1
|
Islam MS, Al-Majid AM, Haukka M, Parveen Z, Ravaiz N, Wadood A, Rehman AU, Ríos-Gutiérrez M, Domingo LR, Barakat A. A novel alpha-amylase inhibitor-based spirooxindole-pyrrolidine-clubbed thiochromene-pyrzaole pharmacophores: Unveiling the [3+2] cycloaddition reaction by molecular electron density theory. Chem Biol Drug Des 2023; 102:972-995. [PMID: 37563748 DOI: 10.1111/cbdd.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
A novel spirooxindole-pyrrolidine clubbed thiochromene and pyrazole motifs were synthesized by [3+2] cycloaddition (32CA) reactions in one step process starting from the ethylene-based thiochromene and pyrazole scaffolds with the secondary amino-acids and substituted isatins in high yield. The 32CA reaction of AY 10 with ethylene derivative 6 has also been studied with Molecular Electron Density Theory. The high nucleophilic character of AY 10, N = 4.39 eV, allows explaining that the most favorable TS-on is 13.9 kcal mol-1 below the separated reagent. This 32CA, which takes place through a non-concerted one-step mechanism, presents a total ortho regio- and endo stereoselectivity, which is controlled by the formation of two intramolecular H… O hydrogen bonds. The design of spirooxindole-pyrrolidines engrafted thiochromene and pyrazole was tested for alpha-amylase inhibition and show a high efficacy in nanoscale range of reactivity. The key interaction between the most active hybrids and the receptor was studied by molecular docking. The physiochemical properties of the designed spirooxindole-pyrrolidines were carried out by in silico ADMET prediction. The newly synthesized most potent hybrid could be considered as a lead compound for drug discovery development for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
| | | | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nabeela Ravaiz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Luis R Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Patra S, Patra P. A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[ c]coumarin Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Susanta Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, WB 721507, India
| |
Collapse
|
4
|
E. Ali T, K. Alsolimani A, A. Assiri M. 3-[2-Oxo-2H-chromen-3(6)(8)-yl]-1-aryl/heteroaryl-1H-pyrazole-4-carbaldehydes: Synthesis, Reactions and Applications. HETEROCYCLES 2023. [DOI: 10.3987/rev-22-998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Shankara SD, Isloor AM, Kudva AK, Raghu SV, Jayaswamy PK, Venugopal PP, Shetty P, Chakraborty D. 2,5-Bis(2,2,2-trifluoroethoxy)phenyl-tethered 1,3,4-Oxadiazoles Derivatives: Synthesis, In Silico Studies, and Biological Assessment as Potential Candidates for Anti-Cancer and Anti-Diabetic Agent. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248694. [PMID: 36557829 PMCID: PMC9781914 DOI: 10.3390/molecules27248694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
In the present work, a series of new 1-{5-[2,5-bis(2,2,2-trifluoroethoxy)phenyl]-1,3,4-oxadiazol-3-acetyl-2-aryl-2H/methyl derivatives were synthesized through a multistep reaction sequence. The compounds were synthesized by the condensation of various aldehydes and acetophenones with the laboratory-synthesized acid hydrazide, which afforded the Schiff's bases. Cyclization of the Schiff bases yielded 1,3,4-oxadiazole derivatives. By spectral analysis, the structures of the newly synthesized compounds were elucidated, and further, their anti-cancer and anti-diabetic properties were investigated. To examine the dynamic behavior of the candidates at the binding site of the protein, molecular docking experiments on the synthesized compounds were performed, followed by a molecular dynamic simulation. ADMET (chemical absorption, distribution, metabolism, excretion, and toxicity) prediction revealed that most of the synthesized compounds follow Lipinski's rule of 5. The results were further correlated with biological studies. Using a cytotoxic assay, the newly synthesized 1,3,4-Oxadiazoles were screened for their in vitro cytotoxic efficacy against the LN229 Glioblastoma cell line. From the cytotoxic assay, the compounds 5b, 5d, and 5m were taken for colony formation assay and tunnel assay have shown significant cell apoptosis by damaging the DNA of cancer cells. The in vivo studies using a genetically modified diabetic model, Drosophila melanogaster, indicated that compounds 5d and 5f have better anti-diabetic activity among the different synthesized compounds. These compounds lowered the glucose levels significantly in the tested model.
Collapse
Affiliation(s)
- Sathyanarayana D. Shankara
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Solara Active Pharma Sciences, No:120 A&B, Industrial Area, Baikampady, New Mangalore, Mangalore 575011, India
| | - Arun M. Isloor
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
- Correspondence: ; Fax: +91-824-2474033
| | - Avinash K. Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Pavan K. Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Pushyaraga P. Venugopal
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
6
|
Popova SA, Shevchenko OG, Chukicheva IY. Synthesis of new coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin and their antioxidant activity. Chem Biol Drug Des 2022; 100:994-1004. [PMID: 34553497 DOI: 10.1111/cbdd.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023]
Abstract
In this work, we synthesized a series of new 9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazine-2-on derivatives which incorporate isobornylcoumarin and 1,3-oxazine moieties. A structure-antioxidant activity relationship was analyzed. A comparative evaluation of their radical scavenging activity, antioxidant and membrane-protective properties was carried out in test with DPPH, as well as on the models of Fe2+ /ascorbate-initiated lipid peroxidation and oxidative hemolysis of mammalian red blood cells. The results suggest that all the obtained coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin are capable of exhibiting antioxidant activity in various model systems. Compound 7 with a phenyl fragment, combining high radical scavenging activity and the ability to inhibit Fe2+ /ascorbate-initiated peroxidation of animal lipids in a heterogeneous environment, also proved to be the most effective membrane protector and antioxidant in the model of H2 O2 -induced erythrocyte hemolysis.
Collapse
Affiliation(s)
- Svetlana A Popova
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| |
Collapse
|
7
|
Madni M, Ahmed MN, Abbasi G, Hameed S, Ibrahim MAA, Tahir MN, Ashfaq M, Gil DM, Gomila RM, Frontera A. Synthesis and X‐ray Characterization of 4,5‐Dihydropyrazolyl‐Thiazoles Bearing a Coumarin Moiety: On the Importance of Antiparallel π‐Stacking. ChemistrySelect 2022. [DOI: 10.1002/slct.202202287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Madni
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Ghazala Abbasi
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Shahid Hameed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | | | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha Pakistan
| | - Diego M. Gil
- INBIOFAL (CONICET – UNT) Instituto de Química Orgánica. Facultad de Bioquímica Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. T4000INI. San Miguel de Tucumán Argentina Member of the research Career of CONICET
| | - Rosa M. Gomila
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| | - Antonio Frontera
- Departament de Química Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| |
Collapse
|
8
|
Sujatha K, Thirupaiah B, Vedula RR. An Efficient One Pot Multicomponent Synthesis of Coumarino Pyrazolyl Thiazolidinones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1781208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kodam Sujatha
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Bade Thirupaiah
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
9
|
Onyılmaz M, Koca M, Bonardi A, Degirmenci M, Supuran CT. Isocoumarins: a new class of selective carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2022; 37:743-748. [PMID: 35188025 PMCID: PMC8865125 DOI: 10.1080/14756366.2022.2041630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Isocoumarins, isomeric to comarins which act as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, were investigated for the first time as inhibitors of this enzyme. A series of 3-substituted and 3,4-disubstituted isocoumarins incorporating phenylhydrazone, 1-phenyl-pyrazole and pyrazolo-substituted pyrimidine trione/thioxo-pyrimidine dione moieties were investigated for their interaction with four human (h) CA isoforms, hCA I, II, IX and XII, known to be important drug targets. hCA I and II were not inhibited by these compounds, whereas hCA IX and XII were inhibited in the low micromolar range by the less bulky derivatives. The inhibition constants ranged between 2.7–78.9 µM against hCA IX and of 1.2–66.5 µM against hCA XII. As for the coumarins, we hypothesise that the isocoumarins are hydrolysed by the esterase activity of the enzyme with formation of 2-carboxy-phenylacetic aldehydes which act as CA inhibitors. Isocoumarins represent a new class of CA inhibitors.
Collapse
Affiliation(s)
- Mehmet Onyılmaz
- Faculty of Science and Arts, Department of Chemistry, Harran University, Şanlıurfa, Turkey
| | - Murat Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Alessandro Bonardi
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Mustafa Degirmenci
- Faculty of Science and Arts, Department of Chemistry, Harran University, Şanlıurfa, Turkey
| | - Claudiu T. Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Ramadan SK, Rizk SA. Synthesis, density functional theory, and cytotoxic activity of some heterocyclic systems derived from 3-(3-(1,3-diphenyl-1H-pyrazol-4-yl)acryloyl)-2H-chromen-2-one. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022; 19:187-201. [DOI: 10.1007/s13738-021-02298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2023]
|
12
|
An Efficient Synthesis of Novel 3-[(Heteroaryl-2-ylimino)-methyl]-4-hydroxy-chromen-2-ones and Analogue of Tetrazole Derivatives and Their Antibacterial Activity. MOLBANK 2021. [DOI: 10.3390/m1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthesis of a series of the substituted [(pyridinyl and pyrimidin-2-ylimino)-ethyl]-4-hydroxy-chromen-2-ones and their tetrazole derivates is presented in this study. By catalytic condensation of 4-hydroxy-3-acetylcoumarine 2 and 2-aminopyridines 3(a-d), 3-[(pyridin-2-ylimino)-ethyl]-4-hydroxy-chromen-2-ones 4(a-d) are synthesized in high yield. During the condensation reaction of 2 and 4-amino-2,6-dihydroxypyrimidine 3e, 3-[1-(2,6-Dihydroxy-pyrimidin-4-ylimino)-ethyl]-4-hydroxy-chromen-2-one 4e as condensation products is synthesized. In following series, by cyclization reactions of compounds 4 (a-e) with sodium azide, analogue 3-substituted pyridin-2-yl and pyrimidin-2-yl-5-methyl-2,5-dihydro-1H-tetrazol-5-yl]-4-hydroxy-chromen-2-one 5(a-e) are synthesized the products. Structural characterization of the synthesized products is done on the basis of spectrometric data. Antibacterial activity of the compounds 4(a-e) and 5(a-e) against S. aureus, E. coli and Klebsiella was examined by measuring the inhibition zones around the disks marked with the corresponding products solution. The impact of substitutions in antimicrobial is also explored. Compounds with polar groups have shown significant antibacterial activity against these microorganisms.
Collapse
|
13
|
Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021; 26:4886. [PMID: 34443474 PMCID: PMC8398118 DOI: 10.3390/molecules26164886] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.
Collapse
Affiliation(s)
- Paulina Mucha
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Anna Skoczyńska
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 41-200 Sosnowiec, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland;
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
14
|
CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Direm A, El Bali B, Sayin K, Abdelbaky MS, García-Granda S. Experimental and in silico studies of dichloro-tetrakis(1H-pyrazole)-cobalt(II): Structural description, photoluminescent behavior and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Bouhaoui A, Eddahmi M, Dib M, Khouili M, Aires A, Catto M, Bouissane L. Synthesis and Biological Properties of Coumarin Derivatives. A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Abderrazzak Bouhaoui
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mohammed Eddahmi
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mustapha Dib
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mostafa Khouili
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences CITAB University of Trás-os-Montes e Alto Douro UTAD Vila Real Portugal
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences University of Bari Aldo Moro via E. Orabona 4 70125 Bari Italy
| | - Latifa Bouissane
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| |
Collapse
|
17
|
Kaddah MM, Fahmi AA, Kamel MM, Ramadan SK, Rizk SA. Synthesis, characterization, computational chemical studies and antiproliferative activity of some heterocyclic systems derived from 3-(3-(1,3-diphenyl-1 H-pyrazol-4-yl)acryloyl)-2 H-chromen-2-one. SYNTHETIC COMMUN 2021; 51:1798-1813. [DOI: 10.1080/00397911.2021.1904991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Mohamed M Kaddah
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Mustafa M. Kamel
- Industrial Area, El-Nasr Company for Intermediate Chemicals, Giza, Egypt
| | - Sayed K. Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh A. Rizk
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg Chem 2021; 114:105046. [PMID: 34126575 DOI: 10.1016/j.bioorg.2021.105046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 μg/ml as compare to standard acarbose (IC50 = 34.71 μg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 μg/ml as compared to standard acarbose (IC50 = 34.72 μg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.
Collapse
|
19
|
Abstract
The heterocyclic compounds are the building blocks for the synthesis of the different biologically
active compounds in the organic chemistry. Heterocyclic compounds have versatile synthetic
applicability and biological activity. Pyrazole carboxylic acid derivatives are significant scaffold
structures in heterocyclic compounds due to biologic activities such as antimicrobial, anticancer, inflammatory,
antidepressant, antifungal anti-tubercular and antiviral, etc. The aim of this mini-review
is an overview synthesis of pyrazole carboxylic acid derivatives and their biologic applications. The
summarized literature survey presents biological activities of pyrazole carboxylic acid derivatives
and their various synthetic methods in detail. This mini-review can be a guide to many scientists in
medicinal chemistry.
Collapse
Affiliation(s)
- Adnan Cetin
- Department of Sciences, Faculty of Education, University of Mus Alparslan, Mus, Turkey
| |
Collapse
|
20
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
21
|
Abd-El-Maksoud MA, El-Hussieny M, Awad HM, Mossa ATH, Soliman FM. Chemistry of Phosphorus Ylides. Part 47. Synthesis of Organophosphorus and Selenium Pyrazolone Derivatives, Their Antioxidant Activity, and Cytotoxicity against MCF7 and HepG2. RUSS J GEN CHEM+ 2020; 90:2356-2364. [DOI: 10.1134/s1070363220120208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2025]
|
22
|
Tafesse TB, Bule MH, Khoobi M, Faramarzi MA, Abdollahi M, Amini M. Coumarin-based Scaffold as α-glucosidase Inhibitory Activity: Implication for the Development of Potent Antidiabetic Agents. Mini Rev Med Chem 2020; 20:134-151. [PMID: 31553294 DOI: 10.2174/1389557519666190925162536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/15/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Delaying the absorption of glucose through α-glucosidase enzyme inhibition is one of the therapeutic approaches in the management of Type 2 diabetes, which can reduce the incidence of postprandial hyperglycemia. The existence of chronic postprandial hyperglycemia impaired the endogenous antioxidant defense by inducing oxidative stress-induced pancreatic β-cell destruction through uncontrolled generation of free radicals such as ROS, which in turn, leads to various macrovascular and microvascular complications. The currently available α -glucosidase inhibitors, for instance, acarbose, have some side effects such as hypoglycemia at higher doses, liver problems, meteorism, diarrhea, and lactic acidosis. Therefore, there is an urgent need to discover and develop potential α-glucosidase inhibitors. OBJECTIVE Based on suchmotifs, researchers are intrigued to search for the best scaffold that displays various biological activities. Among them, coumarin scaffold has attracted great attention. The compound and its derivatives can be isolated from various natural products and/or synthesized for the development of novel α-glucosidase inhibitors. RESULTS This study focused on coumarin and its derivatives as well as on their application as potent antidiabetic agents and has also concentrated on the structure-activity relationship. CONCLUSION This review describes the applications of coumarin-containing derivatives as α - glucosidase inhibitors based on published reports which will be useful for innovative approaches in the search for novel coumarin-based antidiabetic drugs with less toxicity and more potency.
Collapse
Affiliation(s)
- Tadesse Bekele Tafesse
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences-International Campus (IC-TUMS), Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, College of Health & Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Mohammed Hussen Bule
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences-International Campus (IC-TUMS), Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center and The Institute of Pharmaceutical Sciences (TIPS), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sallam HA, Elgubbi AS, El-Helw EAE. Synthesis and antioxidant screening of new 2-cyano-3-(1,3-diphenyl-1 H-pyrazol-4-yl)acryloyl amide derivatives and some pyrazole-based heterocycles. SYNTHETIC COMMUN 2020; 50:2066-2077. [DOI: 10.1080/00397911.2020.1765258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hanan A. Sallam
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amna S. Elgubbi
- Chemistry Department, Faculty of Science, Misurata University, Misurata, Libya
| | - Eman A. E. El-Helw
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
El‐Helw EAE, El‐Badawy AA. Synthesis of chromenone, pyrimidinone, thiazoline, and quinolone derivatives as prospective antitumor agents. J Heterocycl Chem 2020; 57:2354-2364. [DOI: 10.1002/jhet.3948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 01/15/2023]
Abstract
AbstractHydrazide‐hydrazone namely, 2‐cyano‐N′‐((1‐phenyl‐3‐[thiophen‐2‐yl]‐1H‐pyrazol‐4‐yl)methylene)acetohydrazide (3) underwent a series of reactions with some chemical reagents to construct new biologically active N‐heterocycles, for example, chromenone, benzochromenone, thiazoline, and quinolone derivatives. Treating the nitrile derivative 3 with 2,4‐dichlorobenzaldehyde and pyrazole aldehyde 1 afforded the corresponding condensed products. Some of the synthesized compounds were screened for their in vitro antitumor activities against two different human tumor cell lines including hepatocellular liver carcinoma (HepG2) and breast adenocarcinoma (MCF7) activities. Compound 3 was the most potent against the two tumors.
Collapse
Affiliation(s)
- Eman A. E. El‐Helw
- Faculty of Science, Chemistry Department Ain Shams University Cairo Egypt
| | - Azza A. El‐Badawy
- Faculty of Science, Chemistry Department Ain Shams University Cairo Egypt
| |
Collapse
|
25
|
Zinad DS, Mahal A, Shareef OA. Antifungal activity and theoretical study of synthesized pyrazole-imidazole hybrids. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/770/1/012053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv 2020; 10:14170-14197. [PMID: 35498463 PMCID: PMC9051880 DOI: 10.1039/d0ra01378a] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
Nitrogen containing heterocycles are of immense research interest because they are often found as naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Maged Henary
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Center for Diagnostics and Therapeutics
| | - Carl Kananda
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Laura Rotolo
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Department of Drug Science and Technology and NIS – Centre for Nanostructured Interfaces and Surfaces
| | - Brian Savino
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Eric A. Owens
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Center for Diagnostics and Therapeutics
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS – Centre for Nanostructured Interfaces and Surfaces
- University of Turin
- 10125 Turin
- Italy
| |
Collapse
|
27
|
Madni M, Ahmed MN, Hafeez M, Ashfaq M, Tahir MN, Gil DM, Galmés B, Hameed S, Frontera A. Recurrent π–π stacking motifs in three new 4,5-dihydropyrazolyl–thiazole–coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj02931a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two different π–π stacking modes are described, studied and characterized in the crystal structures of 4,5-dihydropyrazolyl–thiazole–coumarin hybrids, including a partial aliphatic ring.
Collapse
Affiliation(s)
- Murtaza Madni
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- Pakistan
| | - Muhammad Hafeez
- Department of Chemistry
- The University of Azad Jammu and Kashmir
- Muzaffarabad
- Pakistan
| | | | | | - Diego M. Gil
- INBIOFAL (CONICET – UNT)
- Instituto de Química Orgánica – Cátedra de Química Orgánica I
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Bartomeu Galmés
- Department de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Antonio Frontera
- Department de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
28
|
El-Helw EAE, Sallam HA, Elgubbi AS. Antioxidant activity of some N-heterocycles derived from 2-(1-(2-oxo-2 H-chromen-3-yl)ethylidene) hydrazinecarbothioamide. SYNTHETIC COMMUN 2019; 49:2651-2661. [DOI: 10.1080/00397911.2019.1638938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Eman A. E. El-Helw
- Chemistry Department, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt
| | - Hanan A. Sallam
- Chemistry Department, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt
| | - Amna S. Elgubbi
- Chemistry Department, Faculty of Science, Misurata University, Misurata, Libya
| |
Collapse
|
29
|
Aldulmani SAA, Alaghaz AMA. Synthesis, spectroscopic characterization, quantum chemical calculations, evaluation of biological and cytotoxic activities, and molecular docking studies of 2‐hydroxy‐N′‐(4,5,6‐trimethoxy‐2,3‐dihydro‐1H‐inden‐1‐ylidene) benzohydrazide and its Cu(II), Co(II), Ni(II), and Zn(II) complexes. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sharah A. A. Aldulmani
- Department of Chemistry, Faculty of Science for GirlsKing Khalid University Abha Saudi Arabia
| | - Abdel‐Nasser M. A. Alaghaz
- Department of Chemistry, Faculty of ScienceJazan University Jazan Saudi Arabia
- Department of Chemistry, Faculty of Science (Boys)Al‐Azhar University Cairo Egypt
| |
Collapse
|
30
|
Popova SA, Shevchenko OG, Chukicheva IY, Kutchin AV. Synthesis and Biological Evaluation of Novel Coumarins with tert-Butyl and Terpene Substituents. Chem Biodivers 2019; 16:e1800317. [PMID: 30565828 DOI: 10.1002/cbdv.201800317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Coumarins with terpene and tert-butyl substituents were synthesized via Pechmann condensation reaction. New derivatives were investigated in different model system for the exhibition of antioxidant, radical scavenging and membrane-protective activities. It has been found that 4-methylcoumarin derivatives with monoterpene moieties exhibit high antioxidant activities. The most active and promising for further investigations is 5-hydroxy-6,8-diisobornyl-4-methylcoumarin, containing two isobornyl substituents on the benzopyran ring.
Collapse
Affiliation(s)
- Svetlana A Popova
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167000, Russia
| | - Irina Y Chukicheva
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| | - Aleksander V Kutchin
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| |
Collapse
|
31
|
Mangasuli SN, Hosamani KM, Managutti PB. Microwave assisted synthesis of coumarin-purine derivatives: An approach to in vitro anti-oxidant, DNA cleavage, crystal structure, DFT studies and Hirshfeld surface analysis. Heliyon 2019; 5:e01131. [PMID: 30723822 PMCID: PMC6350215 DOI: 10.1016/j.heliyon.2019.e01131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
An easy and efficient microwave-assisted protocol has been developed for the synthesis of coumarin-purine hybrids (3a-3j). The newly constructed 1,3-dimethyl-7-((substituted)-2-oxo-2H-chromen-4-yl)methyl)-1H-purine-2,6(3H,7H)-dione derivatives were evaluated for their in vitro antioxidant activity by DPPH free radical-scavenging ability assay and DNA cleavage by using calf thymus. The compound 3i, shows the most excellent DPPH scavenging activity with a –OH substitution at C7 of coumarin ring. In addition, the structure of compound 3f, has been elucidated using single crystal X-ray diffraction technique. Theoretical calculations (DFT) were carried out using Gaussian09 program package and B3LYP correlation function. Full geometry optimization were carried out using 6-311G++(d, p) basis set and the frontier orbital energy were presented. Hirshfeld surface analysis was used for the intermolecular interactions in the crystal structure. The experimental result of the compound 3f has been compared with the theoretical results and it was found that the experimental data are in a good agreement with the calculated values.
Collapse
Affiliation(s)
| | - Kallappa M. Hosamani
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580003, India
- Corresponding author.
| | - Praveen B. Managutti
- Department of Studies in Solid State and Structural Chemistry Unit, IISC, Bengaluru, 560012, India
| |
Collapse
|
32
|
Sujatha K, Deshpande RP, Kesharwani RK, Babu PP, Rao Vedula R. An efficient one-pot expeditious synthesis of 3-phenyl-1-(6-phenyl-7H-[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazin-3-yl)-1H-pyrazol-5-amines via multicomponent approach. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1537398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kodam Sujatha
- Department of Chemistry, National Institute of Technology , Warangal , India
| | - Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Rajesh Kumar Kesharwani
- Department of Advanced Science & Technology, NIET, Nims University Rajasthan , Jaipur , India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology , Warangal , India
| |
Collapse
|
33
|
Acharjee S, Maity TK, Samanta S, Mana S, Chakraborty T, Singha T, Mondal A. Antihyperglycemic activity of chalcone based novel 1-{3-[3-(substituted phenyl) prop-2-enoyl] phenyl} thioureas. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1539178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Satarupa Acharjee
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Subir Samanta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Supriya Mana
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| | - Tanushree Singha
- Department of Pharmaceutical Technology Synthetic and Natural Product Research Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Arijit Mondal
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal, India
| |
Collapse
|
34
|
Santra A, Brandao P, Jana H, Mondal G, Bera P, Jana A, Bera P. Copper(II) and cobalt(II) complexes of 5-methyl pyrazole-3-carboxylic acid: synthesis, X-ray crystallography, thermal analysis and in vitro antimicrobial activity. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1520984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ananyakumari Santra
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura, West Bengal, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal
| | - Harekrishna Jana
- Department of Microbiology, Panskura Banamali College, Panskura, West Bengal, India
| | - Gopinath Mondal
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal
| | - Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura, West Bengal, India
| | - Abhimanyu Jana
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura, West Bengal, India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura, West Bengal, India
| |
Collapse
|
35
|
Silva VLM, Elguero J, Silva AMS. Current progress on antioxidants incorporating the pyrazole core. Eur J Med Chem 2018; 156:394-429. [PMID: 30015075 DOI: 10.1016/j.ejmech.2018.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
The search of new antioxidants, as drugs candidates, is an active field of medicinal chemistry. The synthesis of compounds with antioxidant potential has increased in recent years and a high number of structurally diverse compounds have been published. This review aims to show the current state-of-the-art on the development of antioxidant compounds incorporating the pyrazole pharmacophore. It is a well-timed review driven by the increasing number of papers, on this issue, that have been published since the beginning of the 21st century (from 2000 to 2017). The aim is to look deeper into the structures already published in the literature containing the pyrazole core as the unique pharmacophore or combined with other pharmacophores and see the relationship between the presence of this five-membered nitrogen heterocycle and the behaviour of the compounds as potential antioxidant agents. An attempt was made to whenever possible establish structure-activity relationships that could help the design of new and more potent antioxidant agents containing this important pharmacophore.
Collapse
Affiliation(s)
- Vera L M Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - J Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain.
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
One-pot green synthesis and bio-assay of pyrazolylphosphonates. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3319-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Alam M, Alam MJ, Azaz S, Parveen M, Park S, Ahmad S. DFT/TD-DFT calculations, spectroscopic characterizations (FTIR, NMR, UV–vis), molecular docking and enzyme inhibition study of 7-benzoyloxycoumarin. Comput Biol Chem 2018; 73:65-78. [DOI: 10.1016/j.compbiolchem.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/01/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
38
|
Synthesis of novel substituted 3-(4-((1H-benzo[d]imidazol-2-ylthio)methyl)-1-phenyl-1H-pyrazol-3-yl)-2H-chromen-2-ones: various approaches. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3397-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
40
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
41
|
Abstract
Nitrogen-containing heterocyclic compounds and their derivatives have historically been invaluable as a source of therapeutic agents.
Collapse
Affiliation(s)
- Anam Ansari
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Abad Ali
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohd Asif
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | | |
Collapse
|