1
|
Raymer R, Jessa SM, Cooper WJ, Olson MB. The effects of diatom polyunsaturated aldehydes on embryonic and larval zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:292-303. [PMID: 39613930 DOI: 10.1007/s10646-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Marine diatoms are pervasive in many planktonic and benthic environments and represent an important food source for a wide range of species. Some diatoms produce polyunsaturated aldehydes (PUAs) as defensive toxins. PUA exposure is known to reduce the fecundity of invertebrate grazers like copepods and echinoderm larvae, but little is known about the effects of PUAs on vertebrates. Many fish species are likely to come into close contact with diatoms. Many may deposit eggs on diatom-coated substrates, consume diatoms as larvae, and/or feed heavily on zooplankters that may be gut-loaded with diatoms. The purpose of this study was to test whether dissolved diatom PUAs affect the early life stages of a model fish, Danio rerio (zebrafish). To test this, zebrafish embryos and larvae were exposed to proportionally increasing mixtures of the dissolved diatom PUAs 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal. Under PUA exposure, three metrics of fitness were assessed: embryo heart rate, larval size at hatch, and pre-feeding mortality rate. Zebrafish embryos exposed at 24 h post fertilization (hpf) experienced decreased average heart rate after 2 days of PUA exposure. Embryos 24 hpf exposed to PUA mixtures for 6 days showed a reduction in size in comparison to embryos from controls. Embryos exposed to PUAs from 2 hpf until death showed lower survivorship compared to larvae in controls. The results of this study suggest that larval fish that are sympatric with PUA producing diatoms during their embryonic and larval stages may be susceptible to detrimental effects from PUA exposure.
Collapse
Affiliation(s)
- Rachel Raymer
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - Soraya M Jessa
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - W James Cooper
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - M Brady Olson
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA.
| |
Collapse
|
2
|
Green CS, Morris JM, Magnuson JT, Leads RR, Lay CR, Gielazyn M, Rosman L, Schlenk D, Roberts AP. Exposure to the Polychlorinated biphenyl mixture Aroclor 1254 elicits neurological and cardiac developmental effects in early life stage zebrafish (Danio rerio). CHEMOSPHERE 2025; 371:144023. [PMID: 39724984 DOI: 10.1016/j.chemosphere.2024.144023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g., fish tissue), the lack of standard exposure methods, and the propensity of PCBs to adsorb to test glassware and materials resulting in discrepancies in ECs from different studies with similar endpoints. Reporting tissue concentrations in test organisms will allow for standardization across different tests and thus may improve estimations of effect thresholds. Early life stage zebrafish (Danio rerio) are a common environmental toxicological model well represented within the literature, making them ideal for comparisons across multiple studies. Embryos were exposed at 6 h post fertilization (hpf) to aqueous Aroclor 1254 for 96 h with or without renewal in addition to a PCB 126 positive control for cardiotoxicity. PCB concentrations were measured in both exposure solutions and tissue samples. Measured concentrations of Aroclor 1254 in test solutions ranged from 8.7% to 870% of nominal concentrations. Heart rate, pericardial edema, and neurological endpoints (eye tremors) were measured in 102 hpf larvae. Pericardial edema was not present in Aroclor 1254-treated zebrafish but was observed in those exposed to PCB-126. Concentration-dependent bradycardia was observed in zebrafish exposed to Aroclor 1254 and PCB-126. Similarly, a concentration-dependent increase in eye tremor behavior was observed in embryos exposed to Aroclor 1254. Data produced by this study demonstrate novel toxicological effects of Aroclor 1254 and highlight the importance of measuring PCBs in both exposure and receptor media.
Collapse
Affiliation(s)
- Corey S Green
- Eastern New Mexico University, Department of Biological Sciences, 1500 Ave. K, Portales, NM, 88130, USA.
| | | | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA.
| | - Rachel R Leads
- Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, 48825, USA.
| | | | - Michel Gielazyn
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, St. Petersburg, FL, 33701, USA.
| | - Lisa Rosman
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, New York, NY, 10278, USA.
| | - Daniel Schlenk
- University of California Riverside, Department of Environmental Science, Riverside, CA, 92521, USA.
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, Denton, TX, 76203, USA.
| |
Collapse
|
3
|
Albers JL, Ivan LN, Clark BW, Nacci DE, Klingler RH, Thrash A, Steibel JP, Vinas NGR, Carvan MJ, Murphy CA. Impacts on Atlantic Killifish from Neurotoxicants: Genes, Behavior, and Population-Relevant Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17235-17246. [PMID: 39287556 PMCID: PMC11447911 DOI: 10.1021/acs.est.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan W Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Diane E Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Adam Thrash
- Biocomputing and Biotechnology, Institute for Genomics, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natalia Garcia-Reyero Vinas
- Environmental Laboratory, US Army Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Martin L, Marbach S, Zimba P, Liu Q, Xu W. Uptake of Nanoplastic particles by zebrafish embryos triggers the macrophage response at early developmental stage. CHEMOSPHERE 2023; 341:140069. [PMID: 37673181 DOI: 10.1016/j.chemosphere.2023.140069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Plastic pollution continues to erupt as a global ecological concern. As plastic debris is degraded into nanoscale and microscale particles via biodegradation, UV-irradiation, and mechanical processes, nanoplastic pollution arises as a threat to virtually every biological and ecological system on the planet. In this study, zebrafish (Danio rerio) embryos were exposed to fluorescently labeled plastic particles at nanoscales (30 nm and 100 nm). The uptake of both the nanoplastic particles (NPs) was found to exponentially increase with incubation time. Penetration of NPs through the natural barrier of the zebrafish embryos, the chorion, was observed prior to the hatching of the embryo. As a result, the NPs were found to accumulate on the body surface as well as inside the body of the zebrafish. The invasion of NPs into zebrafish embryos induced the upregulation of several stress and immune response genes including interleukins (il6 and il1b), cytochrome P450 (cyp1a and cyp51), and reactive oxygen species (ROS) removal protein-encoding genes (sod and cat). This suggested the initiation of ROS generation and removal as well as the activation of the immune response of zebrafish embryos. Colocalization of macrophages and NPs in zebrafish embryos indicated the involvement of macrophage response to the NP invasion at the early developmental stage of zebrafish.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Sandra Marbach
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Paul Zimba
- Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA; Rice Rivers Center, VA Commonwealth University, Richmond, VA, USA
| | - Qianqian Liu
- Department of Health Sciences, College of Nursing and Health Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA; Center for Coastal Studies, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
5
|
Torres MDA, Jones MR, Vom Berg C, Pinto E, Janssen EML. Lethal and sublethal effects towards zebrafish larvae of microcystins and other cyanopeptides produced by cyanobacteria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106689. [PMID: 37713741 DOI: 10.1016/j.aquatox.2023.106689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Cyanobacterial blooms affect aquatic ecosystems across the globe and one major concern relates to their toxins such as microcystins (MC). Yet, the ecotoxicological risks, particularly non-lethal effects, associated with other co-produced secondary metabolites remain mostly unknown. Here, we assessed survival, morphological alterations, swimming behaviour and cardiovascular functions of zebrafish (Danio rerio) upon exposure to cyanobacterial extracts of two Brazilian Microcystis strains. We verified that only MIRS-04 produced MCs and identified other co-produced cyanopeptides also for the MC non-producer NPCD-01 by LC-HRMS/MS analysis. Both cyanobacterial extracts, from the MC-producer and non-producer, caused acute toxicity in zebrafish with LC50 values of 0.49 and 0.98 mgdw_biomass/mL, respectively. After exposure to MC-producer extract, additional decreased locomotor activity was observed. The cyanopeptolin (micropeptin K139) contributed 52% of the overall mortality and caused oedemas of the pericardial region. Oedemas of the pericardial area and prevented hatching were also observed upon exposure to the fraction with high abundance of a microginin (Nostoginin BN741) in the extract of the MC non-producer. Our results further add to the yet sparse understanding of lethal and sublethal effects caused by cyanobacterial metabolites other than MCs and the need to better understand the underlying mechanisms of the toxicity. We emphasize the importance of considering mixture toxicity of co-produced metabolites in the ecotoxicological risk assessment of cyanobacterial bloom events, given the importance for predicting adverse outcomes in fish and other organisms.
Collapse
Affiliation(s)
| | - Martin R Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, 13418-260, Piracicaba, Brazil
| | - Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| |
Collapse
|
6
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
7
|
Li T, Tian D, Lu M, Wang B, Li J, Xu B, Chen H, Wu S. Gut microbiota dysbiosis induced by polychlorinated biphenyl 126 contributes to increased brain proinflammatory cytokines: Landscapes from the gut-brain axis and fecal microbiota transplantation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113726. [PMID: 35691195 DOI: 10.1016/j.ecoenv.2022.113726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The pathogenesis of brain inflammation induced by polychlorinated biphenyl 126 (PCB126) has not yet been fully illustrated. Growing evidence highlights the relevance of the microbiota-gut-brain axis in central nervous system (CNS) dysfunction. Therefore, we aimed to study the role of the gut microbiota in PCB126-induced proinflammatory cytokine increases in the mouse brain. The results showed that PCB126 exposure significantly disordered gut bacterial communities, resulting in the enrichment of gram-negative bacteria (e.g., Bacteroidetes and Proteobacteria), further leading to elevated levels of the gram-negative bacterial lipopolysaccharide (LPS). Subsequently, colonic toll-like receptor 4 (TLR-4) was activated by bacterial LPS, which promoted proinflammatory cytokine generation and inhibited tight junction (TJ) protein expression. Then, bacterial LPS translocated from the gut lumen into the blood circulation and reached the brain, triggering LPS/TLR-4-mediated increases in brain proinflammatory cytokines. Further analysis after fecal microbiota transplantation (FMT) suggested that the gut microbiota disturbance caused by PCB126 could induce elevated bacterial LPS and trigger TLR-4-mediated increases in proinflammatory cytokines in the brain. This study highlights the possibility that PCB126-induced gut microbiota disorder contributes to increased brain proinflammatory cytokines. These results provide a new perspective for identifying the toxicity mechanisms of PCB126 and open up the possibility of modulating the gut microbiota as a therapeutic target for CNS disease caused by environmental pollution.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongcan Tian
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Lu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bijiao Wang
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Tian Y, Rimal B, Gui W, Koo I, Yokoyama S, Perdew GH, Patterson AD. Early Life Short-Term Exposure to Polychlorinated Biphenyl 126 in Mice Leads to Metabolic Dysfunction and Microbiota Changes in Adulthood. Int J Mol Sci 2022; 23:8220. [PMID: 35897801 PMCID: PMC9330872 DOI: 10.3390/ijms23158220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/02/2023] Open
Abstract
Early life exposure to environmental pollutants may have long-term consequences and harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early life 3,3',4,4',5-pentacholorobiphenyl (PCB 126) exposure (24 μg/kg body weight for five days) in mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR- and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor (AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional levels. This study provides evidence for an association between early life environmental pollutant exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key target of environmental chemical exposure.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Wei Gui
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| |
Collapse
|
9
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
10
|
Albers JL, Steibel JP, Klingler RH, Ivan LN, Garcia-Reyero N, Carvan MJ, Murphy CA. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3514-3523. [PMID: 35201763 DOI: 10.1021/acs.est.1c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Myosho T, Hattori M, Yamamoto J, Toda M, Okamura T, Onishi Y, Takehana Y, Kobayashi T. Effects of synthetic sex steroid hormone exposures on gonadal sex differentiation and dynamics of a male-related gene, Gonadal soma-derived factor (Gsdf) and an estrogen up-regulated gene, Choriogenine-H (ChgH) gene expression in the euryhaline Javafish medaka, Oryzias javanicus, based on genetic sexes. CHEMOSPHERE 2021; 274:129893. [PMID: 33979926 DOI: 10.1016/j.chemosphere.2021.129893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
To clarify the basal aspects of sexual development in Javafish medaka, Oryzias javanicus (ZZ/ZW), a model marine species for ecotoxicity testing, we examined the details of gonadal sex differentiation and exogenous sex hormone-dependent sex reversals using genetic sex-linked DNA markers. Sex differences in germ cell numbers were observed at 5 days post hatching (dph), in which there was a significant increase in the germ cells of ZW. In ZW, diplotene oocytes and the ovarian cavity appeared at approximately 10, and 30 dph, respectively. In ZZ, spermatogonial proliferation was observed at approximately 20 dph. A ZZ-dominant expression of Gonadal soma-derived factor (Gsdf) mRNA was detected before hatching. The exposure of embryos to 17α-ethinylestradiol (EE2; 0.1, 1, 10 ng/mL) did not cause sex reversals in most cases. However, EE2 exposures led to significant Choriogenin-H (ChgH) mRNA expression, an estrogen up-regulated gene, in all fry; these exposures did not suppress Gsdf expression in ZZ fry. The exposure of embryos to 17α-methyltestosterone (MT; 0.1, 1, 10 ng/mL) caused sex reversals but only at low frequencies in ZW and ZZ fish. Although the 10 ng/mL MT exposure was accompanied by induction of significant Gsdf expression in ZW fry, induction of ChgH expression was also observed in several fry. Together, the present study indicates for the first time that male-dominant sexual dimorphic expression of Gsdf precedes the first morphological sex difference, i.e., the sex difference in germ cell number, and results strongly suggest that exogenous sex hormone-dependent sex reversal is not induced easily in O. javanicus.
Collapse
Affiliation(s)
- Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Department of Environmental Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Minako Hattori
- Department of Environmental Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka, 421-0212, Japan
| | - Misa Toda
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka, 421-0212, Japan
| | - Tetsuro Okamura
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka, 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka, 421-0212, Japan
| | - Yusuke Takehana
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, 526-0829, Japan
| | - Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Department of Environmental Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
12
|
Horie Y, Chiba T, Takahashi C, Tatarazako N, Iguchi T. Influence of triphenyltin on morphologic abnormalities and the thyroid hormone system in early-stage zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108948. [PMID: 33285321 DOI: 10.1016/j.cbpc.2020.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
In the present study, we assessed the negative effects of triphenyltin (TPT) on zebrafish (Danio rerio) by exposing embryos and early-stage larvae to various concentrations of TPT from 2 h after fertilization (haf) until 30 days after hatching (dah). Whether test groups were fed or fasted during ecotoxicity studies using fish models has varied historically, and whether this experimental condition influences test results is unknown. Here, we confirmed that the lethal concentration of TPT to embryo and early-stage larvae (i.e., 3 dah or younger) showed in fed (lowest observed effect concentration (LOEC); 6.34 μg/L) and fasted (LOEC; 6.84 μg/L) groups. In addition, 84% and 100% of the larvae in the 2.95 and 6.64 μg/L exposure groups, respectively, had uninflated swim bladders; all affected larvae died within 9 dah. This finding suggests that morphologic abnormalities in early larval zebrafish are useful as endpoints for predicting the lethality of chemical substances after hatching. We then assessed the expression of several genes in the thyroid hormone pathway, which regulates swim bladder development in many fish species, including zebrafish. Larvae exposed to 6.64 μg/L TPT showed significant increases in the mRNA expression levels of thyroid hormone receptor α (trα) and trβ but not of thyroid stimulating hormone β subunit. These findings suggest that TPT disrupts the thyroid system in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan.
| | - Takashi Chiba
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
13
|
Blanc M, Alfonso S, Bégout ML, Barrachina C, Hyötyläinen T, Keiter SH, Cousin X. An environmentally relevant mixture of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) disrupts mitochondrial function, lipid metabolism and neurotransmission in the brain of exposed zebrafish and their unexposed F2 offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142097. [PMID: 32911150 DOI: 10.1016/j.scitotenv.2020.142097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants still present in aquatic environments despite their total or partial ban. Previously, we observed that an environmentally realistic mixture of these compounds affects energy balance, growth, and reproduction in exposed zebrafish (F0), and behavior in their unexposed offspring (F1-F4). In the present work, we performed lipidomic and transcriptomic analyses on brains of zebrafish (F0-F2) from exposed and control lineages to identify molecular changes that could explain the observed phenotypes. The use of both technologies highlighted that F0 zebrafish displayed impaired mitochondrial function and lipid metabolism regulation (depletion in triacylglycerols and phospholipids) which can explain disruption of energy homeostasis. A subset of the regulated biological pathways related to energetic metabolism and neurotransmission were inherited in F2. In addition, there were increasing effects on epigenetic pathways from the F0 to the F2 generation. Altogether, we show that the effects of an environmental exposure to PCBs and PBDEs on energetic metabolism as well as neurotransmission extend over 2 generations of zebrafish, possibly due to transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli, n 18, 70126 Bari, Italy
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France
| | - Célia Barrachina
- MGX, Univ. Montpellier, CNRS, INSERM, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| |
Collapse
|
14
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Halbach K, Ulrich N, Goss KU, Seiwert B, Wagner S, Scholz S, Luckenbach T, Bauer C, Schweiger N, Reemtsma T. Yolk Sac of Zebrafish Embryos as Backpack for Chemicals? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10159-10169. [PMID: 32639148 DOI: 10.1021/acs.est.0c02068] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The zebrafish embryo (Danio rerio) has developed into one of the most important nonsentient animal models for the hazard assessments of chemicals, but the processes governing its toxicokinetics (TK) are poorly understood. This study compares the uptake of seven test compounds into the embryonic body and the yolk sac of the zebrafish embryo using TK experiments, a dialysis approach, thermodynamic calculations, and kinetic modeling. Experimental data show that between 95% (4-iodophenol) and 67% (carbamazepine) of the total internal amount in 26 h post fertilization (hpf) embryos and between 80 and 49% in 74 hpf embryos were found in the yolk. Thus, internal concentrations determined for the whole embryo overestimate the internal concentration in the embryonic body: for the compounds of this study, up to a factor of 5. Partition coefficients for the embryonic body and a one-compartment model with diffusive exchange were calculated for the neutral test compounds and agreed reasonably with the experimental data. For prevalently ionic test compounds at exposure pH (bromoxynil, paroxetine), however, the extent and the speed of uptake were low and could not be modeled adequately. A better understanding of the TK of ionizable test compounds is essential to allow assessment of the validity of this organismic test system for ionic test compounds.
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, 06120 Halle, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Coretta Bauer
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Ranasinghe P, Thorn RJ, Seto R, Creton R, Bridges WC, Chapman SC, Lee CM. Embryonic Exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) Causes Developmental Malformations in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:162-170. [PMID: 31499578 DOI: 10.1002/etc.4587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/04/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmental neurotoxicant. There is accumulated evidence that some neurotoxic effects of PCB-95 are caused by increased spontaneous Ca2+ oscillations in neurons resulting from modifying ryanodine receptors (RyR) in calcium-releasing channels. However, there are large gaps in explaining brain and other developmental malformations on embryonic PCB-95 exposure. In the present study, we address those deficiencies by studying the toxic effects of PCB-95 using zebrafish as an ontogenetic model. To characterize these effects, zebrafish embryos with intact chorions were exposed to 4 different concentrations of PCB-95 (0.25, 0.5, 0.75, and 1 ppm) for 3 consecutive days. The controls were maintained in 0.5 × E2 medium or egg water and in 0.1% (v/v) dimethyl sulfoxide (DMSO)/0.5 × E2 medium or egg water. PCB-95-treated groups showed dose-dependent decreases in survival and hatching rates, with increased rates of developmental malformations when compared to controls. These include morphological malformations, brain cell necrosis, and smaller eye sizes at 5 d post fertilization. These data suggest potential mechanisms underlying the abnormal behavior observed in a visual stimulus assay. The present study provides insight into PCB-95-induced developmental toxicity and supports the use of the zebrafish model in understanding the effects of PCB-95 exposure. Environ Toxicol Chem 2019;39:162-170. © 2019 SETAC.
Collapse
Affiliation(s)
- Prabha Ranasinghe
- Environmental Toxicology Program, Clemson University, Clemson, South Carolina, USA
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Renee Seto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Cindy M Lee
- Environmental Toxicology Program, Clemson University, Clemson, South Carolina, USA
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
17
|
Shields JN, Hales EC, Ranspach LE, Luo X, Orr S, Runft D, Dombkowski A, Neely MN, Matherly LH, Taub J, Baker TR, Thummel R. Exposure of Larval Zebrafish to the Insecticide Propoxur Induced Developmental Delays that Correlate with Behavioral Abnormalities and Altered Expression of hspb9 and hspb11. TOXICS 2019; 7:E50. [PMID: 31546644 PMCID: PMC6958418 DOI: 10.3390/toxics7040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that organophosphates and carbamates affect human fetal development, resulting in neurological and growth impairment. However, these studies are conflicting and the extent of adverse effects due to pesticide exposure warrants further investigation. In the present study, we examined the impact of the carbamate insecticide propoxur on zebrafish development. We found that propoxur exposure delays embryonic development, resulting in three distinct developmental stages: no delay, mild delay, or severe delay. Interestingly, the delayed embryos all physically recovered 5 days after exposure, but behavioral analysis revealed persistent cognitive deficits at later stages. Microarray analysis identified 59 genes significantly changed by propoxur treatment, and Ingenuity Pathway Analysis revealed that these genes are involved in cancer, organismal abnormalities, neurological disease, and hematological system development. We further examined hspb9 and hspb11 due to their potential roles in zebrafish development and found that propoxur increases expression of these small heat shock proteins in all of the exposed animals. However, we discovered that less significant increases were associated with the more severely delayed phenotype. This raises the possibility that a decreased ability to upregulate these small heat shock proteins in response to propoxur exposure may cause embryos to be more severely delayed.
Collapse
Affiliation(s)
- Jeremiah N Shields
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
| | - Eric C Hales
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Lillian E Ranspach
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steven Orr
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Donna Runft
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Melody N Neely
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jeffrey Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Licata P, Piccione G, Fazio F, Lauriano ER, Calò M. Protective effects of genistein on cytochrome P-450 and vitellogenin expression in liver of zebrafish after PCB-126 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:71-76. [PMID: 31004905 DOI: 10.1016/j.scitotenv.2019.03.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The objective of the research is to study the action of Vitellogenin and P-4501A1 following coexposure at different times to genistein and PCB-126 using zebrafish as a model system. Polychlorinated biphenyls are ubiquitous substances in environment. The genistein is a phytoestrogen extracted from soybeans and it's contained in food for humans and animals. For this study, 200 adult zebrafish were used. Our findings show a marked immunoreactivity of Vtg at 12h in liver than the control with only PCB-126. Regarding effects of PCB-126 on Vtg after pretreatment with genistein in fishes, the immunohistochemistry results show a minor increase at 12h. After 24h the immunoreactivity is lower than 12h and then slightly increased at 72h with only PCB-126 and PCB-126 and genistein together. CYP1A1 progressively increases from 12h to 72h in all groups with minor immunoreactivity when we treated fish with genistein and PCB-126. We show a reduction in the estrogenic effect when the fishes were treated with genistein and PCB-126 together at 12h than the group treated with only PCB-126. Moreover, low concentrations of genistein decrease the marked P450 expression induced by PCB-126. This shows that genistein decreases the expression of P450 target genes mediated by AhR.
Collapse
Affiliation(s)
- Patrizia Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Margherita Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| |
Collapse
|
19
|
Zhou S, Chen Q, Di Paolo C, Shao Y, Hollert H, Seiler TB. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:89-98. [PMID: 30739855 DOI: 10.1016/j.scitotenv.2019.01.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Although the effects of pharmaceuticals on aquatic organisms have been widely investigated during the last decades, toxic effects, especially delayed toxicity, during the developmental stage at environmental relevant concentrations were rarely known. In this study, a sensitive assay based on behavioral alterations was used for studying the delayed toxicity during the developmental stage on zebrafish embryos. Eight pharmaceuticals that were frequently detected with concentrations ranging from ng/l to μg/l were screened for this study. Behavioral alterations of zebrafish at 118 hpf (hours post fertilization) after exposing to eight single pharmaceuticals with concentrations in the ranges of environmental detected and their mixtures during embryonic development (2-50 h post fertilization, hpf) were observed. Multiple endpoints, including mortality, hatching rate, swimming speed and angular velocity were evaluated. Results showed that behavioral profile alterations in zebrafish larvae are promising for predicting delayed sublethal effects of chemicals. Delayed hatch was observed at 72 hpf following embryonic exposure to triclosan (1 μg/l) and carbamazepine (100 μg/l) up to 50 hpf. The zebrafish larval locomotor behavior following embryonic exposure to 0.1 μg/l triclosan and 1 μg/l caffeine in the early stages of development (2-50 hpf) was altered. Furthermore, the effects of the mixture of 8 pharmaceuticals each with the highest environmental concentration on larval behavior were observed during embryonic development. Generally, this study showed that the effects of pharmaceuticals singly or their mixtures in surface waters cannot be ignored.
Collapse
Affiliation(s)
- Shangbo Zhou
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Carolina Di Paolo
- Shell Health, Shell International B.V., Carel van Bylandtlaan 23, 2596 HP The Hague, the Netherlands
| | - Ying Shao
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
20
|
Boulanger E, Barst BD, Alloy MM, Blais S, Houde M, Head JA. Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:950-962. [PMID: 31096425 DOI: 10.1016/j.scitotenv.2018.12.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Lake Saint-Louis, a shallow fluvial lake near the western tip of the island of Montreal, QC, Canada is an important spawning ground for many species of fish. Sediments in certain areas of the lake are known to be contaminated with high levels of metals and legacy organic chemicals. To improve our understanding of risk to native fish populations, we conducted a study evaluating levels of sediment contamination and potential effects on early life stage fish. Concentrations of PAHs, PCBs, PCDDs and PCDFs were several orders of magnitude higher at two industrial sites (B1 and B2) than at a nearby reference site (IP). Concentrations of 32 metals and metalloids were at least 5-fold higher at B1 and B2 than at IP. Moreover, all available interim sediment quality guidelines (ISQGs) were exceeded at the two contaminated sites, while none were exceeded at the reference site. Biological effects were evaluated using a sediment contact assay. Zebrafish (Danio rerio) embryos were exposed to clean water (control), or to sediment from IP, B1, and B2 until 120 h post fertilization (hpf). Mortality was significantly elevated in fish exposed to the B1, but not the B2 sediment. The frequency of deformities increased with increasing contamination, but this trend was not statistically significant (p > 0.05). Genes that are implicated in the response to PAHs, PCBs, dioxins and furans (cyp1a, cyp1b1, ahr2) were significantly elevated in the 120 hpf larvae exposed to the B1 and B2 sediments. Global DNA methylation, and mRNA expression of genes related to oxidative stress (maft, cat, hmox1, sod2), embryonic development (bmp2b, baf60c), metal exposure (mt2), and DNA repair (gadd45b) were unaffected. Our results suggest that the Beauharnois sector of Lake Saint-Louis is poor quality spawning habitat due to high levels of contamination, and the potential for harmful effects on early life stage fish.
Collapse
Affiliation(s)
- Emily Boulanger
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Benjamin D Barst
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Matthew M Alloy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Simon Blais
- Saint-Lawrence Action Plan, Environmental Protection Operations Directorate, Environment and Climate Change Canada, 1550 Avenue d'Estimauville, Québec, Québec G1J 0C3, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment and Climate Change Canada, 105 McGill Street, Montréal, Québec H2Y 2E7, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
21
|
Cardiovascular Effects of PCB 126 (3,3',4,4',5-Pentachlorobiphenyl) in Zebrafish Embryos and Impact of Co-Exposure to Redox Modulating Chemicals. Int J Mol Sci 2019; 20:ijms20051065. [PMID: 30823661 PMCID: PMC6429282 DOI: 10.3390/ijms20051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
The developing cardiovascular system of zebrafish is a sensitive target for many environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and circulatory failure, and a concentration-dependent reduction of cardiac output and body length at 80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be both positively and negatively modulated by different compounds; co-treatment with α-tocopherol (vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126 effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative potential of environmental pollutants.
Collapse
|
22
|
Shao Y, Xiao H, Di Paolo C, Deutschmann B, Brack W, Hollert H, Seiler TB. Integrated zebrafish-based tests as an investigation strategy for water quality assessment. WATER RESEARCH 2019; 150:252-260. [PMID: 30528920 DOI: 10.1016/j.watres.2018.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/30/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Water pollution risks to human health and the environment are emerging as serious concerns in the European Union and worldwide. With the aim to achieve good ecological and chemical status of all European water bodies, the "European Water Framework Directive" (WFD) was enacted. With the framework, bioanalytical techniques have been recognized as an important aspect. However, there are limitations to the application of bioassays directly for water quality assessment. Such approaches often fail to identify pollutants of concern, since the defined priority and monitored pollutants often fail to explain the observed toxicity. In this study, we integrated an effect-based risk assessment with a zebrafish-based investigation strategy to evaluate water sample extracts and fractions collected from the Danube. Four tiered bioassays were implemented, namely RNA-level gene expression assay, protein-level ethoxyresorufin-O-deethylase (EROD) assay, cell-level micronucleus assay and organism-level fish embryo test (FET). The results show that teratogenicity and lethality during embryonic development might be induced by molecular or cellular damages mediated by the aryl hydrocarbon receptor (AhR) -mediated activity, estrogenic activity and genotoxic activity. With the combination of high-throughput fractionation, this effect-based strategy elucidated the major responsible mixtures of each specific toxic response. In particularly, the most toxic mixture in faction F4, covering a log Kow range from 2.83 to 3.42, was composed by 12 chemicals, which were then evaluated as a designed mixture. Our study applied tiered bioassays with zebrafish to avoid interspecies differences and highlights effect-based approaches to address toxic mixtures in water samples. This strategy can be applied for large throughput screenings to support the main toxic compounds identification in water quality assessment.
Collapse
Affiliation(s)
- Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department of Cell Toxicology, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Björn Deutschmann
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department for Effect-Directed Analysis, Permoserstraße 15, 04318, Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Road Shapingba, 400044, Chongqing, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, 200092, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 200023, Nanjing, China
| | - Thomas Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
23
|
Horie Y, Yamagishi T, Yagi A, Shintaku Y, Iguchi T, Tatarazako N. The non‐steroidal anti‐inflammatory drug diclofenac sodium induces abnormal embryogenesis and delayed lethal effects in early life stage zebrafish (
Danio rerio
). J Appl Toxicol 2018; 39:622-629. [DOI: 10.1002/jat.3752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource SciencesAkita Prefectural University 241‐438 Kaidobata‐Nishi, Nakano Simoshinjo Akita 010‐0195 Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk ResearchNational Institute for Environmental Studies 16‐2 Onogawa, Tsukuba Ibaraki 305‐8506 Japan
| | - Ayano Yagi
- Center for Health and Environmental Risk ResearchNational Institute for Environmental Studies 16‐2 Onogawa, Tsukuba Ibaraki 305‐8506 Japan
| | - Yoko Shintaku
- Center for Health and Environmental Risk ResearchNational Institute for Environmental Studies 16‐2 Onogawa, Tsukuba Ibaraki 305‐8506 Japan
| | - Taisen Iguchi
- Graduate School of NanobioscienceYokohama City University 22‐2 Seto, Kanazawa‐ku Yokohama 236‐0027 Japan
| | - Norihisa Tatarazako
- Graduate School of AgricultureEhime University Tarumi 3‐5‐7 Matsuyama 790‐8566 Japan
| |
Collapse
|
24
|
Stelzer JAA, Rosin CK, Bauer LH, Hartmann M, Pulgati FH, Arenzon A. Is fish embryo test (FET) according to OECD 236 sensible enough for delivering quality data for effluent risk assessment? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2925-2932. [PMID: 29926976 DOI: 10.1002/etc.4215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/30/2017] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Over the past few years, the fish embryo test (FET) has become widely accepted as an animal-friendly protocol for ecotoxicological research. As Organisation for Economic Co-operation and Development (OECD) 236, the FET has been widely applied for simple mixture exposures under the Registration, Evaluation, Authorisation, and Restriction of Chemicals regulation of the European Union; and now its use is spreading worldwide as a supposedly reliable whole-effluent test (i.e., the testing of complex mixture exposures). However, comparative peer-reviewed data regarding the FET's efficiency for whole-effluent tests are virtually nonexistent. The primary objective of the present study was to make the first comparative test between the FET according to OECD 236 and other standard and slightly modified standard fish protocols used worldwide for whole-effluent tests. For that, we used an untreated hospital effluent considered to be highly toxic but disposed of in municipal sewerage. The base methods were OECD 203 (juvenile), US Environmental Protection Agency method 2000.0 (larvae), and OECD 236 (embryo). We also evaluated the addition of 3 virtually costless sublethal metrics (immobility, nonhatching, and pericardial edema) that could enhance the sensitivity of OECD 236. We observed acute toxicity in all 8 methodologies tested, with a clear escalation in sensitivity (larvae > juvenile ≥ embryo). Larvae were the most sensitive life stage for whole-effluent tests. The addition of sublethal metrics to OECD 236 enhanced its previous sensitivity in over 30%. Thus we conclude that OECD 236 acts below its potential and that the embryonic stage (as used in the FET) may not be the most sensitive life stage for whole-effluent tests. Environ Toxicol Chem 2018;37:2925-2932. © 2018 SETAC.
Collapse
Affiliation(s)
- Julio Alberto Alegre Stelzer
- Freshwater Division, Finnish Environmental Institute, Jyväskylä, Keski-Suomi, Finland
- Department F.-A Forel for Environmental and Aquatic Sciences & Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
- Laboratory of Ecotoxicology, Center of Ecology-Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Catiusa Kuchak Rosin
- Laboratory of Ecotoxicology, Center of Ecology-Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Federal University of Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Luana Hainzenreder Bauer
- Laboratory of Ecotoxicology, Center of Ecology-Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilia Hartmann
- Federal University of Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Fernando Hepp Pulgati
- Mathematics and Statistics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Arenzon
- Laboratory of Ecotoxicology, Center of Ecology-Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. A temporal high-resolution investigation of the Ah-receptor pathway during early development of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:117-129. [PMID: 30245344 DOI: 10.1016/j.aquatox.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kim Ladermann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| |
Collapse
|
26
|
Horie Y, Kanazawa N, Yamagishi T, Yonekura K, Tatarazako N. Ecotoxicological Test Assay Using OECD TG 212 in Marine Java Medaka (Oryzias javanicus) and Freshwater Japanese Medaka (Oryzias latipes). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:344-348. [PMID: 30022344 DOI: 10.1007/s00128-018-2398-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The lethal effects of chemicals is a serious concern to the protection of ecosystems, and the OECD TG 212 was established to estimate the lethal and sublethal effects on embryo and sac-fry stages of fish. It is still unclear, however, whether this test can effectively estimate the impacts of chemicals using marine fish. Therefore, this study aimed to use a recognized testing method on the marine fish Oryzias javanicus, and to assess differences in response to organotin compounds between a freshwater congener (Oryzias latipes) and O. javanicus. The lowest observed effect concentration (LOEC) of triphenyltin for lethal effect was the same in both species. The LOEC of tributyltin for lethal and sublethal effects were the same in both species. Our results provide the first evidence that O. javanicus and O. latipes are similarly affected by organotin compounds, suggesting that O. javanicus is a good model marine fish for the ecotoxicological assessment of chemicals.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan.
| | - Nobuhiro Kanazawa
- Faculty of System Science and Technology, Akita Prefectural University, 84-4 Ebinokuchi, Tsuchiya, Yurihonjo, Akita, 015-0055, Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kei Yonekura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Norihisa Tatarazako
- Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, 790-8566, Japan
| |
Collapse
|
27
|
Horie Y, Yamagishi T, Shintaku Y, Iguchi T, Tatarazako N. Effects of tributyltin on early life-stage, reproduction, and gonadal sex differentiation in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2018; 203:418-425. [PMID: 29631114 DOI: 10.1016/j.chemosphere.2018.03.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Tributyltin, an organotin compound, was used worldwide as an antifouling agent in aquatic environments and there has been much concern about the toxicological and ecotoxicological properties of organotin compounds. Even though it has been prohibited worldwide, tributyltin is still detected at low concentrations in aquatic environments. Here we investigated the effects of tributyltin on the early life-stage, reproduction, and gonadal sex differentiation in Japanese medaka (Oryzias latipes). In adults, exposure to tributyltin at 3.82 μg/L suppressed fecundity and fertility and increased mortality. At 10.48 μg/L all medaka died by the sixth day of exposure. Exposure to tributyltin during early life-stages induced no significant differences in mortality or embryonic development, but growth was suppressed in groups exposed to 0.13 and 0.68 μg/L. Furthermore, there was no abnormal gonadal development in Japanese medaka exposed to tributyltin. These results provide evidence of the negative effects of tributyltin on reproduction in a teleost fish. Tributyltin did not affect gonadal sex differentiation in Japanese medaka, but fecundity and fertility were suppressed, although it is not clear whether this suppression resulted from the endocrine-disrupting action of tributyltin or its toxicity.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Simoshinjo, Akita 010-0195, Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yoko Shintaku
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Norihisa Tatarazako
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan.
| |
Collapse
|
28
|
Zhu L, Shao Y, Xiao H, Santiago-Schübel B, Meyer-Alert H, Schiwy S, Yin D, Hollert H, Küppers S. Electrochemical simulation of triclosan metabolism and toxicological evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1193-1201. [PMID: 29890587 DOI: 10.1016/j.scitotenv.2017.11.317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Tricolsan (TCS), an antimicrobial agent, is considered as emerging pollutant due to its wide dispersive use in personal care products and high aquatic toxicity. In the present study, phase I metabolism of triclosan was investigated through laboratory electrochemical simulation studies. The products formed in the electrochemical (EC) cell were identified by online and offline coupling with QTRAP and high-resolution FTICR mass spectrometers, respectively. The sequential formation and disappearance of each product, with the continuous increase of voltage from 0 to 3500 mV, was observed to reveal the transformation pathways of TCS. The toxic potential of TCS and the identified products was estimated using Quantitative structure-activity relationship (QSAR) modeling on 16 target proteins. The toxicity change of TCS during simulated metabolism and toxicological effects of reaction mixture were assessed by Fish embryo toxicity (FET) test (Danio rerio) and quantitative real-time polymerase chain reaction (qPCR). Eight metabolites formed during the simulated metabolism of TCS mainly via the mechanisms of hydroxylation, ether-bond cleavage and cyclization. In FET test, the reaction mixture (LC50, 48h=1.28 mg/L) after electrochemical reactions showed high acute toxicity on zebrafish embryos, which was comparable to that of triclosan (LC50, 48h=1.34 mg/L). According to the modeling data, less toxic products formed only via ether-bond cleavage of TCS while the products formed through other mechanisms showed high toxicity. AhR-mediated dioxin-like effects on zebrafish embryos, such as developmental retardation in skeleyton and malformations in cardiovascular system, were also observed after exposure to the TCS reaction mixture in FET test. Activation of the AhR by the reaction mixture in zebrafish embryos was further proved in cyp1a gene expression analysis.
Collapse
Affiliation(s)
- Linyan Zhu
- Research Center Jülich, Department of Analytics (ZEA-3), Jülich 52425, Germany; RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany.
| | - Ying Shao
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Hongxia Xiao
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | | | - Henriette Meyer-Alert
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Sabrina Schiwy
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany
| | - Daqiang Yin
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | - Henner Hollert
- RWTH -Aachen University, Aachen Biology and Biotechnology - ABBt, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen 52074, Germany; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400030, People's Republic of China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210046, People's Republic of China
| | - Stephan Küppers
- Research Center Jülich, Department of Analytics (ZEA-3), Jülich 52425, Germany
| |
Collapse
|
29
|
Horie Y, Yamagishi T, Takahashi H, Iguchi T, Tatarazako N. Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction. J Appl Toxicol 2017; 38:544-551. [PMID: 29181881 DOI: 10.1002/jat.3561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023]
Abstract
Triclosan has been shown to have endocrine-disrupting effects in aquatic organisms. In 2016, the US Food and Drug Administration banned the use of triclosan in consumer soaps. Before the ban, triclosan was reported at low concentrations in the aquatic environment, although the effect of triclosan on reproduction in teleost fish species is yet to be clarified. Here we investigated the effects of triclosan on embryo development and reproduction, and during the early life stage, in Japanese medaka (Oryzias latipes) by using Organisation for Economic Co-operation and Development tests 229, 212 and 210, with minor modifications. In adult medaka, exposure to 345.7 μg l-1 suppressed fecundity and increased mortality but had no effect on fertility. Exposure to 174.1 or 345.7 μg l-1 increased liver vitellogenin concentration in females but decreased liver vitellogenin concentration in males. With triclosan exposure, mortality was increased dose dependently during the embryonic and early larval stages, and a particularly steep increase in mortality was observed soon after hatching. The lowest observed effect concentrations of triclosan in Japanese medaka obtained in the present study (mortality [embryonic and larval stages, 276.3 μg l-1 ; early life stage, 134.4 μg l-1 ; adult stage, 174.1 μg l-1 ], growth [134.4 μg l-1 ], vitellogenin [174.1 μg l-1 ], fecundity [345.7 μg l-1 ] and fertility [>345.7 μg l-1 ]) were at least 55 times (compared with the USA) and up to 13 400 times (compared with Germany) greater than the detected triclosan levels in the aquatic environment. These results suggest that triclosan may not be affecting fish populations in the aquatic environment.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Takahashi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Norihisa Tatarazako
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
30
|
Oliveira IB, Groh KJ, Schönenberger R, Barroso C, Thomas KV, Suter MJF. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:164-174. [PMID: 28843204 DOI: 10.1016/j.aquatox.2017.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Antifouling (AF) systems provide the most cost-effective protection against biofouling. Several AF biocides have, however, caused deleterious effects in the environment. Subsequently, new compounds have emerged that claim to be more environment-friendly, but studies on their toxicity and environmental risk are necessary in order to ensure safety. This work aimed to assess the toxicity of three emerging AF biocides, tralopyril, triphenylborane pyridine (TPBP) and capsaicin, towards non-target freshwater organisms representing three trophic levels: algae (Chlamydomonas reinhardtii), crustacean (Daphnia magna) and fish (Danio rerio). From the three tested biocides, tralopyril had the strongest inhibitory effect on C. reinhardtii growth, effective quantum yield and adenosine triphosphate (ATP) content. TPBP caused sub-lethal effects at high concentrations (100 and 250μgL-1), and capsaicin had no significant effects on algae. In the D. magna acute immobilisation test, the most toxic compound was TPBP. However, tralopyril has a short half-life and quickly degrades in water. With exposure solution renewals, tralopyril's toxicity was similar to TPBP. Capsaicin did not cause any effects on daphnids. In the zebrafish embryo toxicity test (zFET) the most toxic compound was tralopyril with a 120h - LC50 of 5μgL-1. TPBP's 120h - LC50 was 447.5μgL-1. Capsaicin did not cause mortality in zebrafish up to 1mgL-1. Sub-lethal effects on the proteome of zebrafish embryos were analysed for tralopyril and TPBP. Both general stress-related and compound-specific protein changes were observed. Five proteins involved in energy metabolism, eye structure and cell differentiation were commonly regulated by both compounds. Tralopyril specifically induced the upregulation of 6 proteins implicated in energy metabolism, cytoskeleton, cell division and mRNA splicing whilst TPBP lead to the upregulation of 3 proteins involved in cytoskeleton, cell growth and protein folding. An ecological risk characterization was performed for a hypothetical freshwater marina. This analysis identified capsaicin as an environment-friendly compound while tralopyril and TPBP seem to pose a risk to freshwater ecosystems. Noneless, more studies on the characterization of the toxicity, behaviour and fate of these AF biocides in the environment are necessary since this information directly affects the outcome of the risk assessment.
Collapse
Affiliation(s)
- Isabel B Oliveira
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Ksenia J Groh
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Rene Schönenberger
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlos Barroso
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences(QAEHS), University of Queensland, 39 Kessels Road, Coopers Plains, 4108 Queensland, Australia
| | - Marc J-F Suter
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH-Swiss Federal Institute of Technology, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Dong Y, Zhang X, Tian H, Li X, Wang W, Ru S. Effects of polychlorinated biphenyls on metamorphosis of a marine fish Japanese flounder (Paralichthys olivaceus) in relation to thyroid disruption. MARINE POLLUTION BULLETIN 2017; 119:325-331. [PMID: 28438338 DOI: 10.1016/j.marpolbul.2017.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
This study examined the influence of environmental concentrations of Aroclor 1254 (10, 100, and 1000ng/L) on metamorphosis of Paralichthys olivaceus, and analyzed the mechanisms in relation to thyroid disruption. Results showed that 100 and 1000ng/L Aroclor 1254 delayed metamorphosis and that 1000ng/L Aroclor 1254 caused abnormal morphology. Thyroxine and triiodothyronine levels in the control group were significantly elevated at metamorphic climax, but treatment with 100 and 1000ng/L delayed the increase in thyroid hormones (THs) and retarded metamorphic processes. In larvae exposed to 1000ng/L Aroclor 1254, TH levels at metamorphic climax were significantly lower than those of the control group at the same metamorphic stage. We suggest that the effects of Aroclor 1254 on larval metamorphosis can be explained by disruption of thyroid homeostasis. These findings provide a new perspective and biological model for thyroid-disrupting chemicals (TDCs) screening and investigating interference of thyroid function by TDCs.
Collapse
Affiliation(s)
- Yifei Dong
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China.
| | - Hua Tian
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Xiang Li
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
32
|
Horie Y, Yamagishi T, Takahashi H, Shintaku Y, Iguchi T, Tatarazako N. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212. J Appl Toxicol 2017; 37:1245-1253. [DOI: 10.1002/jat.3487] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshifumi Horie
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Hiroko Takahashi
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Youko Shintaku
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Taisen Iguchi
- Nanobioscience; Yokohama City University; 22-2 Seto Kanazawa-ku Yokohama 236-0027 Japan
| | - Norihisa Tatarazako
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| |
Collapse
|
33
|
Sarty KI, Cowie A, Martyniuk CJ. The legacy pesticide dieldrin acts as a teratogen and alters the expression of dopamine transporter and dopamine receptor 2a in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:37-47. [PMID: 28163252 DOI: 10.1016/j.cbpc.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Dieldrin (DLD) is a lipophilic pesticide that shows environmental persistence. The objectives were to determine the effects of DLD on GABAergic and dopaminergic systems in developing zebrafish. Both chorionated and dechorionated embryos (~24h post-hatch) were exposed to a single concentration of DLD (0.347-3470μM) for 48h. Following exposure, a subset of larvae was placed into clean water for 6days (i.e. depuration phase). Chorionated embryos showed <15% mortality while dechorionated embryos showed higher mortality (>30%), suggesting that the chorion protected the embryos. Over a 6day depuration phase, there was a dose dependent effect observed in both the "dechorionated and chorionated embryo" treatments for larval mortality (>60%). At the end of depuration, there was no detectable change in neuro-morphological endpoints that included the ratio of notochord length to body length (%) and the ratio of head area to body area (%). However, DLD did induce cardiac edema, skeletal deformities, and tremors. GABA-related transcripts were not affected in abundance by DLD. Conversely, the relative mRNA levels of dopamine transporter (dat1) and dopamine receptor drd2a mRNA were decreased in dechorionated, but not chorionated, embryos. These data suggest that DLD can alter the expression of transcripts related to dopaminergic signaling. Lastly, GABAA receptor subunits gabrB1 and gabrB2, as well as dopamine receptors drd1 and drd2a, were inherently higher in abundance in dechorionated embryos compared to chorionated embryos. This is an important consideration when incorporating transcriptomics into embryo testing as expression levels can change with removal of the chorion prior to exposure.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Chorion/physiology
- Dieldrin/toxicity
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Insecticides/toxicity
- Larva/drug effects
- Larva/growth & development
- Larva/metabolism
- Osmolar Concentration
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Survival Analysis
- Teratogens/toxicity
- Zebrafish/embryology
- Zebrafish/growth & development
- Zebrafish/physiology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Kathleena I Sarty
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Andrew Cowie
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
34
|
Horie Y, Yamagishi T, Koshio M, Iguchi T, Tatarazako N. Lethal and sublethal effects of aniline and chlorinated anilines on zebrafish embryos and larvae. J Appl Toxicol 2017; 37:836-841. [DOI: 10.1002/jat.3431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yoshifumi Horie
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Ibaraki Japan
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Ibaraki Japan
| | - Masaaki Koshio
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Ibaraki Japan
| | - Taisen Iguchi
- Nanobioscience; Yokohama City University; 22-2 Seto, Kanazawa-ku Yokohama 236-0027 Japan
| | - Norihisa Tatarazako
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Ibaraki Japan
| |
Collapse
|
35
|
Duffy TA, Childress W, Portier R, Chesney EJ. Responses of bay anchovy (Anchoa mitchilli) larvae under lethal and sublethal scenarios of crude oil exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:264-272. [PMID: 27639700 DOI: 10.1016/j.ecoenv.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Bay anchovy (Anchoa mitchilli) is an ecologically important zooplanktivorous fish inhabiting estuaries of the Gulf of Mexico and eastern North America from Maine to Florida. Because they have a protracted spawning season (spring through fall) and are abundant at all life stages in coastal estuaries, their eggs and larvae likely encountered oil that reached the coast during the Deepwater Horizon oil spill. We compared responses to oil exposure at different life stages and at lethal and sublethal conditions using acute, 24h exposures. In a series of experiments, bay anchovy larvae were exposed to high energy water accommodated fractions (HEWAF) and chemically-enhanced WAF (CEWAF) at two stages of larval development (5 and 21 days post hatch, dph). HEWAF oil exposures induced significantly greater life stage dependent sensitivity at 5 dph than at 21 dph but chemically dispersed (CEWAF) exposure mortality was more variable and LC50s were not significantly different between 5 and 21dph larvae. Acute exposure to two low-level concentrations of CEWAF did not result in significant mortality over 24h, but resulted in a 25-77% reduction in larval survival and a 12-34% reduction in weight specific growth after six days of post-exposure growth following the initial 24h exposure. These results show that younger (5 dph) bay anchovy larvae are more vulnerable to acute oil exposure than older (21 dph) larvae, and that acute responses do not accurately reflect potential population level mortality and impacts to growth and development.
Collapse
Affiliation(s)
- Tara A Duffy
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA.
| | - William Childress
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA; Aquatic Germplasm and Genetic Resources Center, Department of Renewable Natural Resources, Louisiana State University Agricultural Center, 2288 Gourrier Ave, Baton Rouge, LA 70802, USA
| | - Ralph Portier
- Louisiana State University, Department of Environmental Sciences, Baton Rouge, LA, USA
| | - Edward J Chesney
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA
| |
Collapse
|
36
|
Voisin AS, Fellous A, Earley RL, Silvestre F. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:247-257. [PMID: 27750118 DOI: 10.1016/j.aquatox.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Alexandre Fellous
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| |
Collapse
|
37
|
Di Paolo C, Ottermanns R, Keiter S, Ait-Aissa S, Bluhm K, Brack W, Breitholtz M, Buchinger S, Carere M, Chalon C, Cousin X, Dulio V, Escher BI, Hamers T, Hilscherová K, Jarque S, Jonas A, Maillot-Marechal E, Marneffe Y, Nguyen MT, Pandard P, Schifferli A, Schulze T, Seidensticker S, Seiler TB, Tang J, van der Oost R, Vermeirssen E, Zounková R, Zwart N, Hollert H. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. WATER RESEARCH 2016; 104:473-484. [PMID: 27585427 DOI: 10.1016/j.watres.2016.08.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 05/18/2023]
Abstract
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Steffen Keiter
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Kerstin Bluhm
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Magnus Breitholtz
- Department of Applied Environmental Science - ITM, Stockholm University, Stockholm, Sweden
| | - Sebastian Buchinger
- Department Biochemistry and Ecotoxicology, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Carole Chalon
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | - Xavier Cousin
- Laboratoire d'Ecotoxicologie, Ifremer, L'Houmeau, France; Laboratoire de Physiologie et Génétique des Poissons, Inra, Rennes, France
| | | | - Beate I Escher
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Timo Hamers
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sergio Jarque
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adam Jonas
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Yves Marneffe
- ISSeP (Scientific Institute of Public Service), Liège, Wallonia, Belgium
| | | | | | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Dübendorf, Switzerland
| | - Tobias Schulze
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sven Seidensticker
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Centre for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | | | - Janet Tang
- National Research Centre for Environmental Toxicology - Entox, The University of Queensland, Brisbane, Australia
| | - Ron van der Oost
- WATERNET Institute for the Urban Water Cycle, Division of Technology Research & Engineering, Amsterdam, The Netherlands
| | | | - Radka Zounková
- Research Centre for Toxic Compounds in the Environment - RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nick Zwart
- Institute for Environmental Studies -IVM, VU University Amsterdam, The Netherlands
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
38
|
Xiao H, Krauss M, Floehr T, Yan Y, Bahlmann A, Eichbaum K, Brinkmann M, Zhang X, Yuan X, Brack W, Hollert H. Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11319-11328. [PMID: 27640527 DOI: 10.1021/acs.est.6b03231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The construction of the Three Gorges Dam (TGD) in the Yangtze River raises great concern in ecotoxicological research since large amounts of pollutants enter the Three Gorges Reservoir (TGR) water bodies after TGD impoundment. In this work, effect-directed analysis (EDA), combining effect assessment, fractionation procedure, and target and nontarget analyses, was used to characterize aryl hydrocarbon receptor (AhR) agonists in sediments of the TGR. Priority polycyclic aromatic hydrocarbons (PAHs) containing four to five aromatic rings were found to contribute significantly to the overall observed effects in the area of Chongqing. The relatively high potency fractions in the Kaixian area were characterized by PAHs and methylated derivatives thereof and heterocyclic polycyclic aromatic compounds (PACs) such as dinaphthofurans. Benzothiazole and derivatives were identified as possible AhR agonists in the Kaixian area based on nontarget liquid chromatography-high resolution mass spectrometry (LC-HRMS). To our knowledge, this study is the first one applying the EDA approach and identifying potential AhR agonists in TGR.
Collapse
Affiliation(s)
- Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Tilman Floehr
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Yan Yan
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Arnold Bahlmann
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon S7N 5B3, Canada
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University , Shanghai 200092, China
| |
Collapse
|
39
|
In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage. Reprod Toxicol 2016; 64:50-6. [DOI: 10.1016/j.reprotox.2016.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
|
40
|
Xiao H, Kuckelkorn J, Nüßer LK, Floehr T, Hennig MP, Roß-Nickoll M, Schäffer A, Hollert H. The metabolite 3,4,3',4'-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:304-316. [PMID: 26878642 DOI: 10.1016/j.scitotenv.2016.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
3,4,3',4'-tetrachloroazobenzene (TCAB) is not commercially manufactured but formed as an unwanted by-product in the manufacturing of 3,4-dichloroaniline (3,4-DCA) or metabolized from the degradation of chloranilide herbicides, like propanil. While a considerable amount of research has been done concerning the toxicological and ecotoxicological effects of propanil and 3,4-DCA, limited information is available on TCAB. Our study examined the toxicity of TCAB in comparison to its parent compounds propanil and 3,4-DCA, using a battery of bioassays including in vitro with aryl hydrocarbon receptor (AhR) mediated activity by the 7-ethoxyresorufin-O-deethylase (EROD) assay and micro-EROD, endocrine-disrupting activity with chemically activated luciferase gene expression (CALUX) as well as in vivo with fish embryo toxicity (FET) assays with Danio rerio. Moreover, the quantitative structure activity response (QSAR) concepts were applied to simulate the binding affinity of TCAB to certain human receptors. It was shown that TCAB has a strong binding affinity to the AhR in EROD and micro-EROD induction assay, with the toxic equivalency factor (TEF) of 8.7×10(-4) and 1.2×10(-5), respectively. TCAB presented to be a weak endocrine disrupting compound with a value of estradiol equivalence factor (EEF) of 6.4×10(-9) and dihydrotestosterone equivalency factor (DEF) of 1.1×10(-10). No acute lethal effects of TCAB were discovered in FET test after 96h of exposure. Major sub-lethal effects detected were heart oedema, yolk malformation, as well as absence of blood flow and tail deformation. QSAR modelling suggested an elevated risk to environment, particularly with respect to binding to the AhR. An adverse effect potentially triggering ERβ, mineralocorticoid, glucocorticoid and progesterone receptor activities might be expected. Altogether, the results obtained suggest that TCAB exerts a higher toxicity than both propanil and 3,4-DCA. This should be considered when assessing the impact of these compounds for the environment and also for regulatory decisions.
Collapse
Affiliation(s)
- Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Jochen Kuckelkorn
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Leonie Katharina Nüßer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Tilman Floehr
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China.
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, People's Republic of China; College of Resources and Environmental Science, Chongqing University, Tiansheng Road Beibei 1, Chongqing 400715, People's Republic of China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China.
| |
Collapse
|