1
|
Monsinjon T, Knigge T. Endocrine disrupters affect the immune system of fish: The example of the European seabass. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110303. [PMID: 40180203 DOI: 10.1016/j.fsi.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
An organism's fitness critically relies on its immune system to provide protection against parasites and pathogens. The immune system has reached its highest complexity in vertebrates, combining the highly specific adaptive with the non-specific innate immunity. In vertebrates, a complex system of steroid hormones regulates major physiological functions comprising energy metabolism, growth, reproduction and immune system performance. This allows the organism to allocate available energy according to life-history traits and environmental conditions, thus maintaining homeostasis and survival of the individual and of the population. Immune system activation must take into account the developmental stage and the nutritional state of the organism. It should respond adequately to different pathogens, but should not overperform or consume all resources for other physiological functions. This important trade-off between immunity and reproduction is balanced by oestrogen. Many of the thousands of chemicals released by humans into the environment, so-called xenobiotics, have the ability to disrupt normal endocrine function. Such endocrine-disrupting chemicals have been demonstrated to impair reproductive functions and to be responsible for numerous diseases in humans and wild life. Given that oestrogens are established modulators of immune cell populations, exogenous oestrogens and oestrogen mimics can modulate immune functions in aquatic animals, such as fish, potentially affecting wildlife and aquaculture. This review highlights the interaction of xenoestrogens with fish immunity. It particularly focusses on the thymus, a major primary immune organ, in the European seabass, Dicentrarchus labrax an important species, both for fisheries and aquaculture.
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| | - Thomas Knigge
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| |
Collapse
|
2
|
Maddalon A, Cari L, Iulini M, Alhosseini MN, Galbiati V, Marinovich M, Nocentini G, Corsini E. Impact of endocrine disruptors on peripheral blood mononuclear cells in vitro: role of gender. Arch Toxicol 2023; 97:3129-3150. [PMID: 37676302 PMCID: PMC10567873 DOI: 10.1007/s00204-023-03592-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Humans can be exposed to endocrine disruptors (EDs) in numerous ways. EDs can interfere with endogenous hormones at different levels, resulting in numerous adverse human health outcomes, including immunotoxicity. In this regard, this study aimed to investigate in vitro the possible effects of EDs on immune cells and possible gender differences. Peripheral blood mononuclear cells from healthy humans, both males and females, were exposed to 6 different EDs, namely atrazine (herbicide), cypermethrin (insecticide), diethyl phthalate (plasticizer), 17α-ethynylestradiol (contraceptive drug), perfluorooctanesulfonic acid (persistent organic pollutant), and vinclozolin (fungicide). We evaluated the effect of EDs on RACK1 (receptor for activated C kinase 1) expression, considering it as a bridge between the endocrine and the immune system, and putatively used as screening tool of immunotoxic effects of EDs. The exposure to EDs resulted at different extent in alteration in RACK1 expression, pro-inflammatory activity, natural killer lytic ability, and lymphocyte differentiation, with sex-related differences. In particular, diethyl phthalate and perfluorooctanesulfonic acid resulted the most active EDs tested, with gender differences in terms of effects and magnitude. The results from our study evidenced the ability of EDs to directly affect immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mahdieh Naghavi Alhosseini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
3
|
Kernen L, Phan A, Bo J, Herzog EL, Huynh J, Segner H, Baumann L. Estrogens as immunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106025. [PMID: 34837781 DOI: 10.1016/j.aquatox.2021.106025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs) can cause alterations in sexual development and reproductive function of fish. Growing evidence suggests that EEDCs can also interfere with development and function of innate immunity of fish. The present study examined a potential disruptive effect of EEDCs at field-relevant concentrations on the development of adaptive immunity, more specifically the thymus. Zebrafish (Danio rerio) were exposed from fertilization until 64 days post-fertilization (dpf) to environmentally relevant (3 and 10 ng/L) concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2). The exposure duration covered the period of initial thymus differentiation to maximum growth. Thymus development was assessed by histological and morphometric (thymus area) analysis, thymocyte number, and transcript levels of thymocyte marker genes. Additionally, transcript levels of the estrogen receptors (esr1 and esr2a) were determined. The EE2 exposure altered sexual development (gonad differentiation, transcript levels of hepatic vitellogenin and estrogen receptors) of zebrafish, as expected. At the same time, the EE2 treatment reduced the thymus growth (thymus area, thymocyte number) and transcript levels of thymus marker genes. The expression of the thymic estrogen receptors responded to the EE2 exposure but in a different pattern than the hepatic estrogen receptors. After the 64-day-exposure period, the juvenile fish were transferred into clean water for another 95 days to assess the reversibility of EE2-induced effects. The thymic alterations were found to be reversible in female zebrafish but persisted in males. The present study provides the first evidence that the development of the fish adaptive immune system is sensitive to EEDCs, and that this takes place at concentrations similar to those that disrupt sexual development.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Audrey Phan
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361102, China
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - John Huynh
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Teng J, Zhao Y, Chen HJ, Xue LY, Ji XS. Global expression response of genes in sex-undifferentiated Nile tilapia gonads after exposure to trace letrozole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112255. [PMID: 33915448 DOI: 10.1016/j.ecoenv.2021.112255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The aromatase inhibitor letrozole can be found in rivers, effluents, and even drinking water. Studies have demonstrated that letrozole affects various metabolic pathways and may cause reproductive toxicity, especially in fish exposed during development. However, studies on the effect of a low concentration of letrozole at the whole-gonad transcriptomic level in the early stage of fish sexual development have not been investigated. The aim of our study was to explore the potential effects of a low concentration of letrozole on the gonad transcriptome of Nile tilapia at an early stage of sexual development. In this study, 9 dpf (days postfertilization) Nile tilapia were exposed to trace letrozole for 12 days. Letrozole exposure from 9 dpf to 21 dpf persistently altered phenotypic sex development and induced the male-biased sex ratio. The transcriptome results showed that 1173 differentially expressed genes (DEGs) were present in the female control vs 1.5 μg/L letrozole-treated female comparison group and that 1576 DEGs were present in the 1.5 μg/L letrozole-treated female vs male control comparison group. Differentially expressed gene enrichment analysis revealed several crucial pathways, including the drug metabolism-cytochrome P450 pathway, the ErbB-PI3K/Akt/mTOR pathway, and the calcium signalling pathway. Further analysis of these identified DEGs indicated that some key genes correlated with metabolism and epigenetic regulation were significantly affected by letrozole, such as UDP-glucuronosyltransferase (Ugt), glutathione S-transferase omega-1 (Gsto1), lysine-specific demethylase 6bb (Kdm6bb, original name is Kdm6a), jumonji and AT-rich interaction domain containing 2 (Jarid2b, original name is Jarid2), growth arrest and DNA damage inducible gamma (Gadd45g), and chromobox protein 7 (Cbx7). The qRT-PCR validation results for twelve DEGs showed that the Pearson's correlation of the log10fold change values between the qPCR and RNA-Seq results was 0.90, indicating the accuracy and reliability of the RNA-Seq results. Our study is the first to report the effect of letrozole on the transcriptome of gonads from fish during early-stage sexual development. These findings will be useful for understanding the toxic effects and molecular mechanisms of letrozole exposure at the early stage of gonad development on the sexual development of aquatic organisms.
Collapse
Affiliation(s)
- Jian Teng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China; College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yan Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hong Ju Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| | - Xiang Shan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
5
|
Saaristo M, Craft JA, Tyagi S, Johnstone CP, Allinson M, Ibrahim KS, Wong BBM. Transcriptome-wide changes associated with the reproductive behaviour of male guppies exposed to 17α-ethinyl estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116286. [PMID: 33360600 DOI: 10.1016/j.envpol.2020.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Although many pharmaceutical compounds (and their metabolites) can induce harmful impacts at the molecular, physiological and behavioural levels, their underlying mechanistic associations have remained largely unexplored. Here, we utilized RNA-Seq to build a whole brain transcriptome profile to examine the impact of a common endocrine disrupting pharmaceutical (17α-ethinyl estradiol, EE2) on reproductive behaviour in wild guppies (Poecilia reticulata). Specifically, we annotated 16,791 coding transcripts in whole brain tissue in relation to the courtship behaviour (i.e. sigmoid display) of EE2 exposed (at environmentally relevant concentration of 8 ng/L for 28-days) and unexposed guppies. Further, we obtained 10,960 assembled transcripts matching in the non-coding orthologous genomes. Behavioural responses were assessed using a standard mate choice experiment, which allowed us to disentangle chemical cues from visual cues. We found that a high proportion of the RNAseq reads aligned back to our de novo assembled transcriptome with 80.59% mapping rate. Behavioural experiments showed that when males were presented only with female visual cues, there was a significant interaction between male treatment and female treatment in the time spent in the preference zone. This is one of the first studies to show that transcriptome-wide changes are associated with the reproductive behaviour of fish: EE2 exposed male guppies that performed high levels of courtship had a gene profile that deviated the most from the other treatment groups, while both non-courting EE2 and control males had similar gene signatures. Using Gene Ontology pathway analysis, our study shows that EE2-exposed males had gene transcripts enriched for pathways associated with altered immunity, starvation, altered metabolism and spermatogenesis. Our study demonstrates that multiple gene networks orchestrate courting behaviour, emphasizing the importance of investigating impacts of pharmaceuticals on gene networks instead of single genes.
Collapse
Affiliation(s)
- Minna Saaristo
- EPA Victoria, Water Sciences, Melbourne, Australia; School of Biological Sciences, Monash University, Australia; Department of Biosciences, Åbo Akademi University, Finland.
| | - John A Craft
- Life Sciences, Glasgow Caledonian University, UK
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Australia
| | | | - Mayumi Allinson
- Department of Chemical Engineering, University of Melbourne, Australia
| | - Khalid S Ibrahim
- Life Sciences, Glasgow Caledonian University, UK; Department of Biology, University of Zakho, Kurdistan Region, Iraq
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
6
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Cui Q, Chen FY, Zhang M, Peng H, Wang KJ. Transcriptomic analysis revealing hepcidin expression in Oryzias melastigma regulated through the JAK-STAT signaling pathway upon exposure to BaP. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:134-141. [PMID: 30476743 DOI: 10.1016/j.aquatox.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Our previous study revealed that an antimicrobial peptide hepcidin, can be significantly up-regulated either with LPS challenge or upon exposure to Benzo[a]pyrene (BaP) in red sea bream, but the molecular mechanism involved in whether the transcriptional expression of hepcidin induced by LPS or BaP is regulated through a similar signaling pathway is not yet known. To elucidate the underlying molecular mechanism, the marine model fish Oryzias melastigma was exposed to 1 μg/L BaP as well as challenged with 5 μg of LPS per fish. Samples at 3 h post-LPS challenge, and 2 d and 3 d post-BaP exposure were separately collected for transcriptome analysis. General analysis of the predicted immune-associated unigenes based on the transcriptomic data showed that the percentages of modulated immune-associated genes were 7% with LPS challenge, and 3% and 7% with BaP exposure at 2 and 3 days, respectively. Genes involved in functions like antimicrobial activity, neutrophil activation, and leukocyte chemotaxis were up-regulated with LPS challenge, whereas more than half of the immune associated genes including the KLF family were down-regulated upon BaP exposure, indicating a difference in the modulated immune genes between LPS challenge and BaP exposure. Specific comparative analyses of the immune-associated signal pathways NOD, TOLL, NF-κB and JAK-STAT with LPS challenge or upon exposure to BaP, indicated that most of the modulated genes in association with the NOD, TOLL and NF-κB pathways were induced with LPS challenge but only a few after exposure to BaP, suggesting that BaP exposure was generally not associated with any of the three signal pathways. Interestingly, further transcriptomic analysis revealed that 5 of the 8 modulated genes associated with the JAK-STAT pathway were down-regulated, while 2 inhibiting genes were up-regulated after BaP exposure for 2 days whereas LPS challenge resulted in only less than half modulated, suggesting the possibility of down-regulation caused by BaP exposure through JAK-STAT pathway. Further testing using an EPC cell culture demonstrated that expression of the hepcidin1 gene was less involved in the known signal pathways, such as c/EBP, BMP, and NF-κB, but instead mostly in association with the JAK-STAT pathway upon BaP exposure.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Min Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Voisin AS, Kültz D, Silvestre F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J Proteomics 2018; 194:112-124. [PMID: 30550985 DOI: 10.1016/j.jprot.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023]
Abstract
Early-life represents a critically sensitive window to endocrine disrupting chemicals, potentially leading to long-term repercussions on the phenotype later in life. The mechanisms underlying this phenomenon, referred to as the Developmental Origins of Health and Disease (DOHaD), are still poorly understood. To gain molecular understanding of these effects, we exposed mangrove rivulus (Kryptolebias marmoratus) for 28 days post hatching (dph) to 4 and 120 ng/L 17-α-ethinylestradiol, a model xenoestrogen. After 28 days, fish were raised for 140 days in clean water and we performed quantitative label-free proteomics on brain, liver and ovotestis of 168 dph adults. A total of 820, 888 and 420 proteins were robustly identified in the brain, liver and ovotestis, respectively. Effects of 17-α-ethinylestradiol were tissue and dose-dependent: a total of 31, 51 and 18 proteins were differentially abundant at 4 ng/L in the brain, liver and ovotestis, respectively, compared to 20, 25 and 39 proteins at 120 ng/L. Our results suggest that estrogen-responsive pathways, such as lipid metabolism, inflammation, and the innate immune system were affected months after the exposure. In addition, the potential perturbation of S-adenosylmethionine metabolism encourages future studies to investigate the role of DNA methylation in mediating the long-term effects of early-life exposures. SIGNIFICANCE: The Developmental Origins of Health and Disease (DOHaD) states that early life stages of humans and animals are sensitive to environmental stressors and can develop health issues later in life, even if the stress has ceased. Molecular mechanisms supporting DOHaD are still unclear. The mangrove rivulus is a new fish model species naturally reproducing by self-fertilization, making it possible to use isogenic lineages in which all individuals are highly homozygous. This species therefore permits to strongly reduce the confounding factor of genetic variability in order to investigate the effects of environmental stress on the phenotype. After characterizing the molecular phenotype of brain, liver and ovotestis, we obtained true proteomic reaction norms of these three organs in adults after early life stages have been exposed to the common endocrine disruptor 17-α-ethinylestradiol (EE2). Our study demonstrates long-term effects of early-life endocrine disruption at the proteomic level in diverse estrogen-responsive pathways 5 months after the exposure. The lowest tested and environmentally relevant concentration of 4 ng/L had the highest impact on the proteome in brain and liver, highlighting the potency of endocrine disruptors at low concentrations.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium
| |
Collapse
|
9
|
Zhang M, Zhang MF, Chen FY, Cui Q, Yang BZ, Liu Y, Peng H, Wang KJ. The transcriptional regulation of an antimicrobial peptide hepcidin1 in Oryzias melastigma upon EE2 exposure involved in a new pathway with a novel transcriptional regulatory element HepERE. FISH & SHELLFISH IMMUNOLOGY 2018; 82:421-431. [PMID: 30125706 DOI: 10.1016/j.fsi.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
17α-ethinylestradiol (EE2) exerts endocrine disrupting effect and immunotoxic effect on marine animals, including modulation of hepcidin expression. The antimicrobial peptide hepcidin displays a crucial role in innate immunity in fish against invading pathogens. It is known that the transcription of hepcidin in mammals is individually regulated by many stimuli, including inflammation, iron overload, anemia or hypoxia, through several distinct molecular pathways. The canonical mechanism for endocrine disrupting effects is mediated by an estrogen receptor (ER) and estrogen responsive element (ERE), whereas the underlying mechanism for immunotoxic effect is still unclear. In this study, a hepcidin from Oryzias melastigma (OM-hep1) was found to be down-regulated upon EE2 exposure and was associated with ERα. Unlike the revealed signaling pathways for hepcidin regulation in mammals, it was revealed by promoter activity analysis that the OM-hep1 transcription was not associated with canonical immune-associated and hormone-associated regulatory elements, known as the nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), ERE and estrogen-related receptor responsive element (ERRE). Further analysis through a series of base mutations revealed a short fragment from -315 to -289 bp on the OM-hep1 promoter with high activity. This fragment was composed of a putative ERE-like element (23 bases) plus an adjacent down-streamed four bases motif GTGT. Replacement of either of the core bases (GGTCA) of ERE-like or GTGT motif showed non-activity and non-response to EE2 exposure, thus a new hepcidin-associated element named as HepERE was revealed. Evidences from electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) assay demonstrated that the EE2-mediated down-regulation of OM-hep1 expression was associated with ERα binding to HepERE but not classical ERE. Taken together, a novel signaling pathway was revealed and the regulatory mechanism associated with the ERα and HepERE element on immunomodulation of OM-hep1 expression upon EE2 exposure was first reported here.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Meng-Fei Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Bing-Zhen Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Yong Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Ye RR, Peterson DR, Kitamura SI, Segner H, Seemann F, Au DWT. Sex-specific immunomodulatory action of the environmentalestrogen 17α-ethynylestradiol alongside with reproductive impairment in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:95-106. [PMID: 30099325 DOI: 10.1016/j.aquatox.2018.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EEDCs) are present ubiquitously in sediments and aquatic ecosystems worldwide. The detrimental impact of EEDCs on the reproduction of wildlife is widely recognized. Increasing evidence shows the immunosuppressive effects of EEDCs in vertebrates. Yet, no studies have considered concomitantly EEDC-induced impacts on reproductive impairment and immune suppression in vivo, which are deemed essential for risk assessment and environmental monitoring. In this study, EE2 was used as a representative EEDC, for parallel evaluation of EEDC-induced immune suppression (immune marker gene expression, leukocyte numbers, host resistance assay, and immune competence index) and reproductive impairment (estrogen responsive gene expression, fecundity, fertilization success, hatching success, and reproductive competence index) in an established fish model (marine medaka Oryzias melastigma), considering sex-specific induction and adaptation and recovery responses under different EE2 exposure scenarios. The findings in marine medaka reveal distinct sex differences in the EE2-mediated biological responses. For female fish, low concentration of exogenous EE2 (33 ng/L) could induce hormesis (immune enhancement), enable adaptation (restored reproduction) and even boost fish resistance to bacterial challenge after abatement of EE2. However, a prolonged exposure to high levels of EE2 (113 ng/L) not only impaired F0 immune function, but also perturbed females recovering from reproductive impairment, resulting in a persistent impact on the F1 generation output. Thus, for female fish, the exposure concentration of EE2 is more critical than the dose of EE2 in determining the impacts of EE2 on immune function and reproduction. Conversely, male fish are far more sensitive than females to the presence of low levels of exogenous EE2 in water and the EE2-mediated biological impacts are clearly dose-dependent. It is also evident in male fish that direct contact of EE2 is essential to sustain impairments of immune competence and reproductive output as well as deregulation of immune function genes in vivo. The immunomodulatory pathways altered by EE2 were deciphered for male and female fish, separately. Downregulation of hepatic tlr3 and c3 (in female) and tlr3, tlr5 and c3 (in male) may be indicative of impaired fish immune competence. Taken together, impaired immune competence in the EE2-exposed fish poses an immediate thread on the survival of F0 population. Impaired reproduction in the EE2-exposed fish can directly affect F1 output. Parallel evaluation of immune competence and reproduction are important considerations when assessing the risk of sublethal levels of EE2/EEDCs in aquatic environments.
Collapse
Affiliation(s)
- Roy R Ye
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, CH3012, Bern, Switzerland
| | - Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong; Department of Life Sciences, Texas A&M University, Corpus Christi, TX, 78412, USA.
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Shepherd BS, Spear AR, Philip AM, Leaman DW, Stepien CA, Sepulveda-Villet OJ, Palmquist DE, Vijayan MM. Effects of cortisol and lipopolysaccharide on expression of select growth-, stress- and immune-related genes in rainbow trout liver. FISH & SHELLFISH IMMUNOLOGY 2018; 74:410-418. [PMID: 29325711 DOI: 10.1016/j.fsi.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Many studies have shown that stress-induced cortisol levels negatively influence growth and immunity in finfish. Despite this knowledge, few studies have assessed the direct effects of cortisol on liver immune function. Using real-time PCR, the expression of three cortisol-responsive genes (GR: glucocorticoid receptor, IGF-1: insulin-like growth factor-I and SOCS-1: suppressor of cytokine signaling-I), genes involved with innate and adaptive immunity (IL-1β: interleukin-1 beta, IgM: immunoglobin-M and Lyz: lysozyme), and liver-specific antimicrobial peptides (hepcidin and LEAP-2A: liver-expressed antimicrobial peptide-2A) was studied in vitro using rainbow trout liver slices. The abundances of GR, SOCS-1 and IGF-1 mRNAs were suppressed by cortisol treatment. Abundance of IL-1β mRNA was upregulated by LPS and suppressed by cortisol treatment in a time-dependent manner. While abundance of IgM mRNA was suppressed by cortisol treatment and stimulated by LPS, there were no effects of cortisol or LPS on abundance of Lyz mRNA. Abundance of hepcidin and LEAP-2A mRNA levels were suppressed by cortisol treatment and stimulated by LPS. These results demonstrate that cortisol directly suppresses abundance of GR, IGF-1, IL-1β, IgM, hepcidin, LEAP-2A and SOCS-1 mRNA transcripts in the rainbow trout liver. We report for the first time, a suppressive effect of cortisol (within 8 h of treatment) on hepcidin and LEAP-2A mRNAs in rainbow trout liver, which suggests that acute stress may negatively affect liver immune function in rainbow trout.
Collapse
Affiliation(s)
- Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| | - Allyn R Spear
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Anju M Philip
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft St., MS 601, Toledo, OH 43606, USA
| | - Carol A Stepien
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, The University of Toledo, Toledo, OH 43616, USA
| | - Osvaldo J Sepulveda-Villet
- School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Debra E Palmquist
- USDA/ARS-Midwest Area Statistics Unit, 1815 N. Street, Peoria, IL 61604, USA
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Milla S, Massart S, Mathieu C, Wang N, Douny C, Douxfils J, Scippo ML, De Pauw E, Dieu M, Silvestre F, Kestemont P. Physiological and proteomic responses to corticosteroid treatments in Eurasian perch, Perca fluviatilis: Investigation of immune-related parameters. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:86-98. [PMID: 29223774 DOI: 10.1016/j.cbd.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 10/25/2022]
Abstract
The comparative effects of cortisol and 11-deoxycorticosterone (DOC), two major corticosteroids in fish, have yet received little attention in teleosts. We evaluated the proteomic and immune responses of Eurasian perch to chronic corticosteroid treatments. We implanted immature perch with cortisol (80mg/kg) or DOC (4mg/kg) and measured the proportions of blood leucocytes, immune indices in the plasma, spleen and liver (complement and lysozyme activity, total immunoglobulin and immune gene expression in the tissues) and differential proteome expression (corticosteroid versus control) in the liver and the spleen on days 2, 4 and 14 post-treatment. Implantation of cortisol decreased the ratio of blood leucocytes and depressed Ig levels in both organs while DOC modulated the proportion of leucocyte sub-populations (increase in lymphocytes and decrease in granulocytes). In contrast, the innate humoral immunity was not strongly influenced by any of corticosteroid implants. The only immune parameter that was significantly affected was lysozyme, after DOC treatment. A number of proteins were differentially regulated by these hormones and some were identified in the liver (21 for cortisol and 8 for DOC) and in the spleen (10 for cortisol and 10 for DOC). None of the proteins was directly linked to immunity, except the natural killer enhancing factor, which was repressed by cortisol in the spleen. Our results also confirm that the proteins involved in energetic and glucose metabolism are affected by corticosteroids. Furthermore, these corticosteroids differently regulate immune status in Eurasian perch and they primarily impact leucocytes, as opposed to innate immune function.
Collapse
Affiliation(s)
- Sylvain Milla
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux, USC INRA 340, Vandoeuvre-lès-Nancy F-54505, France..
| | - Sophie Massart
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Cédric Mathieu
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Neil Wang
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Caroline Douny
- University of Liège, Département des Sciences des Denrées alimentaires, Boulevard de Colonster, 20, Bât. B43b, B-4000 Liège, Belgium.
| | - Jessica Douxfils
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Marie-Louise Scippo
- University of Liège, Département des Sciences des Denrées alimentaires, Boulevard de Colonster, 20, Bât. B43b, B-4000 Liège, Belgium.
| | - Edwin De Pauw
- University of Liège, The Mass Spectrometry Laboratory, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium.
| | - Marc Dieu
- University of Namur, Research Unit in Cellular Biology, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Frédéric Silvestre
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology, rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|
13
|
Chen Y, Li M, Yuan L, Xie Y, Li B, Xu W, Meng F, Wang R. Growth, blood health, antioxidant status and immune response in juvenile yellow catfish Pelteobagrus fulvidraco exposed to α-ethinylestradiol (EE2). FISH & SHELLFISH IMMUNOLOGY 2017; 69:1-5. [PMID: 28826621 DOI: 10.1016/j.fsi.2017.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Triplicate groups of juvenile yellow catfish Pelteobagrus fulvidraco were exposed to three levels of α-ethinylestradiol (EE2) (0, 0.1 and 1 ng L-1) for 56 days. Fish survival rate (>93.33%) was not different among experimental groups. Weight gain and specific growth rate of fish exposed to EE2 were higher than those of control fish. Hepatosomatic index of fish exposed to 1 ng L-1 EE2 was the highest. Serum total protein, albumin, globulin, alanine aminotransferase, aspartate transaminase, cholesterol and triglyceride increased with increasing EE2 exposure levels. Liver total anti-oxidative capacity, malondialdehyde content and lysozyme activity of fish exposed to EE2 were higher than those of control fish. Phagocytic indices of fish exposed to 1 ng L-1 EE2 was lower than that of control fish. This study indicates that although EE2 exposure can promote the growth of yellow catfish in short-term, EE2 exerts its toxic effects by inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and interfering with immune response.
Collapse
Affiliation(s)
- Yushi Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuxin Xie
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Bing Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenbin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Szwejser E, Pijanowski L, Maciuszek M, Ptak A, Wartalski K, Duda M, Segner H, Verburg-van Kemenade BML, Chadzinska M. Stress differentially affects the systemic and leukocyte estrogen network in common carp. FISH & SHELLFISH IMMUNOLOGY 2017; 68:190-201. [PMID: 28698119 DOI: 10.1016/j.fsi.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
Both systemic and locally released steroid hormones, such as cortisol and estrogens, show immunomodulatory actions. This research gives evidence that circulating and leukocyte-derived estrogens can be involved in the regulation of the immune response in common carp, during homeostasis and upon restraining stress. It was found that stress reduced level of blood 17β-estradiol (E2) and down-regulated the gene expression of components of the "classical" estrogen system: the nuclear estrogen receptors and the aromatase CYP19, in the hypothalamus, the pituitary and in the ovaries. In contrast, higher gene expression of the nuclear estrogen receptors and cyp19a was found in the head kidney of stressed animals. Moreover, stress induced changes in the E2 level and in the estrogen sensitivity at local/leukocyte level. For the first time in fish, we showed the presence of physiologically relevant amounts of E2 and the substrates for its conversion (estrone - E1 and testosterone - T) in head kidney monocytes/macrophages and found that its production is modulated upon stress. Moreover, stress reduced the sensitivity of leukocytes towards estrogens, by down-regulation the expression of the erb and cyp19 genes in carp phagocytes. In contrast, era expression was up-regulated in the head kidney monocytes/macrophages and in PBLs derived from stressed animals. We hypothesize that, the increased expression of ERα, that was observed during stress, can be important for the regulation of leukocyte differentiation, maturation and migration. In conclusion, these results indicate that, in fish, the estrogen network can be actively involved in the regulation of the systemic and local stress response and the immune response.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Kamil Wartalski
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Malgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
15
|
Giraudo M, Douville M, Letcher RJ, Houde M. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:40-49. [PMID: 28249227 DOI: 10.1016/j.aquatox.2017.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Brominated flame retardants (BFRs) represent a large group of chemicals used in a variety of household and commercial products to prevent fire propagation. The environmental persistence and toxicity of some of the most widely used BFRs has resulted in a progressive ban worldwide and the development of novel BFRs for which the knowledge on environmental health impacts remains limited. The objectives of this study were to evaluate the effects of two emerging BFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), in diet exposed juvenile rainbow trout (Oncorhynchus mykiss). Both compounds were detected in fish carcasses at 76% and 2% of the daily dosage of BTBPE and EH-TBB, respectively, indicating accumulation of BTBPE and by contrast extensive depuration/metabolism of EH-TBB. Liver gene transcription analysis using RNA-sequencing indicated that the chronic 28-d dietary exposure of trout to EH-TBB down-regulated one single gene related to endocrine-mediated processes, whereas BTBPE impacted the transcription of 33 genes, including genes involved in the immune response, reproduction, and oxidative stress. Additional analysis using qRT-PCR after 48-h and 28-d of exposure confirmed the impact of BTBPE on immune related genes in the liver (apolipoprotein A-I, lysozyme) and the head-kidney (complement c3-4). However, the activity of lysozymes measured at the protein level did not reflect transcriptomic results. Overall, results suggested an impact on immune-related gene transcription in BTBPE exposed fish, as well as oxidative stress and endocrine disruption potentials.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Bldg. 33, 1125 Colonel By Dr. (Raven Road), Carleton University, Ottawa, ON, K1A 0H3 Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada
| |
Collapse
|
16
|
Szwejser E, Verburg-van Kemenade BML, Maciuszek M, Chadzinska M. Estrogen-dependent seasonal adaptations in the immune response of fish. Horm Behav 2017; 88:15-24. [PMID: 27760301 DOI: 10.1016/j.yhbeh.2016.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Clinical and experimental evidence shows that estrogens affect immunity in mammals. Less is known about this interaction in the evolutionary older, non-mammalian, vertebrates. Fish form an excellent model to identify evolutionary conserved neuroendocrine-immune interactions: i) they are the earliest vertebrates with fully developed innate and adaptive immunity, ii) immune and endocrine parameters vary with season, and iii) physiology is constantly disrupted by increasing contamination of the aquatic environment. Neuro-immuno-endocrine interactions enable adaption to changing internal and external environment and are based on shared signaling molecules and receptors. The presence of specific estrogen receptors on/in fish leukocytes, implies direct estrogen-mediated immunoregulation. Fish leukocytes most probably are also capable to produce estrogens as they express the cyp19a and cyp19b - genes, encoding aromatase cytochrome P450, the enzyme critical for conversion of C19 steroids to estrogens. Immunoregulatory actions of estrogens, vary among animal species, and also with dose, target cell type, or physiological condition (e.g., infected/non-infected, reproductive status). They moreover are multifaceted. Interestingly, season-dependent changes in immune status correlate with changes in the levels of circulating sex hormones. Whereas E2 circulating in the bloodstream is perhaps the most likely candidate to be the physiological mediator of systemic immune-reproductive trade-offs, leukocyte-derived hormones are hypothesized to be mainly involved in local tuning of the immune response. Contamination of the aquatic environment with estrogenic EDCs may violate the delicate and precise allostatic interactions between the endogenous estrogen system and the immune system. This has negative effects on fish health, but will also affect the physiology of its consumers.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
17
|
Voisin AS, Fellous A, Earley RL, Silvestre F. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:247-257. [PMID: 27750118 DOI: 10.1016/j.aquatox.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Alexandre Fellous
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| |
Collapse
|
18
|
Kirubakaran CJW, Subramani PA, Michael RD. Methanol extract of Nyctanthes arbortristis seeds enhances non-specific immune responses and protects Oreochromis mossambicus (Peters) against Aeromonas hydrophila infection. Res Vet Sci 2016; 105:243-8. [PMID: 27033940 DOI: 10.1016/j.rvsc.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/14/2016] [Accepted: 02/21/2016] [Indexed: 12/13/2022]
Abstract
Immunostimulation using medicinal plant extracts is a promising approach for prevention and control of diseases with reference to sustainable fish farming. Oreochromis mossambicus, dubbed as aquatic chicken is a cultured fish worldwide and a laboratory model organism. Aeromonas hydrophila is one of the major bacterial pathogens in fish farming that causes huge loss to aquaculture industries. In this study, we investigated the efficacy of methanol extract of Nyctanthes arbortristis seeds on disease resistance of O. mossambicus against live virulent A. hydrophila. We also investigated its effect on the non-specific immune parameters such as serum lysozyme, myeloperoxidase, antiprotease and specific immune parameters in terms of specific serum antibody titres assayed by bacterial agglutination test. Our studies indicate that intra-peritoneal administration of 20mg/kg methanol extract increases the Relative Percent Survival (RPS) of O. mossambicus challenged with LD80 of A. hydrophila. Further, both non-specific and specific immune parameters were enhanced by the methanol extract. Further experiments at molecular levels in the laboratory and also efficacy testing at field level are essential before applying this plant product in aquaculture industry.
Collapse
Affiliation(s)
- C John Wesly Kirubakaran
- Quality Control Microbiology, Human Biologicals Institute, National Dairy Development Board, The Nilgiris-643007, India
| | | | - R Dinakaran Michael
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India.
| |
Collapse
|
19
|
Tao S, Zhang Y, Yuan C, Gao J, Wu F, Wang Z. Oxidative stress and immunotoxic effects of bisphenol A on the larvae of rare minnow Gobiocypris rarus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:377-385. [PMID: 26595511 DOI: 10.1016/j.ecoenv.2015.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical, is ubiquitous in the aquatic environment and can pose risk to the health of aquatic organisms. Studies on immunotoxicity of BPA in aquatic organisms are limited. In this study, rare minnow (Gobiocypris rarus) larvae were exposed to 1, 225 and 1000μg/L BPA for 7 days. Inflammatory effects of BPA exposure were assessed from the increased production of nitric oxide (NO) and reactive oxygen species (ROS), the change of iNOS mRNA and other TLRs-associated immune gene expression. Our findings provide evidences that different concentrations of BPA can induce a toxic response in fish to produce reactive free radicals which can affect the function of T lymphocytes and decrease the transcription levels of cytokine genes. The excess production of H2O2, induced oxidative stress and suppressed TLR4/NF-κB signaling, leading to immunosuppressive effects in fish larvae. The present results suggest that BPA has the potential to induce oxidative stress accompanied by immunosuppression in rare minnow larvae.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Feili Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Massart S, Redivo B, Flamion E, Mandiki SNM, Falisse E, Milla S, Kestemont P. The trenbolone acetate affects the immune system in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:109-120. [PMID: 25889087 DOI: 10.1016/j.aquatox.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/31/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
In aquatic systems, the presence of endocrine-disrupting chemicals (EDC) can disrupt the reproductive function but also the immune system of wildlife. Some studies have investigated the effects of androgens on the fish immune parameters but the mechanisms by which the xenoandrogens alter the immunity are not well characterized. In order to test the effects of trenbolone acetate (TbA) on fish immune system, we exposed rainbow trout male juveniles during three weeks to TbA levels at 0.1 and 1μg/L. The present results suggest that TbA impacts, in a tissue-dependent manner, the rainbow trout immunity by affecting primarily the humoral immunity. Indeed, TbA inhibited lysozyme activity in plasma and liver and enhanced the alternative complement pathway activity (ACH50) in kidney. In plasma, the modulation of the complement system was time-dependent. The mRNA expression of genes encoding some cytokines such as renal TGF-β1, TNF-α in skin and hepatic IL-1β was also altered in fish exposed to TbA. Regarding the cellular immunity, no effect was observed on the leucocyte population. However, the expression of genes involved in the development and maturation of lymphoid cells (RAG-1 and RAG-2) was decreased in TbA-treated fish. Among those effects, we suggest that the modulation of RAG-1 and mucus apolipoprotein-A1 gene expression as well as plasma and hepatic lysozyme activities are mediated through the action of the androgen receptor. All combined, we conclude that trenbolone affects the rainbow trout immunity.
Collapse
Affiliation(s)
- Sophie Massart
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Elodie Falisse
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Sylvain Milla
- Unit Research Animal and Functionality of Animal Products (URAFPA), University of Lorraine, F-54003 Nancy, France
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| |
Collapse
|