1
|
Song H, Liu Y, Gong Q, Gao X. Combined Effects of Marine Heatwaves and Light Intensity on the Physiological, Transcriptomic, and Metabolomic Profiles of Undaria pinnatifida. PLANTS (BASEL, SWITZERLAND) 2025; 14:1419. [PMID: 40430984 PMCID: PMC12115088 DOI: 10.3390/plants14101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Marine heatwaves (MHWs) are spreading across global oceanic regions with unprecedented intensity, frequency, and duration, and are often accompanied by changes in underwater light, thereby imposing multiple stressors on coastal macroalgae. In this study, the effects of MHW intensities (moderate: +3 °C; severe: +6 °C) and light intensities (normal: 90 μmol photons m-2 s-1; high: 270 μmol photons m-2 s-1) on cultivated Undaria pinnatifida were investigated through an integrated analysis of physiological, transcriptomic, and metabolomic responses. Under moderate MHW conditions, U. pinnatifida exhibited enhanced growth and photosynthetic performance, with increased pigment content, improved electron transport, and the early activation of antioxidant defenses. Following severe MHW exposure, the partial recovery of some physiological traits was observed, while photosynthetic capacity, membrane integrity, and energy metabolism remained impaired, and oxidative damage was not fully resolved. High light stress further aggravated stress responses under both MHW intensities by disrupting photoprotection and weakening antioxidant defense systems. These results suggest that U. pinnatifida exhibits adaptive capacity under moderate MHWs and delayed physiological damage and incomplete recovery under severe MHWs. High light stress further exacerbates both responses, ultimately affecting yield and quality.
Collapse
Affiliation(s)
| | - Yan Liu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (H.S.); (Q.G.)
| | | | - Xu Gao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (H.S.); (Q.G.)
| |
Collapse
|
2
|
Bruno de Abreu C, Gebara RC, Rocha GS, da Silva Mansano A, Assis M, Pereira TM, Sindra Virtuoso L, Moreira AJ, Franklin Mayrink Nogueira P, Zucolotto V, Gama Melão MDG, Longo E. Cobalt tungstate nanoparticles (CoWO 4 NPs) affect the photosynthetic performance of the green microalga Raphidocelis subcapitata. CHEMOSPHERE 2025; 372:144085. [PMID: 39798718 DOI: 10.1016/j.chemosphere.2025.144085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Innovative applications of cobalt tungstate nanoparticles (CoWO4 NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO4 NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae). To this end, we assessed algal growth, reactive oxygen species (ROS) production and photosynthetic performance. Our results show that the NPs inhibited the growth of algal cells from 42.37 mg L-1, significantly induced ROS production in the first hours of exposure (1 h) at all concentrations and directly compromised the photosynthetic activity, reinforcing that the oxygen-evolving complex (OEC) is one of the main targets of NPs and that the light curve parameters were the most sensitive endpoints. We observed reductions in the maximum relative electron transport rate (rETRmax) of around 53% and decreases in the saturating irradiance (Ek) of around 40%, which demonstrated that the NPs not only compromised the photosynthetic activity, but also decreased the ability of algal cells to tolerate high light intensities. Our results also highlight that Co was mostly particulate and that the dissolved fraction represented only ∼8% at the lowest concentration and ∼0.70% at the highest concentration of CoWO4 NPs, suggesting that the toxicity observed was caused by the NPs. CoWO4 NPs exhibited a high negative surface charge of -33mV in L.C. Oligo medium. The polydispersity index (PdI) varied from 0.22 to 0.45, while the hydrodynamic size ranged from 217.8 ± 11.36 to 503.43 ± 32.78 nm, indicating greater aggregation in this medium. This study elucidates how the CoWO4 NPs interact with R. subcapitata, resulting in changes mainly in its photosynthetic performance.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Department of Chemical Engineering, Higher Technical School of Chemical Engineering, University of Rovira i Virgili, 26 Països Catalans Av., 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), 46001, Valencia, Spain
| | - Thalles Maranesi Pereira
- Institute of Chemistry, Federal University of Alfenas (UNIFAL-MG), 700 Gabriel Monteiro da Silva Street, 37130-000, Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Institute of Chemistry, Federal University of Alfenas (UNIFAL-MG), 700 Gabriel Monteiro da Silva Street, 37130-000, Alfenas, MG, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of Sao Carlos, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
3
|
de Abreu CB, Gebara RC, Rocha GS, da Silva Mansano A, Assis M, Pereira TM, Virtuoso LS, Moreira AJ, Santos MA, Melão MDGG, Longo E. The effects of nickel tungstate nanoparticles (NiWO 4 NPs) on freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Int Microbiol 2025:10.1007/s10123-024-00628-1. [PMID: 39779638 DOI: 10.1007/s10123-024-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO4) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO4 (NPs) on multiple endpoints (e.g., growth, photosynthetic activity, and morphological and biochemical levels) of the freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Quantification data revealed that the fraction of dissolved Ni and free Ni2+ increased proportionally with NiWO4 NP concentrations, although these levels remained relatively low. Biological results indicated that NiWO4 NPs did not inhibit the growth of algal cells, except at 7.9 mg L-1, resulting in a 9% decrease. Morphological changes were observed in cell size and complexity, accompanied by physiological alterations, such as a reduction in chlorophyll a fluorescence (FL3-H) and signs of impaired photosynthetic activity, indicated by the effective quantum yield, quenchings, and chlorophyll a (Chl a) content. Furthermore, the rapid light curves showed that the NPs in high concentrations affected microalga ability to tolerate high light intensities, as corroborated by the significant decrease in the relative electron transport rate (rETRmax) and saturation irradiance (Ek). Based on the present study results, we emphasize the importance of applying integrative approaches in ecotoxicological studies, since each endpoint evaluated showed different sensitivity.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Giseli Swerts Rocha
- Departament Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans, 26. 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), 46001, Valencia, Spain
| | - Thalles Maranesi Pereira
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Ailton José Moreira
- Chemistry Institute, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Mykaelli Andrade Santos
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
4
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Liu S, Han J, Ma X, Zhu X, Qu H, Xin G, Huang X. Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression. ECO-ENVIRONMENT & HEALTH 2024; 3:290-299. [PMID: 39263270 PMCID: PMC11387588 DOI: 10.1016/j.eehl.2024.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 09/13/2024]
Abstract
The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae Chlorella vulgaris following single and repeated exposures to cerium oxide nanoparticles (CeO2 NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in C. vulgaris compared to a single exposure. Photosynthesis-related genes (i.e., petA, petB, psaA, atpB, and rbcL) were found to be upregulated following repeated exposures. Particularly for petB, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92-10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO2 NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaowu Ma
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoshan Zhu
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Hou Y, Guo Z, Liu Z, Yan S, Cui M, Chen F, Wang W, Yu L, Zhao L. Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella of Haematococcus pluvialis. BIORESOUR BIOPROCESS 2024; 11:78. [PMID: 39095685 PMCID: PMC11296984 DOI: 10.1186/s40643-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.
Collapse
Affiliation(s)
- Yuyong Hou
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhile Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meijie Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China.
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Zhao
- College of Life Science, North China University of Science and Technology, Tangshan, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Reis LLD, de Abreu CB, Gebara RC, Rocha GS, Longo E, Mansano ADS, Melão MDGG. Effects of Cadmium and Nickel Mixtures on Multiple Endpoints of the Microalga Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1855-1869. [PMID: 38864594 DOI: 10.1002/etc.5927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.
Collapse
Affiliation(s)
- Larissa Luiza Dos Reis
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Giseli Swerts Rocha
- Department of Chemical Engineering, School of Chemical Engineering, University of Rovira i Virgili, Tarragona, Spain
| | - Elson Longo
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Ribeiro LK, Assis M, Moreira AJ, Abreu CB, Gebara RC, Grasser GA, Fukushima HCS, Borra RC, Melão MGG, Longo E, Mascaro LH. Striking the balance: Unveiling the interplay between photocatalytic efficiency and toxicity of La-incorporated Ag 3PO 4. CHEMOSPHERE 2024; 359:142352. [PMID: 38759808 DOI: 10.1016/j.chemosphere.2024.142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Persistent molecules, such as pesticides, herbicides, and pharmaceuticals, pose significant threats to both the environment and human health. Advancements in developing efficient photocatalysts for degrading these substances can play a fundamental role in remediating contaminated environments, thereby enhancing safety for all forms of life. This study investigates the enhancement of photocatalytic efficiency achieved by incorporating La3+ into Ag3PO4, using the co-precipitation method in an aqueous medium. These materials were utilized in the photocatalytic degradation of Rhodamine B (RhB) and Ciprofloxacin (CIP) under visible light irradiation, with monitoring conducted through high-performance liquid chromatography (HPLC). The synthesized materials exhibited improved stability and photodegradation levels for RhB. Particularly noteworthy was the 2% La3+-incorporated sample (APL2), which achieved a 32.6% mineralization of CIP, nearly three times higher than pure Ag3PO4. Toxicological analysis of the residue from CIP photodegradation using the microalga Raphidocelis subcapitata revealed high toxicity due to the leaching of Ag + ions from the catalyst. This underscores the necessity for cautious wastewater disposal after using the photocatalyst. The toxicity of the APL2 photocatalysts was thoroughly assessed through comprehensive toxicological tests involving embryo development in Danio rerio, revealing its potential to induce death and malformations in zebrafish embryos, even at low concentrations. This emphasizes the importance of meticulous management. Essentially, this study adeptly delineated a thorough toxicological profile intricately intertwined with the photocatalytic efficacy of newly developed catalysts and the resultant waste produced, prompting deliberations on the disposal of degraded materials post-exposure to photocatalysts.
Collapse
Affiliation(s)
- Lara K Ribeiro
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, 12071, Spain.
| | - Ailton J Moreira
- Universidade Estadual Paulista (UNESP), Instituto de Química, 14800-060 Araraquara, SP, Brazil
| | - Cínthia B Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Renan C Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Giovanna A Grasser
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Hirla C S Fukushima
- Laboratory of Applied Immunology (LIA), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Ricardo C Borra
- Laboratory of Applied Immunology (LIA), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Maria G G Melão
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Elson Longo
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Lucia H Mascaro
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Jin Y, Li Y, Qi Y, Wei Q, Yang G, Ma X. A modified cultivation strategy to enhance biomass production and lipid accumulation of Tetradesmus obliquus FACHB-14 with copper stress and light quality induction. BIORESOURCE TECHNOLOGY 2024; 400:130677. [PMID: 38588782 DOI: 10.1016/j.biortech.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
In this study, a two-stage culture strategy was refined to concurrently enhance the growth and lipid accumulation of Tetradesmus obliquus. The results unveiled that, during the initial stage, the optimal conditions for biomass accumulation were achieved with 0.02 mg·L-1 Cu2+ concentration and red light. Under these conditions, biomass accumulation reached 0.628 g·L-1, marking a substantial 23.62 % increase compared to the control group. In the second stage, the optimal conditions for lipid accumulation were identified as 0.5 mg·L-1 Cu2+ concentration and red light, achieving 64.25 mg·g-1·d-1 and marking a 128.38 % increase over the control. Furthermore, the fatty acid analysis results revealed an 18.85 % increase in the saturated fatty acid content, indicating enhanced combustion performance of microalgae cultivated under the dual stress of red light and 0.5 mg·L-1 Cu2+. This study offers insights into the potential application of Tetradesmus obliquus in biofuel production.
Collapse
Affiliation(s)
- Yuanrong Jin
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yinting Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yingying Qi
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, PR China.
| |
Collapse
|
10
|
Zhan D, Liu Y, Yu N, Hao C. Photosynthetic response of Chlamydomonas reinhardtii and Chlamydomonas sp. 1710 to zinc toxicity. Front Microbiol 2024; 15:1383360. [PMID: 38650883 PMCID: PMC11033396 DOI: 10.3389/fmicb.2024.1383360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Zinc (Zn) is an essential trace element but can lead to water contamination and ecological deterioration when present in excessive amounts. Therefore, investigating the photosynthetic response of microalgae to Zn stress is of great significance. In this study, we assessed the photosynthetic responses of neutrophilic Chlamydomonas reinhardtii and acidophilic Chlamydomonas sp. 1710 to Zn exposure for 96 h. The specific growth rate (μ), chlorophyll-a (Chl-a) content, and chlorophyll fluorescence parameters were determined. The results demonstrated that Chlamydomonas sp. 1710 was much more tolerant to Zn than C. reinhardtii, with the half-maximal inhibitory concentration (IC50) values of 225.4 mg/L and 23.4 mg/L, respectively. The μ and Chl-a content of C. reinhardtii decreased in the presence of 15 mg/L Zn, whereas those of Chlamydomonas sp. 1710 were unaffected by as high as 100 mg/L Zn. Chlorophyll fluorescence parameters indicated that the regulation of energy dissipation, including non-photochemical quenching, played a crucial role in Zn stress resistance for both Chlamydomonas strains. However, in the case of C. reinhardtii, non-photochemical quenching was inhibited by 5 mg/L Zn in the first 48 h, whereas for Chlamydomonas sp. 1710, it remained unaffected under 100 mg/L Zn. Chlamydomonas sp. 1710 also exhibited a 20 times stronger capacity for regulating the electron transfer rate than C. reinhardtii under Zn stress. The light energy utilization efficiency (α) of Chlamydomonas sp. 1710 had the most highly non-linear correlation with μ, indicating the energy utilization and regulation process of Chlamydomonas sp. 1710 was well protected under Zn stress. Collectively, our findings demonstrate that the photosystem of Chlamydomonas sp. 1710 is much more resilient and tolerant than that of C. reinhardtii under Zn stress.
Collapse
Affiliation(s)
- Di Zhan
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Yue Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Na Yu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Chunbo Hao
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| |
Collapse
|
11
|
Gebara RC, Abreu CBD, Rocha GS, Mansano ADS, Assis M, Moreira AJ, Santos MA, Pereira TM, Virtuoso LS, Melão MDGG, Longo E. Effects of ZnWO 4 nanoparticles on growth, photosynthesis, and biochemical parameters of the green microalga Raphidocelis subcapitata. CHEMOSPHERE 2024; 353:141590. [PMID: 38460844 DOI: 10.1016/j.chemosphere.2024.141590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Nanoparticles have applications in many sectors in the society. ZnWO4 nanoparticles (ZnWO4-NPs) have potential in the fabrication of sensors, lasers, and batteries, and in environmental remediation. Thus, these NPs may reach aquatic ecosystems. However, we still do not know their effects on aquatic biota and, to our knowledge, this is the first study that evaluates the toxicity of ZnWO4-NPs in a eukaryotic organism. We evaluated the toxicity of ZnWO4-NPs on the green microalga Raphidocelis subcapitata for 96 h, in terms of growth, cell parameters, photosynthesis, and biochemical analysis. Results show that most of Zn was presented in its particulate form, with low amounts of Zn2+, resulting in toxicity at higher levels. The growth was affected from 8.4 mg L-1, with 96h-IC50 of 23.34 mg L-1. The chlorophyll a (Chl a) content increased at 30.2 mg L-1, while the fluorescence of Chl a (FL3-H) decreased at 15.2 mg L-1. We observed increased ROS levels at 44.4 mg L-1. Regarding photosynthesis, the NPs affected the oxygen evolving complex (OEC) and the efficiency of the photosystem II at 22.9 mg L-1. At 44.4 mg L-1 the qP decreased, indicating closure of reaction centers, probably affecting carbon assimilation, which explains the decay of carbohydrates. There was a decrease of qN (non-regulated energy dissipation, not used in photosynthesis), NPQ (regulated energy dissipation) and Y(NPQ) (regulated energy dissipation via heat), indicating damage to the photoprotection system; and an increase in Y(NO), which is the non-regulated energy dissipation via heat and fluorescence. The results showed that ZnWO4-NPs can affect the growth and physiological and biochemical parameters of the chlorophycean R. subcapitata. Microalgae are the base of aquatic food chains, the toxicity of emerging contaminants on microalgae can affect entire ecosystems. Therefore, our study can provide some help for better protection of aquatic ecosystems.
Collapse
Affiliation(s)
- Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology (DHb), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, Spain
| | - Ailton José Moreira
- São Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara, SP, Brazil
| | | | - Thalles Maranesi Pereira
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology (DHb), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
12
|
Rocha GS, Lopes LFP, Melão MGG. Phosphorus limitation combined with aluminum triggers synergistic responses on the freshwater microalgae Raphidocelis subcapitata (Chlorophyceae). CHEMOSPHERE 2024; 352:141320. [PMID: 38296208 DOI: 10.1016/j.chemosphere.2024.141320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/10/2024]
Abstract
In the environment, algae are exposed to several stressors such as limitation of essential nutrients and excess of toxic substances. It is well known the importance of phosphorus (P) supply for healthy metabolism of algae and impacts at this level can affect the whole aquatic trophic chain. Aluminum (Al) is the most abundant metal on Earth and it is toxic to different trophic levels. Processes related to P and Al assimilation still need to be clarified and little is known about the responses of microalgae exposed to the two stressors simultaneously. We evaluated the effects of environmental concentrations of Al and P limitation, isolated and in combination, on growth, pigment production and photosynthesis of the freshwater microalga Raphidocelis subcapitata. Both stressors affected cell density, chlorophyll a, carotenoids, and maximum quantum yield. Al did not affect any other evaluated parameter, while P limitation affected parameters related to the dissipation of heat by algae and the maximum electron transport rate, decreasing the saturation irradiance. In the combination of both stressors, all parameters evaluated were affected in a synergistic way, i.e., the results were more harmful than expected considering the responses to isolated stressors. Our results indicate that photoprotection mechanisms of algae were efficient in the presence of both stressors, avoiding damages to the photosynthetic apparatus. In addition, our data highlight the higher susceptibility of R. subcapitata to Al in P-limited conditions.
Collapse
Affiliation(s)
- Giseli S Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Av. Països Catalans, 26, 43007, Tarragona, Spain.
| | - Laís F P Lopes
- NEEA/CRHEA, Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC/USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP 13566-590, São Carlos, SP, Brazil.
| | - Maria G G Melão
- Departamento de Hidrobiologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Rocha GS, Melão MGG. Does cobalt antagonize P limitation effects on photosynthetic parameters on the freshwater microalgae Raphidocelis subcapitata (Chlorophyceae), or does P limitation acclimation antagonize cobalt effects? More questions than answers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122998. [PMID: 37995955 DOI: 10.1016/j.envpol.2023.122998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Phosphorus (P; macronutrient) and cobalt (Co; micronutrient) are essential for algal healthy metabolism. While P provides energy, Co is a co-factor of several enzymes and component of B12 vitamin. However, in concentrations higher or lower than required, P and Co alter algal metabolism, impacting physiological processes (e.g., growth and photosynthesis), usually in a harmful way. In the environment, algae are exposed to multiple stressors simultaneously and studies evaluating the algal response to the combination of macronutrient limitation and micronutrient excess are still scarce. We assessed the effects of P limitation and Co excess, isolated and combined, in Raphidocelis subcapitata (Chlorophyceae), in terms of growth, pigments production, and photosynthetic parameters. Except for the photochemical quenching (qP) and the efficiency in light capture (α) under P limitation, all parameters were affected by both stressors, isolated and combined. Under P limitation, chlorophyll a was the most sensitive parameter; while excess of Co affected most the photoprotective mechanisms of algae, altering the non-photochemical quenchings qN and NPQ, influencing the light use and dissipation of heat by algae. The combination of two stressors resulted in a significant decrease in algal growth, with synergistic responses in growth and pigments production, and antagonism in the photosynthetic parameters. We suggest that algal metabolism was altered during P limitation acclimation and the excess of Co was used in a beneficial way by P-limited algae in photosynthesis, resulting in the well-functioning of the photosynthetic apparatus in the combination of both stressors. However, more studies are needed to understand which mechanisms are involved in this adaptation which resulted in antagonism in photosynthetic processes and synergism in growth and pigments production.
Collapse
Affiliation(s)
- Giseli Swerts Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Av. Països Catalans, 26, 43007, Tarragona, Spain.
| | - Maria Graça Gama Melão
- Departamento de Hidrobiologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, CEP, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Dos Reis LL, de Abreu CB, Gebara RC, Rocha GS, Longo E, Mansano ADS, Melão MDGG. Isolated and combined effects of cobalt and nickel on the microalga Raphidocelis subcapitata. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:104-118. [PMID: 38236330 DOI: 10.1007/s10646-024-02728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L-1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L-1); ROS production (0.50 mg Co L-1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L-1. Ni exposure decreased ROS and cell density (0.35 mg Ni L-1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.
Collapse
Affiliation(s)
- Larissa Luiza Dos Reis
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Avinguda Països Catalans, 26, 43007, Tarragona, Spain
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Adrislaine da Silva Mansano
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
16
|
Su Z, Jalalah M, Alsareii SA, Harraz FA, Almadiy AA, Wang L, Thakur N, Salama ES. Supplementation of micro-nutrients to growth media of microalgae-induced biomass and fatty acids composition for clean energy generation. World J Microbiol Biotechnol 2023; 40:12. [PMID: 37953333 DOI: 10.1007/s11274-023-03815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
The presence of harmful heavy metals (HMs) in the aquatic environment can damage the environment and threaten human health. Traditional remediation techniques can have secondary impacts. Thus, more sustainable approaches must be developed. Microalgae have biological properties (such as high photosynthetic efficiency and growth), which are of great advantage in the HMs removal. In this study, the effect of various concentrations (2×, 4×, and 6×) of copper (Cu), cobalt (Co), and zinc (Zn) on microalgae (C. sorokiniana GEEL-01, P. kessleri GEEL-02, D. asymmetricus GEEL-05) was investigated. The microalgal growth kinetics, HMs removal, total nitrogen (TN), total phosphor (TP), and fatty acids (FAs) compositions were analyzed. The highest growth of 1.474 OD680nm and 1.348 OD680nm was obtained at 2× and 4×, respectively, for P. kessleri GEEL-02. P. kessleri GEEL-02 showed high removal efficiency of Cu, Co, and Zn (38.92-55.44%), (36.27-68.38%), and (32.94-51.71%), respectively. Fatty acids (FAs) analysis showed that saturated FAs in C. sorokiniana GEEL-01 and P. kessleri GEEL-02 increased at 2× and 4× concentrations while decreasing at 6×. For P. kessleri GEEL-02, the properties of biodiesel including the degree of unsaturation (UD) and cetane value (CN) increased at 2×, 4×, and 6× as compared to the control. Thus, this study demonstrated that the three microalgae (particularly P. kessleri GEEL-02) are more suitable for nutrient and HMs removal coupled with biomass/biodiesel production.
Collapse
Affiliation(s)
- Zhenni Su
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia.
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Abdulrhman A Almadiy
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, 1988, Saudi Arabia
| | - Lei Wang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
17
|
Machado MD, Soares EV. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106732. [PMID: 37879199 DOI: 10.1016/j.aquatox.2023.106732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This work focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata (formerly known as Pseudokirchneriella subcapitata and Selenastrum capricornutum), when exposed to adverse conditions generated by the presence of organic [the antibiotic erythromycin (ERY) and the herbicide metolachlor (MET)] or inorganic [the heavy metals, cadmium (Cd) and zinc (Zn)] pollutants, at environmentally relevant concentrations. This alga in absence of stress or when exposed to ERY or Zn, up to 200 µg/L, essentially showed a single-nucleus state, although algal growth was reduced or stopped. R. subcapitata "switched" to a multinucleated state (palmelloid-like morphology) and accumulated energy-reserve compounds (neutral lipids) when stressed by 100-200 µg/L MET or 200 µg/L Cd; at these concentrations of pollutants, growth was arrested, however, the majority of the algal population (≥83 %) was alive. The formation of palmelloid-like phenotype, at sub-lethal concentrations of pollutants, was dependent on the pollutant, its concentration and exposure time. The multinucleated structure is a transitory phenotype since R. subcapitata population was able to revert to a single-nucleus state, with normal cell size, within 24-96 h (depending on the impact of the toxic in the alga), after being transferred to fresh OECD medium, without pollutants. The obtained results indicate that the formation of a palmelloid-like phenotype in R. subcapitata is dependent on the mode of action of toxics and their concentration, not constituting a generalized defense mechanism against stress. The observations here shown contribute to understanding the different strategies used by the unicellular alga R. subcapitata to cope with severe stress imposed by organic and inorganic pollutants.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|