (Cu2+) stress for 96 h. All the juvenile crabs in the 0.43 and 0.82 mg/kg groups survived 96 h of Cu2+ stress. Crabs in the 0.82 mg/kg group showed enhanced antioxidant responses under Cu2+ stress, increased transcript levels of MT and LYZ, and increased resistance. Therefore, supplementation of the diet of Chinese mitten crab with increased levels of Se-cultured P. maackianus can reduce oxidative stress under Cu2+ exposure, activate the immune response, and benefit growth.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xue-Jun Duan
- Adult Education College, Wuxi Institute of Technology, Wuxi, China
| | - Chuan-Kun Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
13
|
Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer’s disease. Anal Bioanal Chem 2020; 412:6485-6497. [DOI: 10.1007/s00216-020-02644-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
|
14
|
Sahlmann A, Lode T, Heuschele J, Borgå K, Titelman J, Hylland K. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2224-2232. [PMID: 31343775 DOI: 10.1002/etc.4541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/05/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Copper (Cu) is an essential trace metal, but may also be toxic to aquatic organisms. Although many studies have investigated the cytotoxicity of Cu, little is known about the in vivo genotoxic potential of Cu in marine invertebrates. We investigated the genotoxicity of Cu in 2 pelagic calanoid copepods, Acartia tonsa and Temora longicornis, and the intertidal harpacticoid copepod Tigriopus brevicornis by exposing them for 6 and 72 h to waterborne Cu (0, 6, and 60 µg Cu/L). A subsequent 24-h period in filtered seawater was used to investigate delayed effects or recovery. Genotoxicity was evaluated as DNA strand breaks in individual copepods using the comet assay. Copper did not increase DNA strand breaks in any of the species at any concentration or time point. The treatment did, however, cause 100% mortality in A. tonsa following exposure to 60 µg Cu/L. Acartia tonsa and T. longicornis were more susceptible to Cu-induced mortality than the benthic harpacticoid T. brevicornis, which appeared to be unaffected by the treatments. The results show major differences in Cu susceptibility among the 3 copepods and also that acute toxicity of Cu to A. tonsa is not directly associated with genotoxicity. We also show that the comet assay can be used to quantify genotoxicity in individual copepods. Environ Toxicol Chem 2019;38:2224-2232. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: Application of classical and novel genotoxicological biomarkers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:60-71. [DOI: 10.1016/j.mrgentox.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
16
|
Bolognesi C, Cirillo S, Chipman JK. Comet assay in ecogenotoxicology: Applications in Mytilus sp. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:50-59. [PMID: 31255226 DOI: 10.1016/j.mrgentox.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The comet assay is a sensitive technique to detect DNA damage caused by exposure to genotoxic chemical and physical agents and is widely used in ecotoxicology. The assay has been applied in aquatic species, mainly fish and bivalves, in field biomonitoring programs and in experimental studies. The aim of the present study was to retrieve and review the published evidence to define the role of the comet assay in the assessment of genotoxic pollutants. The study focused on the application of the test in Mytilus sp, used as a sentinel organism. Twenty-one biomonitoring studies, carried out in wild and in transplanted mussels, were evaluated. An increase of the comet parameters in animals from polluted areas with respect to the controls was observed in the majority of the studies with a large variability (frequency ratio:1.2-14.5) associated with types and extent of exposure to pollutants. Three studies out of 21 reported a lack of response. Heavy metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and pesticides were the main types of chemicals detected in sediments and/or mussel tissues from polluted areas. Twenty-nine laboratory studies were retrieved showing the sensitivity of the comet assay in detecting DNA damage in mussels exposed to the most relevant pollutants and mixtures of relevant contaminants, such as pharmaceuticals, anti-fouling agents or crude oil. The comet test also appeared to be a suitable approach to detect the genotoxic effects of nanoparticles. In some studies problems in the interpretation of data or discrepancies between the results from different laboratories were noted. Critical steps in experimental protocol and characterization of pollution, environmental variables such as temperature, salinity, food availability, physiological and pathological status of the animals are important factors which should be controlled and considered in the analysis of the results.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
17
|
Beneficial Effects of Desalinated Magma Seawater in Ameliorating Thioacetamide-induced Chronic Hepatotoxicity. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0371-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Kanduč T, Šlejkovec Z, Falnoga I, Mori N, Budič B, Kovačić I, Pavičić-Hamer D, Hamer B. Environmental status of the NE Adriatic Sea, Istria, Croatia: Insights from mussel Mytilus galloprovincialis condition indices, stable isotopes and metal(loid)s. MARINE POLLUTION BULLETIN 2018; 126:525-534. [PMID: 28965924 DOI: 10.1016/j.marpolbul.2017.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
The environmental status of the marine environment in the NE Adriatic Sea was assessed, using as a bioindicator species the Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819. Samples were collected seasonally from mariculture sites and from major Istrian ports between the years 2010 and 2013. The condition indices of mussels ranged from 13.3 to 20.9% at mariculture sites and from 14.3 to 23.3% at port locations. The seasonally δ13CDIC values of seawater varied between -10.9 to 0.7‰. Pollution by sewage sludge (based on δ15N values) was confirmed only in two ports. Tissue concentrations of Mn, Co, Ni, Cu, Zn, Se, Cd, and Pb were significantly higher in the tissue of the mussels collected from the ports (polluted sites). Arsenobetaine was the major As compound present in the samples and there was no significant difference in the levels of total As in mussel tissues from mariculture and port sites.
Collapse
Affiliation(s)
- Tjaša Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Nataša Mori
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Bojan Budič
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, Department for Natural and Health Sciences, Zagrebačka 30, 52100, Croatia; Center for Marine Research, Ruđer Bošković Institute, Giordana Paliaga 5, 52210 Rovinj, Croatia
| | - Dijana Pavičić-Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordana Paliaga 5, 52210 Rovinj, Croatia
| | - Bojan Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordana Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
19
|
Trevisan R, Flores-Nunes F, Dolores ES, Mattos JJ, Piazza CE, Sasaki ST, Taniguchi S, Montone RC, Bícego MC, Dos Reis IMM, Zacchi FL, Othero BNM, Bastolla CLV, Mello DF, Fraga APM, Wendt N, Toledo-Silva G, Razzera G, Dafre AL, de Melo CMR, Bianchini A, Marques MRF, Bainy ACD. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1833-1845. [PMID: 27363828 DOI: 10.1002/etc.3543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euler S Dolores
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jacó J Mattos
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei E Piazza
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sílvio T Sasaki
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | | | - Márcia C Bícego
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Isis M M Dos Reis
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flávia L Zacchi
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara N M Othero
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Camila L V Bastolla
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Paula M Fraga
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Nestor Wendt
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Guilherme Razzera
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cláudio M R de Melo
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | - Maria R F Marques
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Afonso C D Bainy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
20
|
Effects of selenizing modification on characteristics and antioxidant activities of Inonotus obliquus polysaccharide. Macromol Res 2017. [DOI: 10.1007/s13233-017-5030-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Gerić M, Gajski G, Oreščanin V, Domijan AM, Kollar R, Garaj-Vrhovac V. Environmental risk assessment of wastewaters from printed circuit board production: A multibiomarker approach using human cells. CHEMOSPHERE 2017; 168:1075-1081. [PMID: 27829507 DOI: 10.1016/j.chemosphere.2016.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Since the production of printed circuit boards (PCBs) generates wastewater contaminated with heavy metals and organic matter, PCB factories represent potential pollution sites. The wastewater toxicologically tested in this study contained several metals and the most abundant were copper and iron. At two exposure times tested (4 and 24 h) PCB wastewater (PCBW) proved to be cytotoxic (decreased cell viability) and genotoxic (increased comet assay tail intensity and tail moment) to human blood peripheral lymphocytes in vitro, and the oxidative stress parameter (malondialdehyde concentration) was also found to be higher. After application of combined treatment by waste base, ozone and waste sludge methods, concentrations of metals in purified PCBW were below the upper permitted levels and all tested toxicological parameters did not differ compared to the negative control. Taken together, similar methods could be implemented in PCB factories before discharging potentially toxic wastewater into the environment because purified PCBW does not represent a threat from the aspect of cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | | | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000, Zagreb, Croatia
| | | | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Ponton DE, Caron A, Hare L, Campbell PGC. Hepatic oxidative stress and metal subcellular partitioning are affected by selenium exposure in wild yellow perch (Perca flavescens). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:608-617. [PMID: 27131821 DOI: 10.1016/j.envpol.2016.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Yellow perch (Perca flavescens) collected from 11 lakes in the Canadian mining regions of Sudbury (Ontario) and Rouyn-Noranda (Quebec) display wide ranges in the concentrations of cadmium (Cd), nickel (Ni), selenium (Se), and thallium (Tl) in their livers. To determine if these trace elements, as well as copper (Cu) and zinc (Zn), are causing oxidative stress in these fish, we measured three biochemical indicators (glutathione (GSH), glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS)) in their livers. We observed that 44% of the yellow perch that we collected were at risk of cellular oxidative stress and lipid peroxidation. Considering all fish from all lakes, higher liver Se concentrations were coincident with both lower proportions of GSSG compared to GSH and lower concentrations of TBARS, suggesting that the essential trace-element Se acts as an antioxidant. Furthermore, fish suffering oxidative stress had higher proportions of Cd, Cu and Zn in potentially sensitive subcellular fractions (organelles and heat-denatured proteins) than did fish not suffering from stress. This result suggests that reactive oxygen species may oxidize metal-binding proteins and thereby reduce the capacity of fish to safely bind trace metals. High Cd concentrations in metal-sensitive subcellular fractions likely further exacerbate the negative effects of lower Se exposure.
Collapse
Affiliation(s)
- Dominic E Ponton
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement (INRS-ETE), Université du Québec, 490 rue de la Couronne, Quebec City, G1K 9A9, QC, Canada.
| | - Antoine Caron
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement (INRS-ETE), Université du Québec, 490 rue de la Couronne, Quebec City, G1K 9A9, QC, Canada
| | - Landis Hare
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement (INRS-ETE), Université du Québec, 490 rue de la Couronne, Quebec City, G1K 9A9, QC, Canada
| | - Peter G C Campbell
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement (INRS-ETE), Université du Québec, 490 rue de la Couronne, Quebec City, G1K 9A9, QC, Canada
| |
Collapse
|
23
|
Sources and Forms of Trace Metals Taken Up by Hydrothermal Vent Mussels, and Possible Adaption and Mitigation Strategies. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/698_2016_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
24
|
Trevisan R, Mello DF, Delapedra G, Silva DGH, Arl M, Danielli NM, Metian M, Almeida EA, Dafre AL. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:105-119. [PMID: 26859778 DOI: 10.1016/j.aquatox.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10μM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Department of Aquaculture, Federal University of Santa Catarina, 88034-001 Florianópolis, Brazil.
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Gabriel Delapedra
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danilo G H Silva
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Miriam Arl
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Naissa M Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Marc Metian
- International Atomic Energy Agency-Environment Laboratories (IAEA-EL), 4a Quai Antoine 1er, MC-98000 Principality of Monaco, Monaco
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| |
Collapse
|
25
|
Nogueira L, Garcia D, Trevisan R, Sanches ALM, da Silva Acosta D, Dafre AL, Oliveira TYK, de Almeida EA. Biochemical responses in mussels Perna perna exposed to diesel B5. CHEMOSPHERE 2015; 134:210-216. [PMID: 25950138 DOI: 10.1016/j.chemosphere.2015.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
In Brazil B5 blend (5% biodiesel and 95% diesel oil) has been adopted as mandatory fuel since 2010 for automotive vehicles. Since little is known about the effects of B5 exposure can promote on antioxidant system of marine biota this study aimed to assess if B5 can generate modifications in antioxidant parameters of mussels Perna perna. To address this question mussels were exposed to two concentrations of B5 (0.01 mL L(-1) and 0.1 mL L(-1)) for 6h, 12h, 48 h and 168 h. Then the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) were evaluated in gills and digestive gland as well as the contents of glutathione (GSH) and lipid peroxidation by measuring the malondialdehyde concentration (MDA). In the gills, GST activity decreased after 48 h and GR after 12h of exposure to B5. In digestive glands, the activities of SOD, GPx and GR were changed due to treatments. GSH concentration increased in digestive gland after 6h and 12h and in gills after 48 h for B5 0.1 mL L(-1) and after 168 h in the digestive gland for B5 0.01 mL L(-1) treatment. No lipid peroxidation was detected. The integrated biomarker response index (IBR) evidenced a B5 effect in the digestive gland after 168 h of exposure. Regarding the experimental conditions and species used in this study, long-term exposure to B5 is apparently more likely to affect the parameters tested in P. perna mussels.
Collapse
Affiliation(s)
- Lílian Nogueira
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Danielly Garcia
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Rafael Trevisan
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Ana Letícia Madeira Sanches
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| | - Daiane da Silva Acosta
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Alcir Luiz Dafre
- Laboratório de Defesas Celulares, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | | | - Eduardo Alves de Almeida
- Laboratório de Biomarcadores de Contaminação Aquática, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (IBILCE/UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
26
|
Lüchmann KH, Clark MS, Bainy ACD, Gilbert JA, Craft JA, Chipman JK, Thorne MAS, Mattos JJ, Siebert MN, Schroeder DC. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:10-20. [PMID: 26186662 DOI: 10.1016/j.aquatox.2015.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, USA; Department of Ecology and Evolution, University of Chicago, Chicago, USA; Marine Biological Laboratory, Woods Hole, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | - J Kevin Chipman
- School of Biological Sciences, The University of Birmingham, Birmingham, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marília N Siebert
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Plymouth, UK.
| |
Collapse
|
27
|
Feng L, Luo JB, Jiang WD, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression. FISH & SHELLFISH IMMUNOLOGY 2015; 45:239-249. [PMID: 25917968 DOI: 10.1016/j.fsi.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P < 0.05). These effects were partly due to the down-regulation of interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and IκB α and the up-regulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and nuclear factor κB P65 (NF-κB P65) (P < 0.05). However, valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). These results may be ascribed to the down-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the up-regulation of Kelch-like-ECH-associated protein 1 (Keap1) (P < 0.05). Additionally, valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P < 0.05). These results may be ascribed to the improvement in ROS levels in the fish gill (P < 0.05). Taken together, the results showed that valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill.
Collapse
Affiliation(s)
- Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian-Bo Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Gerić M, Gajski G, Oreščanin V, Kollar R, Franekić J, Garaj-Vrhovac V. Toxicological assessment and management options for boat pressure-washing wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:164-170. [PMID: 25638522 DOI: 10.1016/j.ecoenv.2015.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Boats are washed periodically for maintenance in order to remove biofoulants from hulls, which results in the generation of wastewater. This study aimed at evaluating the cyto/genotoxic and mutagenic properties of wastewater produced by pressure washing of boats. The chemical characterisation of this wastewater showed that Cu, Zn, V, Cr, Fe, Pb, and select organic contaminants exceeded the maximum allowable values from 1.7 up to 96 times. The wastewater produced negative effects on human lymphocytes resulting in decreased cell viability after 4 and 24h of exposure. Chromosome aberration, micronucleus, and comet assay parameters were significantly higher after 24h of exposure. At the same time, the Salmonella typhimurium test showed negative for both TA98 and TA100 strains at all of the concentrations tested. After the treatment of wastewater using electrochemical methods/ozonation during real scale treatment plant, removal rates of colour, turbidity and heavy metals ranged from 99.4% to 99.9%, while the removal of total organic carbon (TOC) and chemical oxygen demand (COD) was above 85%. This was reflected in the removal of the wastewater's cyto/genotoxicity, which was comparable to negative controls in all of the conducted tests, suggesting that such plants could be implemented in marinas to minimise human impact on marine systems.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | | | | | - Jasna Franekić
- Faculty of Food Technology and Biotechnology, Laboratory for Biology and Microbial Genetics, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| |
Collapse
|
29
|
Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides. Int J Biol Macromol 2015; 77:76-84. [PMID: 25783017 DOI: 10.1016/j.ijbiomac.2015.02.052] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/29/2015] [Accepted: 02/28/2015] [Indexed: 11/22/2022]
Abstract
Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides.
Collapse
|
30
|
Benedetti M, Giuliani ME, Regoli F. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. Ann N Y Acad Sci 2015; 1340:8-19. [DOI: 10.1111/nyas.12698] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
31
|
Bougerol M, Boutet I, LeGuen D, Jollivet D, Tanguy A. Transcriptomic response of the hydrothermal mussel Bathymodiolus azoricus in experimental exposure to heavy metals is modulated by the Pgm genotype and symbiont content. Mar Genomics 2014; 21:63-73. [PMID: 25542630 DOI: 10.1016/j.margen.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
Hydrothermal vent mussels belonging to the genus Bathymodiolus dominate communities at hydrothermal sites of the Mid-Atlantic Ridge. The mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills and evolves in naturally highly metal contaminated environments. In the context of investigations on metal tolerance/effect in B. azoricus, we focused our work on the short-term adaptive response (15days) of mussels to different metals exposure at a molecular level using metal concentrations chosen to mimic natural situations at three vents sites. The expression of a set of 38 genes involved in different steps of the metal uptake, detoxication and various metabolisms was analysed by qPCR. Mussels were also genotyped at 10 enzyme loci to explore the relationships among natural genetic variation and gene expression. Relation between symbiont content (both sulfur-oxidizing and methanogen bacteria) and gene expression was also analysed. Our study demonstrated the influence of metal cocktail composition and time exposure on the transcriptome regulation with a specific pattern of regulation observed for the three metal cocktail tested. We also evidenced the significant influence of some specific Pgm genotype on the global gene expression in our experimental populations and a general trend of a higher gene expression in individuals carrying a high symbiont content.
Collapse
Affiliation(s)
- Marion Bougerol
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France; CNRS/MNHN, UMR 7221, Evolution des Régulations Endocriniennes, MNHN, 7 Rue Cuvier, 75231 Paris Cedex 05, France
| | - Isabelle Boutet
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique LeGuen
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Arnaud Tanguy
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France.
| |
Collapse
|
32
|
Trevisan R, Mello DF, Uliano-Silva M, Delapedra G, Arl M, Dafre AL. The biological importance of glutathione peroxidase and peroxiredoxin backup systems in bivalves during peroxide exposure. MARINE ENVIRONMENTAL RESEARCH 2014; 101:81-90. [PMID: 25265592 DOI: 10.1016/j.marenvres.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Organic peroxide elimination in eukaryotes essentially depends on glutathione peroxidase (GPx) and peroxiredoxin (Prx) enzymes, which are supported by their respective electron donors, glutathione (GSH) and thioredoxin (Trx). This system depends on the ancillary enzymes glutathione reductase (GR) and thioredoxin reductase (TrxR) to maintain GSH and Trx in their reduced state. This study discusses the biological importance of GR and TrxR in supporting GPx and Prx during cumene hydroperoxide (CHP) exposure in brown mussel Perna perna. ZnCl2 or 1-chloro-2,4-dinitrobenze (CDNB) was used to decrease GR and TrxR activities in gills, as already reported with mammals and bivalves. ZnCl2 exposure lowered GR activity (28%), impaired the in vivo CHP decomposition and decreased the survival rates under CHP exposure. CDNB decreased GR (54%) and TrxR (73%) activities and induced glutathione depletion (99%), promoting diminished peroxide elimination and survival rates at a greater extent than ZnCl2. CDNB also increased the susceptibility of hemocytes to CHP toxicity. Despite being toxic and causing mortality at longer exposures, short (2 h) exposure to CHP promoted an up regulation of GSH (50 and 100 μM CHP) and protein-thiol (100 μM CHP) levels, which was blocked by ZnCl2 or CDNB pre-exposure. Results highlight the biological importance of GSH, GR and TrxR in supporting GPx and Prx activities, contributing to organic peroxides elimination and mussel survival under oxidative challenges. To our knowledge, this is the first work that demonstrates, albeit indirectly, the biological importance of GPx/GR/GSH and Prx/TrxR/Trx systems on in vivo organic peroxide elimination in bivalves.
Collapse
Affiliation(s)
- Rafael Trevisan
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil.
| | - Danielle Ferraz Mello
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Marcela Uliano-Silva
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriel Delapedra
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Miriam Arl
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
33
|
Song S, Zhang X, Wu H, Han Y, Zhang J, Ma E, Guo Y. Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans. PLoS One 2014; 9:e107685. [PMID: 25243607 PMCID: PMC4171499 DOI: 10.1371/journal.pone.0107685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/15/2014] [Indexed: 11/21/2022] Open
Abstract
Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes.
Collapse
Affiliation(s)
- Shaojuan Song
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yan Han
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yaping Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
34
|
Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt ÉC, Meder F, Monopoli M, Cargnin-Ferreira E, Bouzon ZL, Fisher AS, Sheehan D, Dafre AL. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 153:27-38. [PMID: 24745718 DOI: 10.1016/j.aquatox.2014.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm. In seawater, aggregation was detected by TEM and DLS analysis, with an increased average size ranging from 1 to 2 μm. Soluble or nanoparticulated zinc presented similar toxicity, displaying a LC50 (96 h) around 30 mg/L. High zinc dissociation from ZnONP, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONP toxicity. To investigate mechanisms of toxicity, oysters were treated with 4 mg/L ZnONP for 6, 24 or 48 h. ZnONP accumulated in gills (24 and 48 h) and digestive glands (48 h). Ultrastructural analysis of gills revealed electron-dense vesicles near the cell membrane and loss of mitochondrial cristae (6 h). Swollen mitochondria and a more conspicuous loss of mitochondrial cristae were observed after 24 h. Mitochondria with disrupted membranes and an increased number of cytosolic vesicles displaying electron-dense material were observed 48 h post exposure. Digestive gland showed similar changes, but these were delayed relative to gills. ZnONP exposure did not greatly affect thiol homeostasis (reduced and oxidized glutathione) or immunological parameters (phagocytosis, hemocyte viability and activation and total hemocyte count). At 24 h post exposure, decreased (-29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (-28%) and levels of protein thiols (-21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (-47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Gabriel Delapedra
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Miriam Arl
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Éder C Schmidt
- Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | - Fabian Meder
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland
| | - Marco Monopoli
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland
| | - Eduardo Cargnin-Ferreira
- Federal Institute of Santa Catarina, Campus Garopaba, Laboratory of Histological Markers, 88495-000 Garopaba, SC, Brazil
| | - Zenilda L Bouzon
- Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | - Andrew S Fisher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA Plymouth, United Kingdom
| | - David Sheehan
- Department of Biochemistry, University College Cork, Cork, Ireland
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
35
|
Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL. Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:22-30. [PMID: 24095941 DOI: 10.1016/j.cbpc.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 μM zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Harisa GI, Abo-Salem OM, El-sayed ESM, Shazly G. Effects of nutritional and excessive levels of selenium on red blood cells of rats fed a high cholesterol diet. Biol Trace Elem Res 2013; 152:41-9. [PMID: 23292318 DOI: 10.1007/s12011-012-9588-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
In this study, we investigated the effects of selenium (Se) on the properties of erythrocytes and atherogenic index in the presence and absence of high cholesterol diet (HCD). The effect of selected two different doses (1 μg and 50 μg Se/kg/body weight) on HCD-induced oxidative stress was investigated. The hemolysis of the erythrocytes of the HCD rats as well as by high levels of selenium or their combination was markedly increased. Likewise, atherogenic index and plasma glutathione peroxidase (GPx) activity were significantly increased in the same groups of rats compared to control ones. In contrast, paraoxonase activity, glutathione levels and protein thiol levels, catalase, GPx, and superoxide dismutase activities were significantly decreased in rats that received the HCD, high selenium dose, or their combination. Malondialdehyde and protein carbonyl levels in the plasma and red blood cells were significantly increased by HCD and high selenium dose administration. Co-administration of selenium at low dose with or without an HCD restored all of the investigated parameters to near-normal values. The results of this study suggest that excess selenium administration with HCD worsens the atherogenic index and enhances formation of oxidized red blood cells. At dosage levels in the nutritional range such as 1 μg Se/kg body weight, selenium ameliorates the atherogenic index and preserves the antioxidant capacity of the erythrocytes.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
37
|
Li HT, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Zhou XQ. Oxidative stress parameters and anti-apoptotic response to hydroxyl radicals in fish erythrocytes: protective effects of glutamine, alanine, citrulline and proline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:169-179. [PMID: 23220409 DOI: 10.1016/j.aquatox.2012.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
The present study explored the protective effects of glutamine (Gln), alanine (Ala), citrulline (Cit) and proline (Pro) on hydroxyl radical (·OH)-induced apoptosis in isolated carp erythrocytes. Hydroxyl radicals were generated by ferrous ion (Fe(2+))-mediated decomposition of hydrogen peroxide (H(2)O(2)) (Fenton reaction). In order to select an optimal ·OH concentration to induce apoptosis, cultures were treated with different concentrations of FeSO(4)/H(2)O(2) (0 μM/0 μM-50 μM/25 μM). The results showed that exposure to FeSO(4)/H(2)O(2) (0 μM/0 μM-40 μM/20 μM) increased apoptosis in a dose-dependent manner. Moreover, apoptosis was at its highest level at 40 μM FeSO(4)/20 μM H(2)O(2). We then examined the cytoprotective effects of Gln, Ala, Cit, Pro or the combination of Ala, Cit and Pro under conditions of apoptosis. Carp erythrocytes were treated with the substances listed above in the presence of 40 μM FeSO(4)/20 μM H(2)O(2) for 9 h. The controls were grown in Gln, Ala, Cit, Pro-free culture medium. The results showed that Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro effectively protected against annexin binding, decrease of forward scatter and DNA fragmentation in carp erythrocytes induced by ·OH. Furthermore, Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro effectively blocked ·OH-stimulated erythrocyte hemolysis, reduced the increase of superoxide anion and H(2)O(2) concentrations, inhibited the formation of malondialdehyde, protein carbonyls and met-hemoglobin, and prevented the decrease of superoxide dismutase, catalase and glutathione peroxidase activities and glutathione content in carp erythrocytes induced by ·OH. In addition, the results suggest that the combination of Ala, Cit and Pro produces a greater anti-apoptotic and anti-oxidative effect than their individual effects at the same concentrations. Taken together, the results showed that ·OH induces apoptosis and oxidative damage in carp erythrocytes. In addition to inhibiting apoptosis, Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro protected carp erythrocytes against oxidative damage induced by ·OH, which may be a major factor in the protection of erythrocytes from apoptosis.
Collapse
Affiliation(s)
- Hua-Tao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Sayed HM, Fouad D, Ataya FS, Hassan NH, Fahmy MA. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 744:145-53. [DOI: 10.1016/j.mrgentox.2012.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/11/2012] [Accepted: 02/05/2012] [Indexed: 11/28/2022]
|
39
|
Dash B, Phillips TD. Molecular characterization of a catalase from Hydra vulgaris. Gene 2012; 501:144-52. [PMID: 22521743 DOI: 10.1016/j.gene.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
Abstract
Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3'- and 5'- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
40
|
Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:129-38. [PMID: 22153249 DOI: 10.1016/j.plaphy.2011.10.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/24/2011] [Indexed: 05/20/2023]
Abstract
The protective role of exogenously supplied selenium (Se) and polyamines (PAs) such as putrescine (Put) and spermine (Spm) in detoxifying the cadmium (Cd) induced toxicity was studied in the marine red alga Gracilaria dura in laboratory conditions. The Cd exposure (0.4 mM) impede the growth of alga while triggering the reactive oxygen species (ROS viz. O(2)(•-) and H(2)O(2)) generation, inhibition of antioxidant system, and enhancing the lipoxygenase (LOX) activity, malondialdehyde (MDA) level and demethylation of DNA. Additions of Se (50 μM) and/or Spm (1 mM) to the culture medium in contrast to Put, efficiently ameliorated the Cd toxicity by decreasing the accumulation of ROS and MDA contents, while restoring or enhancing the level of enzymatic and nonenzymatic antioxidants and their redox ratio, phycobiliproteins and phytochelatins, over the controls. The isoforms of antioxidant enzymes namely superoxide dismutase (Mn-SOD, ~150 kDa; Fe-SOD ~120 kDa), glutathione peroxidase (GSH-Px, ~120 and 140 kDa), glutathione reductase (GR, ~110 kDa) regulated differentially to Se and/or Spm supplementation. Furthermore, it has also resulted in enhanced levels of endogenous PAs (specially free and bound insoluble Put and Spm) and n-6 PUFAs (C20-3, n-6 and C20-4, n-6). This is for the first time wherein Se and Spm were found to regulate the stabilization of DNA methylation by reducing the events of cytosine demethylation in a mechanism to alleviate the Cd stress in marine alga. The present findings reveal that both Se and Spm play a crucial role in controlling the Cd induced oxidative stress in G. dura.
Collapse
Affiliation(s)
- Manoj Kumar
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Gijubhai Badheka Marg, Bhavnagar 364021, India
| | | | | | | | | |
Collapse
|
41
|
Trevisan R, Arl M, Sacchet CL, Engel CS, Danielli NM, Mello DF, Brocardo C, Maris AF, Dafre AL. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:85-93. [PMID: 22036013 DOI: 10.1016/j.aquatox.2011.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 μM for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH-CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH-CDNB conjugates.
Collapse
Affiliation(s)
- Rafael Trevisan
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gerić M, Gajski G, Oreščanin V, Kollar R, Garaj-Vrhovac V. Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1521-1527. [PMID: 22702811 DOI: 10.1080/10934529.2012.680360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study aimed to characterize chemical properties of clay bricks containing 20 % of sewage sludge. After detection of potentially hazardous metals, we simulated precipitation exposure of such material to determine the amount of heavy metals that could leach out of the bricks. Metals, such as copper, zinc, nickel, cobalt, chromium, etc., were detected in leachate in low concentrations. Moreover, human peripheral blood lymphocytes were exposed to brick leachate for 24 h in order to evaluate its possible negative impact on human cells and genome in vitro. Cytotoxicity tests showed no effect on human peripheral blood lymphocytes viability after exposure to brick's leachate. On the contrary, the alkaline comet assay showed slight but significant increase in DNA damage with all three parameters tested. As we might predict, interactions of several heavy metals in low concentrations could be responsible for DNA damaging effect. In that manner, our findings suggest that leachates from sewage sludge-produced bricks may lead to adverse effects on the exposed human population, and that more stabile bricks should be developed to minimize leaching of heavy metals into the environment. Bricks with lower percentage of the sludge may be one of the solutions to reduce the toxic effect of the final product.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
43
|
Al-Subiai SN, Moody AJ, Mustafa SA, Jha AN. A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1913-1920. [PMID: 21851981 DOI: 10.1016/j.ecoenv.2011.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 07/04/2011] [Accepted: 07/17/2011] [Indexed: 05/31/2023]
Abstract
While copper (Cu) is considered to be an essential trace element for many organisms, overexposure to this metal can induce a wide spectrum of effects including DNA damage. Given that Cu is a highly relevant contaminant in the marine environment, we aimed to evaluate the induction of DNA strand breaks (using the comet assay) in haemocytes and concurrently also determined biological responses at higher levels of biological organisation in bivalve molluscs, Mytilus edulis, following exposure for 5 days to a range of environmentally realistic levels of Cu (18-56 μg l(-1)). Prior to evaluation of genetic damage, the maximum tolerated concentration (MTC) was also determined, which was found to be (100 μg l(-1)) above which complete mortality over the exposure period was observed. In addition to DNA damage, levels of glutathione in adductor muscle extracts, histopathological examination of various organs (viz., adductor muscle, gills and digestive glands) and clearance rates as a physiological measure at individual level were also determined. Furthermore, tissue-specific accumulation and levels of Cu in water samples were also determined using ICP-MS. There was a strong concentration-dependant induction for DNA damage and total glutathione levels increased by 1.8-fold at 56 μg l(-1) Cu. Histological examination of the organs showed qualitatively distinct abnormalities. Clearance rate also showed a significant decrease compared to controls even at the lowest concentration (i.e. 18 μg l(-1); P=0.003). Cu levels in adductor muscle (P=0.012), digestive gland (P=0.008) and gills (P=0.002) were significantly higher than in the control. The multi-biomarker approach used here suggests that in some cases clear relationships exist between genotoxic and higher level effects, which could be adopted as an integrated tool to evaluate different short and long-term toxic effects of pollutants.
Collapse
Affiliation(s)
- Sherain N Al-Subiai
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | | | | | | |
Collapse
|
44
|
Jiang WD, Wu P, Kuang SY, Liu Y, Jiang J, Hu K, Li SH, Tang L, Feng L, Zhou XQ. Myo-inositol prevents copper-induced oxidative damage and changes in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:543-551. [PMID: 21924699 DOI: 10.1016/j.aquatox.2011.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
Although oxidative stress has been demonstrated to be involved in copper (Cu)-induced toxicity, information regarding the effect of antioxidants on Cu toxicity is still scarce. This study assessed the possible protective effects of myo-inositol (MI) against subsequent Cu exposure in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in their enterocytes in vitro. First, oxidative stress was established by exposing fish to different concentrations of Cu (0-7.2 mg Cu/L water) for 4 days. Next, the protective effects of MI (administered as a dietary supplement for 60 days) against subsequent Cu exposure (0.6 mg Cu/L water for 4 days) were studied in fish. The third trial determined the effects of Cu exposure (0-6.0 mg Cu/L of medium for 24h) on enterocytes in vitro. Finally, enterocytes were pre-incubated with graded levels of MI (0-75 mg MI/L of medium) for 72 h and exposed to 6.0 mg Cu/L of medium for 24h. The results indicated that ≥ 0.6 mg Cu/L water could induce oxidative stress in fish (P<0.05). Cu exposure significantly induced increases in lipid peroxidation and protein oxidation in the gill, hepatopancreas and intestine in fish. However, these oxidative effects were prevented by MI pre-supplementation. MI also prevented the toxic effects of Cu on anti-superoxide anion (ASA), anti-hydroxyl radical (AHR), superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in these organs. In vitro, enterocytes exposed to Cu displayed a dose-dependent injury. Moreover, cell viability, protein retention (PR), alkaline phosphatase, total-SOD (T-SOD) and Cu/ZnSOD activities were all depressed by Cu (P<0.05). Interestingly, the final experiment showed that MI pre-supplementation could block the toxic effects of Cu on the antioxidant system, and thus protect enterocytes from Cu-induced oxidative damage. All of these results indicated that the induction of key antioxidant defenses by MI pre-supplementation, including SOD, CAT, GPx, GST and GSH, may play an important role in the protection of fish against oxidative stress.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang Q, Ning X, Chen L, Pei D, Zhao J, Zhang L, Liu X, Wu H. Responses of thioredoxin 1 and thioredoxin-related protein 14 mRNAs to cadmium and copper stresses in Venerupis philippinarum. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:154-60. [PMID: 21616164 DOI: 10.1016/j.cbpc.2011.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 01/30/2023]
Abstract
Thioredoxin (abbreviated as Trx) is an important ubiquitous disulfide reductase, which can protect organisms against various oxidative stresses. In the present study, thioredoxin 1 (named as VpTrx1) and thioredoxin-related protein (named as VpTrp14) were identified from Venerupis philippinarum, respectively. Similar to most Trx1s, VpTrx1 possessed all conserved features critical for the fundamental structure and function of Trx1s, such as the conserved catalytic residues (C-G-P-C), but lacked the other cysteine residues, while VpTrp14 contained the conserved motif (C-P-D-C). Quantitative Real-time PCR assay showed that VpTrx1 and VpTrp14 transcripts were distributed in a wide array of tissues most abundantly expressed in the hepatopancreas. The expression of VpTrp14 mRNA in the hepatopancreas was significantly up-regulated after exposure to 10 and 40μg/L Cd, while the VpTrx1 expression level was kept relatively constant. Both the expression levels of VpTrx1 and VpTrp14 in the hepatopancreas were induced after exposure to Cu, and increased to the peak value at 96h under the 40μg/L Cu exposure. These results showed that VpTrp14 transcripts responded to metal stress more acutely than VpTrx1, and both Trxs responded to Cu stress more sensitively than Cd. Together, it was suggested that VpTrx1 and VpTrp14 perhaps played important roles in the antioxidant responses against metal stress in V. philippinarum.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | | | | | | | | | | | | | | |
Collapse
|