1
|
Athira E, Darsan SA, Davis S, Rajan VK. Elucidating the antioxidant potential of some flavanones as MAO-B inhibitors through DAM, in silico molecular docking and computational analysis. PLANT MOLECULAR BIOLOGY 2025; 115:50. [PMID: 40126698 DOI: 10.1007/s11103-025-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/15/2025] [Indexed: 03/26/2025]
Abstract
Seven flavanones underwent computational evaluation to determine their effectiveness in filtering UV radiation and scavenging free radicals. The investigated flavanones exhibited enhanced radical scavenging capabilities relative to the parent flavanone, with Hesperidin demonstrating the highest EA and Qmax values, consistent with its antireductant activity. The remaining flavanones displayed lower IE values, suggesting their antioxidant efficacy. Spectroscopic analysis revealed that the HOMO-LUMO and HOMO-1-LUMO transitions are the primary electronic transitions in the UV-Visible spectra of the studied flavanones. Their absorption within the UV-A and UV-B range (260-345 nm) indicates potential utility as UV filters. Theoretical calculations demonstrate that the reactivity of flavanones is concentrated in ring [B], with a reactivity order of 3' > 4' > 2' > 6 > 7 > 5. The BDE values reveal that the 3'-OH group has the lowest value, followed by the 4' position, while hydrogen bonding is responsible for the increased BDE value at position 5. The values of ΔBDE and ΔAIP, relative to phenol, provide a framework for elucidating the preferred mechanism, HAT or SET, underlying the antioxidant behavior. Molecular docking simulations identified hesperetin, 2'-Hydroxyflavanone, 4'-Hydroxyflavanone, Eriodictyol, and Naringenin as potential MAO-B inhibitors, outperforming their synthetic counterparts in this regard.
Collapse
Affiliation(s)
- E Athira
- Department of Nanoscience and Technology, University of Calicut, Malappuram, 673635, India
| | - S Akhila Darsan
- Department of Nanoscience and Technology, University of Calicut, Malappuram, 673635, India
| | - Shinta Davis
- Department of Nanoscience and Technology, University of Calicut, Malappuram, 673635, India
| | - Vijisha K Rajan
- Department of Nanoscience and Technology, University of Calicut, Malappuram, 673635, India.
| |
Collapse
|
2
|
Tang Y, Wang Y, Guo X, Xu Y, Wang Z, Wu J. Recent Advances of Coumarin-Type Compounds in Discovery of Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26057-26073. [PMID: 39557543 DOI: 10.1021/acs.jafc.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Coumarin, a naturally occurring active ingredient with various biological activities in pesticides, is commonly found in plants belonging to the Rutaceae and Apiaceae families. Thanks to its unique structural properties and natural benefits, coumarin and its derivatives exhibit a wide range of physiological activities, including insecticidal, antifungal, antibacterial, herbicidal, and antiviral properties. These compounds have attracted considerable interest in the field of pesticide development, although there is a lack of comprehensive reviews on their use in pesticides. This Review aims to provide a detailed overview of the applications of coumarin and its derivatives in pesticides, covering biological activities, structure-activity relationship analyses, and mechanisms of action. It is hoped that this Review will offer new insights into the discovery and mechanisms of these compounds in pesticide development.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiaoqiu Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ying Xu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ko CY, Meng RT, Wu CH, Nguyen TKN, Chen YE, Wu JSB, Huang WC, Shen SC. Daphnetin Protects Schwann Cells Against High-Glucose-Induced Oxidative Injury by Modulating the Nuclear Factor Erythroid 2-Related Factor 2/Glutamate-Cysteine Ligase Catalytic Subunit Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:3066. [PMID: 39519981 PMCID: PMC11548291 DOI: 10.3390/plants13213066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus, is primarily characterized by damage to Schwann cells caused by oxidative stress under hyperglycemic conditions. Recently, we demonstrated the ability of coumarin-rich Ficus formosana Maxim. to alleviate DPN in ovariectomized diabetic mice. However, the underlying mechanisms remain unclear. In this study, we established an in vitro DPN model using RSC96 Schwann cells exposed to high glucose levels. Daphnetin, a natural coumarin found abundantly in Ficus formosana Maxim., was co-incubated with Schwann cells in a high-glucose medium to investigate its protective effects against DPN. The free radical scavenging capacity of daphnetin was evaluated, along with assessments of cell viability, apoptosis, H2O2 levels, and the expression of proteins by the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutamate-cysteine ligase catalytic subunit (GCLC) pathway in RSC96 Schwann cells. The results showed that daphnetin was non-toxic within the tested concentration range of 6.25 μM to 50 μM in RSC96 Schwann cells. Moreover, daphnetin significantly improved cell viability, exhibited strong antioxidant activity, reduced H2O2 levels, and regulated the Nrf2/GCLC pathway protein expressions in RSC96 cells cultured in high-glucose medium. Additionally, daphnetin influenced apoptosis-related proteins by decreasing the expression levels of Bax and Caspase 3, while increasing the Bcl-2 expression level in high-glucose-treated RSC96 cells. These findings suggest that daphnetin may alleviate oxidative stress induced by high glucose levels through activation of the Nrf2/GCLC pathway and inhibition of Schwann cell apoptosis, underscoring its potential as a therapeutic agent for DPN.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Run-Tian Meng
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 10617, Taiwan
| | - Thi Kim Ngan Nguyen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-En Chen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
4
|
Yin J, Liu W, Wu M, Chen M, Pei X, He Y, Shen F, Zhang R, He J. Characterization of selenium-containing broccoli (Brassica oleracea L. var. italica planch) proteins and evaluation of antioxidant activity by electron spin resonance. Food Chem 2024; 456:140065. [PMID: 38878541 DOI: 10.1016/j.foodchem.2024.140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Selenoproteins found in selenium (Se)-enriched vegetables play a vital role in maintaining human health. In this study, four Se-containing broccoli proteins (Se-BP: albumin, globulin, prolamin, and glutelin) were continuous extracted by Osborne method. Three ultrafiltered fractions were subsequently obtained from the glutelin hydrolysate, composed of Se-contained broccoli peptides (Se-Bp) with different molecular weights (MW), namely, < 1 kDa, 1-3 kDa, and 3-10 kDa. Glutelin exhibited the highest protein yield (65.60 ± 1.07%), purity (78.39 ± 0.95%), nutritional value, organic Se content (88.05 ± 0.32% of total Se content), and Se speciation distribution (selenocystine, selenomethionine, methylselenocysteine, and selenoethionine). Additionally, the antioxidant activity of different MW of Se-Bp was assessed using electron spin resonance spectroscopy. The results revealed that antioxidant activity of the candidate peptide is dependent upon its Se content, amino acid composition, and MW, especially Se-Bp with MW of 1-3 kDa displayed the strongest free radical scavenging ability.
Collapse
Affiliation(s)
- Jinjing Yin
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ming Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xun Pei
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhen He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | | | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
5
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Monge-Sevilla RD, Fernández L, Espinoza-Montero PJ, Méndez-Durazno C, Cisneros-Pérez PA, Romero-Estévez D, Bolaños-Méndez D, Alvarez-Paguay J, Jadán M. Chemical composition and antioxidant properties of native Ecuadorian fruits: Rubus glabratus Kunth , Vaccinium floribundum Kunth, and Opuntia soederstromiana. Heliyon 2024; 10:e30593. [PMID: 38742063 PMCID: PMC11089365 DOI: 10.1016/j.heliyon.2024.e30593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The native berries of South America present promising marketing opportunities owing to their high antioxidant content, notably rich in anthocyanin and phenolic compounds. However, Ecuador's endemic fruits, primarily found in the wild, lack comprehensive data regarding their phytochemical composition and antioxidant capacity, underscoring the need for research in this area. Accordingly, this study evaluated the total phenolic, anthocyanin, flavonoid, resveratrol, ascorbic acid, citric acid, sugars, and antioxidant content of three native Ecuadorian fruits: mora de monte (Rubus glabratus Kunth), mortiño (Vaccinium floribundum Kunth), and tuna de monte (Opuntia soederstromiana). Determination of resveratrol, ascorbic acid, citric acid, and sugars was determined by HPLC analysis, and UPLC analysis was used to determine tentative metabolites with nutraceutical properties. Antioxidant capacity was assessed using cyclic voltammetry and the DPPH method; differential pulse voltammetry was used to evaluate antioxidant power. Analysis of results through UPLC-QTOF mass spectrometry indicated that R. glabratus Kunth and V. floribundum Kunth are important sources of various compounds with potential health-promoting functions in the body. The DPPH results showed the following antioxidant capacities for the three fruits: R. glabratus Kunth > O. soederstromiana > V. floribundum Kunth; this trend was consistent with the antioxidant capacity results determined using the electrochemical methods.
Collapse
Affiliation(s)
- Raúl D. Monge-Sevilla
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador Av. Universitaria, Quito, 170129, Ecuador
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
| | - Patricio J. Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
| | - Carlos Méndez-Durazno
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador Av. Universitaria, Quito, 170129, Ecuador
| | - Pablo A. Cisneros-Pérez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, 100650, Ecuador
| | - David Romero-Estévez
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO-Box:17 01 21 84, Quito, Ecuador
| | - Diego Bolaños-Méndez
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
| | - Jocelyne Alvarez-Paguay
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito, 170525, Ecuador
| | - Mónica Jadán
- Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui, Sangolquí, Ecuador, P.O.BOX 171-5-231B, Departamento de Ciencias de la Vida y Agricultura, 3989400 ext 2122
| |
Collapse
|
7
|
Mustafa YF. Harmful Free Radicals in Aging: A Narrative Review of Their Detrimental Effects on Health. Indian J Clin Biochem 2024; 39:154-167. [PMID: 38577147 PMCID: PMC10987461 DOI: 10.1007/s12291-023-01147-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 04/06/2024]
Abstract
The production of harmful free radicals (H-FRs), especially those with oxygen or nitrogen atoms, depends on both internal and environmental causes. The negative effects of H-FRs are greatly alleviated by antioxidant protection. The harmful impact of oxidative stress, or OS, is brought on by a disparity between the defense mechanisms of the body and the creation of H-FRs. Aging is characterized by a slow decline in tissue and organ competence. Age-mediated pathologies start as an aberrant accumulation of H-FRs, which inhibit cells' capacity to divide, repair, and operate, based on the OS theorem of aging. The natural outcome of this situation is apoptosis. These conditions may include skeletal muscle dysfunction, cancer, cardiovascular, chronic hepatitis, chronic renal, and chronic pulmonary disorders. Given the substantial role that OS plays in the progression of many of these illnesses, antioxidant-based therapy may have a favorable impact on how these diseases progress. To ascertain the true efficacy of this therapy strategy, more research is necessary. The aim of this study is to provide an overview of the literature on this challenging issue that is attracting interest.
Collapse
Affiliation(s)
- Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
8
|
He B, Ding L, Tan HZ, Liu CB, He LQ. Synthesis and antitumor activity evaluation of coumarin Mannich base derivatives. Chem Biol Drug Des 2024; 103:e14389. [PMID: 37955286 DOI: 10.1111/cbdd.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Twenty-one new coumarin Mannich base derivatives (11a-u) were synthesized, which exhibited antiproliferation activities in HepG2 (liver cancer), A549 (lung cancer), MCF-7 (breast cancer), and HT-29 (colon cancer). Most of the target compounds showed the most potent activity against HepG2 cells compared with other cancer cells, compound 11g showed the strongest antiproliferative activity (2.10 μM) against HepG2, even superior to the positive control drug 5-FU(5.49 μM). The nitric oxide (NO) release of all compounds in HepG2 cells was determined, of which compound 11g showed high levels of NO release (10.8 μM). Notably, the solubility of compound 11g increased 13-fold compared with the lead 8. The preliminary cytotoxicity studies suggest that 11g had little effect on LO2 cells(normal liver cells, >50 μM). The effect of compound 11g on the apoptosis of HepG2 cells was also studied, and the results showed that the induction effect of compound 11g on apoptosis is a concentration-dependent manner. Our results indicate that compound 11g might be a promising lead for further studies.
Collapse
Affiliation(s)
- Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Le Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Zhou Tan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cheng-Bo Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li-Qin He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Herrera-Marín P, Fernández L, Pilaquinga F. F, Debut A, Rodríguez A, Espinoza-Montero P. Green synthesis of silver nanoparticles using aqueous extract of the leaves of fine aroma cocoa Theobroma cacao linneu (Malvaceae): Optimization by electrochemical techniques. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Development of coumarin derivatives as fluoride ion sensor. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants (Basel) 2023; 12:antiox12020318. [PMID: 36829877 PMCID: PMC9952757 DOI: 10.3390/antiox12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
This study evaluated the antioxidant properties and chemical composition of the seeds, pulp and peels of Ungurahua (Oenocarpus bataua) and Pasu (Gustavia macarenensis)-fruits, native to the Ecuadorian Amazon. The antioxidant capacity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cyclic voltammetry (antioxidant index 50 (AI50)) assays; differential pulse voltammetry was used to evaluate antioxidant power using the electrochemical index. The total phenolic content, as well as the yellow flavonoid and anthocyanin content, were quantified via spectrophotometry. In addition, the trans-resveratrol and ascorbic acid content were evaluated through high performance liquid chromatography (HPLC). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify secondary metabolites with possible therapeutic properties. Results showed that the Pasu peel and seed extracts had the highest antioxidant capacity, followed by the Ungurahua peel; these results were consistent for both spectroscopic and electrochemical assays. HPLC and UPLC-MS analysis suggest that Oenocarpus bataua and Gustavia macarenensis are important sources of beneficial bioactive compounds.
Collapse
|
12
|
Erden Tayhan S, Bilgin S, Yıldırım A, Koç E. Biological Screening of Polyphenol Derivatives for Anti-Proliferative, Anti-Apoptotic and Anti-Migrative Activities in Human Breast Cancer Cell Lines MCF-7. Chem Biodivers 2023; 20:e202200872. [PMID: 36594615 DOI: 10.1002/cbdv.202200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is known as the most common type of invasive cancer in women. It is well-known that phenolic compounds play an important role in the treatment of this disease. This study hypothesized that isoeugenol based two polyphenolic compounds 1 and 2 exerts its anti-proliferative effects through the induction of apoptosis and cell migration arrest on human breast cancer cell. Based on this hypothesis, the study aimed to investigate the anti-proliferative, anti-migrative effects of these compounds and their possible basic molecular mechanisms of action in MCF-7 cell lines. As a result, isoeugenol-based compounds 1 and 2 showed anti-proliferative, anti-apoptotic and anti-migrative effects in MCF-7 breast cancer cells. This result was supported by molecular analyzes and it was determined that there were changes in the expression of some gene regions involved in apoptosis and migration. Additionally, it was a remarkable result that cell viability inhibition did not occur in healthy breast tissue cells and no cytotoxic effect was observed. The existence of such a differentiation between cancer cells and healthy cells significantly increases the potential of these compounds to be used as chemotherapeutic drug active ingredients without side effects.
Collapse
Affiliation(s)
- Seçil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Sema Bilgin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Aslı Yıldırım
- Department of Bioengineering, Institute of Graduate Studies, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Esra Koç
- Department of Chemistry, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| |
Collapse
|
13
|
Pozo-Martínez J, Vázquez-Rodríguez S, Olea-Azar C, Moncada-Basualto M. Evaluation of ORAC methodologies in determination of antioxidant capacity of binary combinations of quercetin and 3-(3,4,5-trihydroxybenzoyl) coumarin derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
14
|
Babaei E, Küçükkılınç TT, Jalili-Baleh L, Nadri H, Öz E, Forootanfar H, Hosseinzadeh E, Akbari T, Ardestani MS, Firoozpour L, Foroumadi A, Sharifzadeh M, Mirjalili BBF, Khoobi M. Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease. Front Chem 2022; 10:895483. [PMID: 35844650 PMCID: PMC9280334 DOI: 10.3389/fchem.2022.895483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2–144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9–123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce β-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.
Collapse
Affiliation(s)
- Elaheh Babaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | - Leili Jalili-Baleh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esin Öz
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Hosseinzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| |
Collapse
|
15
|
Ghazouani L, Khdhiri E, Elmufti A, Zarei A, Feriani A, Baaziz I, Hajji R, Abid M, Ammar H, Abid S, Allouche N, Mnafgui K, Ramazani A, Tlili N. A Novel Synthetized sulfonylhydrazone coumarin (E)-4-methyl-N'-(1-(3-oxo-3H-benzo[f]chromen-2- yl)ethylidene)benzenesulfonohydrazide Protect against Isoproterenol Induced Myocardial Infarction in Rats by attenuating Oxidative damage, Biological Changes, and Electrocardiogram. Clin Exp Pharmacol Physiol 2022; 49:1010-1026. [PMID: 35717592 DOI: 10.1111/1440-1681.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Coumarins and their derivatives are becoming a potential source for new drug discovery due to their vast array of biological activities. The present study was designed to investigate the cardioprotective effects of a newly synthesized coumarin, symbolized as 5,6-PhSHC, against cardiac remodeling process in isoproterenol (ISO) induced myocardial infarction (MI) in male Wistar rats by evaluating hematological, biochemical, and cardiac biomarkers. Rats were pre/co-treated with 5,6-PhSHC or clopidogrel (150 μg/kg body weight) daily for a period of 7 days and then MI was induced by injecting ISO (85 mg/kg body weight), at an interval of 24 hours for 2 consecutive days, on 6th and 7th days. The in vivo exploration indicated that the injection of 5,6-PhSHC improved the electrocardiographic (ECG) pattern and prevented severe heart damages by reducing leakage of the cardiac injury markers, such as troponin-T (cTn-T), lactate dehydrogenase (LDH), and creatine kinase-MB. The cellular architecture of cardiac sections, altered in the myocardium of infracted rats, was reversed by 5,6-PhSHC treatment. Results showed that injection of 5,6-PhSHC elicited significant cardioprotective effects by prevention of myocardium cell necrosis and inflammatory cells infiltration, along with marked decrease in plasma levels of fibrinogen. In addition, the total cholesterol, triglyceride, LDL-c, and HDL profiles underwent remarkable beneficial changes. It was also interesting to note that 5,6-PhSHC enhanced the antioxidative defense mechanisms by increasing myocardial glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities, together with reducing the levels of thiobarbituric-acid-reactive substances (TBARS), when compared with ISO-induced rats. Taken together, these findings suggested a beneficial role for 5,6-PhSHC against ISO-induced MI in rats. Furthermore, in silico analysis showed that 5,6-PhSHC pocess high computational affinities (E-value > - 9.0 kcal/mol) against cyclooxygenase-2 (PDB-ID: 1CX2), vitamin K epoxide reductase (PDB-ID: 3KP9), glycoprotein IIb/IIIa (PDB-ID: 2VDM) and catalase (PDB-ID: 1DGF). Therefore, the present study provided promising data that the newly synthesized coumarin can be useful in the design and synthesis of novel drug against Myocardial infarction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lakhdar Ghazouani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Afoua Elmufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Intissar Baaziz
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Internal Medicine Department, Sidi Bouzid Hospital, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax, Tunisia
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Nizar Tlili
- Higher Institute of Sciences and Technology of Environment of Borj Cedria, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
16
|
Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
17
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
18
|
Giordano A, Morales-Tapia P, Moncada-Basualto M, Pozo-Martínez J, Olea-Azar C, Nesic A, Cabrera-Barjas G. Polyphenolic Composition and Antioxidant Activity (ORAC, EPR and Cellular) of Different Extracts of Argylia radiata Vitroplants and Natural Roots. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030610. [PMID: 35163871 PMCID: PMC8838377 DOI: 10.3390/molecules27030610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Plant biochemistry studies have increased in recent years due to their potential to improve human health. Argylia radiata is an extremophile plant with an interesting polyphenolic profile. However, its biomass is scarce and occasionally available. Argylia in vitro biomass was obtained from tissue culture and compared with in vivo roots regarding its polyphenolic and flavonoid content. Different solvents were used to prepare extracts from the in vitro tissue of callus and aerial plant organs and in vivo roots. UPLC-MS/MS was used to assess the chemical composition of each extract. ORAC-FL and scavenging of free radicals (DPPH and OH) methods were used to determine the antioxidant capacity of extracts. Furthermore, the biological activity of the extracts was established using the cellular antioxidant activity method. The vitroplants were a good source of polyphenols (25–68 mg GAE/100 g tissue FW), and methanol was the most efficient solvent. Eight polyphenolic compounds were identified, and their antioxidant properties were investigated by different chemical methods with EPR demonstrating its specific scavenging activity against free radicals. All extracts showed cellular dose-dependent antioxidant activity. The methanolic extract of vitroplants showed the highest cellular antioxidant activity (44.6% and 51%) at 1 and 10 µg/mL of extract, respectively. Vitroplants of A. radiata are proposed as a biotechnological product as a source of antioxidant compounds with multiple applications.
Collapse
Affiliation(s)
- Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 8330077, Chile;
| | - Pablo Morales-Tapia
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Agua Santa 7055, Viña del Mar 2531015, Chile;
| | - Mauricio Moncada-Basualto
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia 7820436, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
- Instituto de Ciencias Biomédicas, Facultad de Medicina, University of Chile, Santiago 8380453, Chile
| | - Josué Pozo-Martínez
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia 7820436, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
- Instituto de Ciencias Biomédicas, Facultad de Medicina, University of Chile, Santiago 8380453, Chile
| | - Claudio Olea-Azar
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia 7820436, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avenida Cordillera 2634, Parque Industrial Coronel, Concepción 3349001, Chile;
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avenida Cordillera 2634, Parque Industrial Coronel, Concepción 3349001, Chile;
- Centro Nacional de Excelencia Para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-982335403
| |
Collapse
|
19
|
Abdel-Aziem A, Abdelhamid AO. Synthesis of Coumarin Analogues Clubbed 1,3,4-Thiadiazine or Thiazole and Their Anticancer Activity. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anhar Abdel-Aziem
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | |
Collapse
|
20
|
Pilaquinga F, Morey J, Fernandez L, Espinoza-Montero P, Moncada-Basualto M, Pozo-Martinez J, Olea-Azar C, Bosch R, Meneses L, Debut A, Piña MDLN. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. Int J Nanomedicine 2021; 16:5879-5894. [PMID: 34471354 PMCID: PMC8405165 DOI: 10.2147/ijn.s302935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 μA/V for the extract and 324 μA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Lenys Fernandez
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | - Josue Pozo-Martinez
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB), and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Lorena Meneses
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | | |
Collapse
|
21
|
Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM, Al-Sehemi AG, Pannipara M, Bhaskar V, Nair AS, Sudevan ST, Kumar S, Mathew B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem Biol Drug Des 2021; 98:655-673. [PMID: 34233082 DOI: 10.1111/cbdd.13919] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
In the last few years, Monoamine oxidase (MAO) have emerged as a target for the treatment of many neurodegenerative diseases including anxiety, depression, Alzheimer's, and Parkinson's diseases. The MAO inhibitors especially selective and reversible inhibitors of either of the isoenzymes (MAO-A & MAO-B) have been given more attention as both the form have different therapeutic properties and hence can be used for different neurological disorders. The lack of selective and reversible inhibitors available for both the enzymes and severity of the neuronal disorder in society have opened a new door to the researchers to carry out large and dedicated researches in this field. Among the several classes of the molecule as the inhibitors, coumarins hold a rank as a potent scaffold with its ease of synthesis, high therapeutic potential, and reversibility in inhibiting MAOs. The current review is an update of the research in the field that covers the works during the last six years (2014-2020) with a major focus on the SAR of the coumarin derivatives including synthetic, natural, and hybrids of coumarins with FDA-approved drugs.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Krishnendu Prayaga Rajappan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
22
|
Konidala SK, Kotra V, Danduga RCSR, Kola PK, Bhandare RR, Shaik AB. Design, multistep synthesis and in-vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Synthesis, characterization, and biomedical assessment of novel bisimidazole–coumarin conjugates. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Abdel-Aziem A, Baaiu BS, El-Sawy ER. Reactions and Antibacterial Activity of 6-Bromo-3-(2-Bromoacetyl)-2 H-Chromen-2-One. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1916543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anhar Abdel-Aziem
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma Saad Baaiu
- Department of Chemistry, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Eslam R. El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
25
|
Salgado F, Moncada-Basualto M, Pozo-Martinez J, Liempi A, Kemmerling U, Maya JD, Jaque P, Borges F, Uriarte E, Matos MJ, Olea-Azar C. Chemical and biological analysis of 4-acyloxy-3-nitrocoumarins as trypanocidal agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
26
|
Khdhiri E, Mnafgui K, Ncir M, Feriani A, Ghazouani L, Hajji R, Jallouli D, Abid M, Jamoussi K, Allouche N, Ammar H, Abid S. Cardiopreventive capacity of a novel (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide against isoproterenol-induced myocardial infarction by moderating biochemical, oxidative stress, and histological parameters. J Biochem Mol Toxicol 2021; 35:e22747. [PMID: 33624406 DOI: 10.1002/jbt.22747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
This study is carried out to assess the cardiopreventive effect of (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide or SHC, a novel synthesized coumarin, against myocardial infarction induced by isoproterenol (ISO). The SHC compound was identified and characterized by spectral methods (infrared, 1 H NMR [nuclear magnetic resonance], 13 C NMR, Nuclear Overhauser Effect Spectroscopy, and high-resolution mass spectroscopy). Male Wistar rats were divided into four groups: Control, ISO (rats were injected subcutaneously by 85 mg/kg body weight [BW] of isoproterenol at Days 6 and 7 of the experience), ISO + SHC (150 µg/kg BW, orally for 7 days) and ISO + acenocoumarol (150 µg/kg BW, orally for 7 days). Results showed that ISO induced a remarkable alteration of electrocardiogram (ECG) pattern and increases of plasma cardiac troponin T, creatine kinase-MB, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, lactate dehydrogenase, aspartate transaminase, and malondialdehyde. In addition, ISO reduced the high-density lipoprotein-cholesterol content and the activities of superoxide dismutase and glutathione peroxidase, with the induction of myocardial necrosis. However, SHC administration revealed a significant decrease in cardiac dysfunction markers, restored normal ECG pattern, as well as improving lipids parameters. Moreover, SHC treatment remarkably alleviated the cardiac oxidative stress and the myocardial remodeling process. Overall, the SHC offers good protection from acute myocardial infarction through the antioxidant capacity.
Collapse
Affiliation(s)
- Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Ncir
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Sidi Bouzid 9100, Tunisie, Université de Sousse, Faculté de Médecine de Sousse, Sousse 4200, Tunisie
| | - Dana Jallouli
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| | - Kamel Jamoussi
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| |
Collapse
|
27
|
Argirova MA, Georgieva MK, Hristova-Avakumova NG, Vuchev DI, Popova-Daskalova GV, Anichina KK, Yancheva DY. New 1 H-benzimidazole-2-yl hydrazones with combined antiparasitic and antioxidant activity. RSC Adv 2021; 11:39848-39868. [PMID: 35494105 PMCID: PMC9044521 DOI: 10.1039/d1ra07419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
Parasitic infections, caused mainly by the species Trichinella spiralis (T. spiralis), are widespread around the world and lead to morbidity and mortality in the population. Meanwhile, some studies have showed that these parasites induce oxidative stress in the infected host. With the aim of developing a class of compounds combining anthelmintic with antioxidant properties, a series of new benzimidazolyl-2-hydrazones 5a-l, bearing hydroxyl- and methoxy-groups, were synthesized. The anthelmintic activity on encapsulated T. spiralis was studied in vitro thus indicating that all hydrazones were more active than the clinically used anthelmintic drugs albendazole and ivermectin. 5b and 5d killed the total parasitic larvae (100% effectiveness) after 24 hours incubation period at 37 °C in both concentrations (50 and 100 μg ml−1). The antioxidant activity of the target compounds was elucidated in vitro against stable free radicals DPPH and ABTS as well as iron induced oxidative damage in model systems containing biologically relevant molecules lecithin and deoxyribose. The two 2,3- and 3,4-dihydroxy hydrazones 5b and 5d were the most effective radical scavengers in all studied systems. DFT calculations were applied to calculate the reaction enthalpies in polar and nonpolar medium and estimate the preferred mechanism of antioxidant activity. The relative radical scavenging ability of compounds 5a-l showed a good correlation to the experimentally observed trends. It was found that the studied compounds are capable to react with various free radicals – ˙OCH3, ˙OOH and ˙OOCH3, through several possible reaction pathways – HAT in nonpolar medium, SPLET in polar medium and RAF in both media. The design of new drug candidates that combine anthelmintic and antioxidant actions in one molecule offers a beneficial approach in the treatment of the tissue damages, immune system dysfunction and oxidative stress caused by trichinellosis.![]()
Collapse
Affiliation(s)
- Maria A. Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia, Bulgaria
| | - Miglena K. Georgieva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nadya G. Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
| | - Dimitar I. Vuchev
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, Plovdiv, Bulgaria
| | - Galya V. Popova-Daskalova
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University, Plovdiv, Bulgaria
| | - Kameliya K. Anichina
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Denitsa Y. Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
28
|
Li WB, Qiao XP, Wang ZX, Wang S, Chen SW. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin. Bioorg Chem 2020; 105:104427. [DOI: 10.1016/j.bioorg.2020.104427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
|
29
|
de Figueiredo Peloso E, Merli RJ, Espuri PF, Nunes JB, Colombo FA, Sierra EJT, de Paulo DC, Dos Santos MH, Carvalho DT, Marques MJ. Investigation of 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one as a promising coumarin compound for the development of a new and orally effective antileishmanial agent. Mol Biol Rep 2020; 47:8465-8474. [PMID: 33021720 DOI: 10.1007/s11033-020-05887-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Changes in host immunity and parasite resistance to drugs are among the factors that contribute to decreased efficacy of antiparasitic drugs such as the antimonial compounds pentamidine, amphotericin (AMP B) and miltefosine. Bioactive natural products could be alternatives for the development of new drugs to treat neglected human diseases such as leishmaniasis. Natural coumarins and synthetic analogues have shown leishmanicidal activity, mainly in vitro. This study investigated the in vitro and in vivo leishmanicidal activity of synthetic coumarin compounds (C1-C5) in parasites Leishmania (L.) amazonensis and L. (L.) infantum chagasi. The cytotoxicity of these compounds in mammalian cells and their influence on production of reactive oxygen species was also investigated. In vitro assays showed that 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-chromen-2-one (C4) was as active as AMP B mainly in the amastigote form (p < 0.05); C4 presented a selectivity index (65.43) four times higher than C2 (15.4) in L. amazonensis and six times higher (33.94) than C1 (5.46) in L. infantum chagasi. Additionally, coumarin C4 reduced the H2O2 concentration 32.5% more than the control group in L. amazonensis promastigotes during the lag phase of proliferation. No interference of C4 was observed on the mitochondrial membrane potential of the parasites. In vivo, coumarin C4 in corn oil (oral route) led to a reduction in the number of amastigotes from L. infantum chagasi to 1.31 × 106 and 4.09 × 104 in the spleen and liver, respectively (p < 0.05). Thus, C4 represents a candidate for further studies aiming at new treatments of leishmaniasis.
Collapse
Affiliation(s)
- Eduardo de Figueiredo Peloso
- Department of Biochemistry, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva St, Alfenas, MG, CEP 37130-001, Brazil.
| | - Rafaella Junqueira Merli
- Department of Biochemistry, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva St, Alfenas, MG, CEP 37130-001, Brazil
| | - Patrícia Ferreira Espuri
- Laboratory of Parasitology, Department of Pathology and Parasitology, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva St, Alfenas, MG, CEP 37130-001, Brazil
| | - Juliana Barbosa Nunes
- Laboratory of Pathology of Infectious Diseases, Department of Pathology, Medical School, São Paulo University, Sao Paulo, SP, CEP 01246-903, Brazil
| | - Fábio Antônio Colombo
- Laboratory of Clinical Parasitology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Elkin José Torres Sierra
- Laboratory of Research in Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Daniela Carvalho de Paulo
- Laboratory of Research in Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | | - Diogo Teixeira Carvalho
- Laboratory of Research in Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Marcos José Marques
- Laboratory of Parasitology, Department of Pathology and Parasitology, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva St, Alfenas, MG, CEP 37130-001, Brazil.
| |
Collapse
|
30
|
Abdel-Aziem A, Baaiu BS, Elbazzar AW, Elabbar F. A facile synthesis of some novel thiazoles, arylazothiazoles, and pyrazole linked to thiazolyl coumarin as antibacterial agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1782431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anhar Abdel-Aziem
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma Saad Baaiu
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Awad Wanis Elbazzar
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Fakhri Elabbar
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| |
Collapse
|
31
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
32
|
Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, Cindrić I, Molnar M. Coumarins in Food and Methods of Their Determination. Foods 2020; 9:E645. [PMID: 32443406 PMCID: PMC7278589 DOI: 10.3390/foods9050645] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/12/2023] Open
Abstract
Coumarin is a natural product with aromatic and fragrant characteristics, widespread in the entire plant kingdom. It is found in different plant sources such as vegetables, spices, fruits, and medicinal plants including all parts of the plants-fruits, roots, stems and leaves. Coumarin is found in high concentrations in certain types of cinnamon, which is one of the most frequent sources for human exposure to this substance. However, human exposure to coumarin has not been strictly determined, since there are no systematic measurements of consumption of cinnamon-containing foods. The addition of pure coumarin to foods is not allowed, since large amounts of coumarin can be hepatotoxic. However, according to the new European aroma law, coumarin may be present in foods only naturally or as a flavoring obtained from natural raw materials (as is the case with cinnamon). In this paper, the overview of the current European regulations on coumarin levels in food is presented, along with the most common coumarin food sources, with a special emphasis on cinnamon-containing food. Human exposure to coumarins in food is also reviewed, as well as the methods for determination and separation of coumarin and its derivatives in food.
Collapse
Affiliation(s)
- Mirjana Lončar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Jakovljević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Pavlić
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Vlatka Buzjak Služek
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Ines Cindrić
- Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia;
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| |
Collapse
|
33
|
Khdhiri E, Mnafgui K, Ghazouani L, Feriani A, Hajji R, Bouzanna W, Allouche N, Bazureau JP, Ammar H, Abid S. (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide protecting rat heart tissues from isoproterenol toxicity: Evidence from in vitro and in vivo tests. Eur J Pharmacol 2020; 881:173137. [PMID: 32380016 DOI: 10.1016/j.ejphar.2020.173137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
The current study was aimed to assess the protective effect of a new molecule (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide, denoted 1c, against cardiac remodeling process in isoproterenol (Isop) induced myocardial infarction (MI) in rats. Male Wistar rats were randomly divided into four groups, control, Isop (85 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI and pretreated animals with acenocoumarol (Ace) (150 μg/kg bw) and 1c (150 μg/kg bw) by oral administration during 7 days and injected with isoproterenol (Isop + Ace) and (Isop + 1c) groups. Results in vitro showed that 1c is endowed with potent inhibition of angiotensin-converting enzyme (ACE) with an IC50 39.12 μg/ml. The in vivo exploration evidenced alteration in the ECG pattern, notable cardiac hypertrophy and increase in plasma level of fibrinogen, troponin-T, CK-MB and LDH, AST and ALT by 171%, 300%, 50%, 64% and 75% respectively with histological myocardium necrosis and cells inflammatory infiltration. However, pre-treatment with 1c improved the ECG pattern reduced significantly the cardiac dysfunction markers and ameliorated the thrombolytic process by decreasing fibrinogen level as compared to untreated infracted rats. Overall, (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide 1c could be used as anticoagulant agent to prevent thrombosis in acute myocardial infarction.
Collapse
Affiliation(s)
- Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia
| | - Kais Mnafgui
- Laboratoire de Physiologie Animale, Faculté des Sciences de Sfax, Université de Sfax, P.O. Box 95, Sfax, 3052, Tunisia
| | - Lakhdar Ghazouani
- Unité de Recherche en Biochimie Macromoléculaire et de Génétique, Faculté des Sciences de Gafsa, 2112, Gafsa, Tunisia
| | - Anouar Feriani
- Unité de Recherche en Biochimie Macromoléculaire et de Génétique, Faculté des Sciences de Gafsa, 2112, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Walid Bouzanna
- École d'Enseignement Hospitalier d'Habib Thamer, 8 Ali Ben Ayed St., Montefleury, 1089, Tunis, Tunisia
| | - Noureddine Allouche
- Laboratoire de Chimie des Substances Naturelles (LR17/ES08), Faculté des Sciences de Sfax, Université de Sfax, Route Soukra, BP1171, 3000, Sfax, Tunisia
| | - Jean-Pierre Bazureau
- Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Université de Rennes 1, Bât. 10A, Room 207, Campus de Beaulieu, CS 74205, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia
| | - Souhir Abid
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia; Département de Chimie, Collège des Sciences et des Arts, Université de Jouf, Al Qurayyat, Al Jawf, Saudi Arabia
| |
Collapse
|
34
|
Shi L, Liu Y, Wang C, Yuan X, Liu X, Wu L, Pan Z, Yu Q, Xu C, Yang G. Synthesis of 1-(β-coumarinyl)-1-(β-indolyl)trifluoroethanols through regioselective Friedel-Crafts alkylation of indoles with β-(trifluoroacetyl)coumarins catalyzed by Sc(OTf) 3. RSC Adv 2020; 10:13929-13935. [PMID: 35498470 PMCID: PMC9051918 DOI: 10.1039/d0ra01237h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
A highly efficient Friedel-Crafts alkylation of indole derivatives with β-(trifluoroacetyl)coumarins using Sc(OTf)3 as a catalyst has been developed, which gives regioselective 1,2-adducts to afford 1-(β-coumarinyl)-1-(β-indolyl)trifluoroethanols. A series of tertiary trifluoroethanols containing different indole and coumarin groups were synthesized in moderate to excellent yields (up to 95%) in the presence of 5 mol% catalyst in a short time (only 2 minutes at least). A mechanism of the reaction, in which the trace amount of water plays the role of proton transfer in catalyzing circulation was proposed and confirmed.
Collapse
Affiliation(s)
- Lijun Shi
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Ying Liu
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Caixia Wang
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Xinxin Yuan
- College of Resource and Environment, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Xiaobiao Liu
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Lulu Wu
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Zhenliang Pan
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Qicheng Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Cuilian Xu
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| | - Guoyu Yang
- School of Science, Henan Agricultural University Zhengzhou 450002 P. R. China
| |
Collapse
|
35
|
(E)-N'-(1-(7-Hydroxy-2-Oxo-2H-Chromen-3-Yl) Ethylidene) Benzohydrazide, a Novel Synthesized Coumarin, Ameliorates Isoproterenol-Induced Myocardial Infarction in Rats through Attenuating Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2432918. [PMID: 32215169 PMCID: PMC7079259 DOI: 10.1155/2020/2432918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The present study was directed to investigate the effect of precotreatment with (E)-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide (7-hyd.HC), a novel potent synthesized coumarin, on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. The hydrazone compound was characterized by IR, 1D, and 2D NMR analyses. Experimental induction of MI in rats was established by ISO (85 mg/kg/day, s.c) for two consecutive days (6th and 7th days). 7-hyd.HC or sintrom was given for 7 days prior and simultaneous to ISO injection. 7-hyd.HC offered a cardiopreventive effect by preventing heart injury marker leakage (LDH, ALT, AST, CK-MB, and cTn-I) from cardiomyocytes and normalizing cardiac function and ECG pattern, as well as improving lipid profile (TC, TG, LDL-C, and HDL-C), which were altered by ISO administration. Moreover, 7-hyd.HC precotreatment significantly mitigated the oxidative stress biomarkers, as evidenced by the decrease of lipid peroxidation and the increased level of the myocardial GSH level together with the SOD, GSH-Px, and catalase activities. 7-hyd.HC inhibited the cardiac apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase-3 genes. In addition, 7-hyd.HC reduced the elevated fibrinogen rate and better prevented the myocardial necrosis and improved the interstitial edema and neutrophil infiltration than sintrom. Overall, 7-hyd.HC ameliorated the severity of ISO-induced myocardial infarction through improving the oxidative status, attenuating apoptosis, and reducing fibrinogen production. The 7-hyd.HC actions could be mediated by its antioxidant, antiapoptotic, and anti-inflammatory capacities.
Collapse
|
36
|
Pilaquinga F, Amaguaña D, Morey J, Moncada-Basualto M, Pozo-Martínez J, Olea-Azar C, Fernández L, Espinoza-Montero P, Jara-Negrete E, Meneses L, López F, Debut A, Piña N. Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Mimosa albida (Mimosoideae): Characterization and Antioxidant Activity. MATERIALS 2020; 13:ma13030503. [PMID: 31973124 PMCID: PMC7040681 DOI: 10.3390/ma13030503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
The search for sensitive and rapid analytical techniques for the determination of natural antioxidants is an area in constant growth due, among other aspects, to the complexity of plant matrices. In this study, silver nanoparticles prepared with the aqueous extract of Mimosa albida leaves were used to assess their polyphenolic content and antioxidant capacity. Silver nanoparticles were characterized by different techniques. As a result, nanoparticles of 6.5 ± 3.1 nm were obtained. The total phenolic content in the extract was 1320.4 ± 17.6 mg of gallic acid equivalents GAE. 100 g-1 and in the nanoparticles 257.3 ± 5.1 mg GAE. 100 g-1. From the phenolic profile analyzed by ultra high-performance liquid chromatography (UPLC) with a diode-array detector (DAD), the presence of apigenin and luteolin in the plant extract is postulated. The antioxidant capacity measured by oxygen radical absorbance capacity ORAC-fluorescein assay was 86917 ± 6287 and 7563 ± 967 µmol ET g-1 in the extract and nanoparticles respectively. Electrochemical analysis by cyclic voltammetry (CV) confirmed the effective reduction capacity of the Mimosa albida leaves extract to reduce Ag ions to AgNPs and differential pulse voltammetry (DPV) suggested the presence of two main reducing agents in the extract. From this study, it was concluded that the aqueous extract of Mimosa albida contains reducing agents capable of synthesizing silver nanoparticles, which can be used in the phytochemical industry.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain;
- Correspondence: (F.P.); (N.P.)
| | - Dennis Amaguaña
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain;
| | - Mauricio Moncada-Basualto
- Department of Inorganic and Analytical Chemistry, University of Chile, Sergio Livingstone 1007, Independencia, Santiago 233, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
| | - Josué Pozo-Martínez
- Department of Inorganic and Analytical Chemistry, University of Chile, Sergio Livingstone 1007, Independencia, Santiago 233, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, University of Chile, Sergio Livingstone 1007, Independencia, Santiago 233, Chile; (M.M.-B.); (J.P.-M.); (C.O.-A.)
| | - Lenys Fernández
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
- Departamento de Química, Universidad Simón Bolívar, Apartado, Caracas 89000, Venezuela
| | - Patricio Espinoza-Montero
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
| | - Eliza Jara-Negrete
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
| | - Lorena Meneses
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076, Apartado 17-01-2184, Ecuador; (D.A.); (L.F.); (P.E.-M.); (E.J.-N.); (L.M.)
| | - Fernanda López
- School of Agricultural & Environmental Sciences, Pontificia Universidad Católica del Ecuador Sede Ibarra, Jorge Guzmán Rueda Ave., Ibarra 100150, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 170501, Ecuador;
| | - Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain;
- Correspondence: (F.P.); (N.P.)
| |
Collapse
|
37
|
Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules 2020; 10:biom10010151. [PMID: 31963362 PMCID: PMC7022947 DOI: 10.3390/biom10010151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
The study of coumarin dates back to 1820 when coumarin was first extracted from tonka bean by Vogel. Compounds containing coumarin backbone are a very important group of compounds due to their usage in pharmacy and medicine. Properties and biological activities of coumarin derivatives have a significant role in the development of new drugs. Therefore, many different methods and techniques are developed in order to synthesize coumarin derivatives. Coumarin derivatives could be obtained from different starting materials with various methods but with big differences in yield. This review summarized various methods, techniques and reaction conditions for synthesis of coumarins from different compounds such as aldehydes, phenols, ketones and carboxylic acids.
Collapse
|
38
|
Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V. Synthetic Methods Applied in the Preparation of Coumarin-based Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121150047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific
interest due to their important biological and pharmaceutical properties such as antitumor,
antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors
related to neurodegenerative diseases. Due to their structural variability, this compound
class has been attracting considerable interest in the natural products and synthetic organic
chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods,
including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel
condensations, and Claisen rearrangement, among others. In the present review we report
the different synthetic methods used in the preparation of coumarin derivatives exploited
in the last ten years (from 2008 to 2018), regarding the research demand for new structural
scaffolds.
Collapse
Affiliation(s)
- Carla S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Cristina S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | | | - Álvaro Cunha Neto
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| |
Collapse
|
39
|
Nobre PC, Vargas HA, Jacoby CG, Schneider PH, Casaril AM, Savegnago L, Schumacher RF, Lenardão EJ, Ávila DS, Rodrigues Junior LB, Perin G. Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: In vitro and in vivo antioxidant activity. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
40
|
Pal T, Bhimaneni S, Sharma A, Flora SJS. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine–triazoles as anti-Alzheimer's agents. RSC Adv 2020; 10:26006-26021. [PMID: 35519785 PMCID: PMC9055346 DOI: 10.1039/d0ra04942e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 12/02/2022] Open
Abstract
A series of multi-target natural product-pyridoxine based derivatives were designed, synthesized, characterized and evaluated as anti-Alzheimer agents. In vitro testing revealed the multi-functional properties of compounds such as inhibition of acetylcholinesterase (AChE), antioxidant and metal chelation. Among the series, 5i derivative was found most potent AChE inhibitor, possess antioxidant potential and chelating metal ions. Further binding interaction of 5i with AChE was studied using molecular docking, showed interaction with both PAS and CAS site of AChE. In silico predictions were also performed to predict toxicity and ADME properties of the molecule 5i and found within drug likeness range. Therefore, 5i could be a promising multi-functional compound that can be used for further development of novel drug for Alzheimer disease. A series of multi-target natural product-pyridoxine based derivatives were designed, synthesized, characterized and evaluated as anti-Alzheimer agents. Out of all the molecules of the series, 5i was found to be best.![]()
Collapse
Affiliation(s)
- Tiyas Pal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Raebareli
- India
| | - Saipriyanka Bhimaneni
- Department of Regulatory Toxicology
- National Institute of Pharmaceutical Education and Research
- Raebareli
- India
| | - Abha Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Raebareli
- India
| | - S. J. S. Flora
- Department of Regulatory Toxicology
- National Institute of Pharmaceutical Education and Research
- Raebareli
- India
| |
Collapse
|
41
|
Wang SB, Liu H, Li GY, Li J, Li XJ, Lei K, Wei LC, Quan ZS, Wang XK, Liu RM. Coumarin and 3,4-dihydroquinolinone derivatives: Synthesis, antidepressant activity, and molecular docking studies. Pharmacol Rep 2019; 71:1244-1252. [PMID: 31670061 DOI: 10.1016/j.pharep.2019.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coumarin and 3,4-dihydroquinolinone nuclei are two heterocyclic rings that are important and widely exploited for the development of bioactive molecules. Here, we designed and synthesized a series of 3,4-dihydroquinolinone and coumarin derivatives (Compounds 8, 9, 11, 14, 15, 18-20, 23, 24 and 28 are new compounds) and studied their antidepressant activities. METHODS Forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant activity of the target compounds. The most active compound was used to evaluate the exploratory activity of the animals by the open-field test. 5-HT concentration was estimated to evaluate if the compound has an effect on the mouse brain, by using ELISA. A 5-HT1A binding assay was also performed. The biological activities of the compounds were verified by molecular docking studies. The physicochemical and pharmacokinetic properties of the target compounds were predicted by Discovery Studio and ChemBioDraw Ultra. RESULTS Of all the compounds tested, compound 7 showed the best antidepressant activity, which decreased the immobility time by 65.52 s in FST. However, in the open-field test, compound 7 did not affect spontaneous activity. The results of 5-HT concentration estimation in vivo showed that compound 7 may have an effect on the mouse brain. Molecular docking results indicated that compound 7 showed significant interactions with residues at the 5-HT1A receptor using homology modeling. The results show that compound 7 exhibits good affinity for the 5-HT1A receptor. CONCLUSION Coumarin and 3,4-dihydroquinolinone derivatives synthesized in this study have a significant antidepressant activity. These findings can be useful in the design and synthesis of novel antidepressants.
Collapse
Affiliation(s)
- Shi-Ben Wang
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China.
| | - Hui Liu
- College of Life Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Guang-Yong Li
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Jun Li
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Xiao-Jing Li
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Kang Lei
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Li-Chao Wei
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xue-Kun Wang
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| | - Ren-Min Liu
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
42
|
Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2019; 2019:2592609. [PMID: 31815016 PMCID: PMC6877993 DOI: 10.1155/2019/2592609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.
Collapse
|
43
|
Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg Med Chem 2019; 27:3477-3510. [PMID: 31255497 PMCID: PMC7970831 DOI: 10.1016/j.bmc.2019.06.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Hybrid molecules, furnished by combining two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery that has attracted substantial traction in the past few years. Naturally occurring scaffolds such as coumarins display a wide spectrum of pharmacological activities including anticancer, antibiotic, antidiabetic and others, by acting on multiple targets. In this view, various coumarin-based hybrids possessing diverse medicinal attributes were synthesized in the last five years by conjugating coumarin moiety with other therapeutic pharmacophores. The current review summarizes the recent development (2014 and onwards) of these pharmacologically active coumarin hybrids and demonstrates rationale behind their design, structure-activity relationships (SAR) and mechanistic studies performed on these hybrid molecules. This review will be beneficial for medicinal chemist and chemical biologist, and in general to the drug discovery community and will facilitate the synthesis and development of novel, potent coumarin hybrid molecules serving as lead molecules for the treatment of complex disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
44
|
Singh A, Singh JV, Rana A, Bhagat K, Gulati HK, Kumar R, Salwan R, Bhagat K, Kaur G, Singh N, Kumar R, Singh H, Sharma S, Bedi PMS. Monocarbonyl Curcumin-Based Molecular Hybrids as Potent Antibacterial Agents. ACS OMEGA 2019; 4:11673-11684. [PMID: 31460274 PMCID: PMC6682034 DOI: 10.1021/acsomega.9b01109] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 05/22/2023]
Abstract
Keeping in view various pharmacological attributes of curcumin, coumarin, and isatin derivatives, triazole-tethered monocarbonyl curcumin-coumarin and curcumin-isatin molecular hybrids have been synthesized and evaluated for their antibacterial potential against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) human pathogenic bacterial strains. Among all hybrid molecules, A-4 and B-38 showed the most potent antibacterial activity with inhibition zones of 29 and 31 mm along with MIC values of 12.50 and 6.25 μg/mL, respectively. Structure-activity relationship that emerged from biological data revealed that the two-carbon alkyl chain between triazole and coumarin/isatin moiety is well tolerable for the activity. Bromo substitution at the fifth position of isatin, para-cholo substitution in the case of curcumin-isatin, and para-methoxy in the case of curcumin-coumarin hybrids on ring A of curcumin are most suitable groups for the antibacterial activity. Various types of binding interactions of A-4 and B-38 within the active site of dihydrofolate reductase (DHFR) of S. aureus are also streamlined by molecular modeling studies, suggesting their capability in completely blocking DHFR.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhineet Rana
- EMC Group
of Hospital, Green Avenue, Amritsar, Punjab 143001, India
| | - Kavita Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Raman Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rajan Salwan
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kajal Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Navjot Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Randeep Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harbinder Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (H.S.)
| | - Sahil Sharma
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (S.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (P.M.S.B.)
| |
Collapse
|
45
|
Bhagat K, Bhagat J, Gupta MK, Singh JV, Gulati HK, Singh A, Kaur K, Kaur G, Sharma S, Rana A, Singh H, Sharma S, Singh Bedi PM. Design, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of Novel Indolinedione-Coumarin Molecular Hybrids. ACS OMEGA 2019; 4:8720-8730. [PMID: 31459961 PMCID: PMC6648594 DOI: 10.1021/acsomega.8b02481] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 05/14/2023]
Abstract
Keeping in view various pharmacological attributes of indole and coumarin derivatives, a new series of indolindione-coumarin molecular hybrids was rationally designed and synthesized. All synthesized hybrid molecules were evaluated for their antimicrobial potential against Gram-negative bacterial strains (Escherichia coli and Salmonella enterica), Gram-positive bacterial strains (Staphylococcus aureus and Mycobacterium smegmatis), and four fungal strains (Candida albicans, Alternaria mali, Penicillium sp., and Fusarium oxysporum) by using the agar gel diffusion method. Among all synthetics, compounds K-1 and K-2 were found to be the best antimicrobial agents with the minimum inhibitory concentration values of 30 and 312 μg/mL, against Penicillium sp. and S. aureus, respectively. The biological data revealed some interesting facts about the structure-activity relationship which state that the electronic environment on the indolinedione moiety and carbon chain length between indolinedione and triazole moieties considerably affect the antimicrobial potential of the synthesized hybrids. Various types of binding interactions of K-2 within the active site of S. aureus dihydrofolate reductase were also streamlined by molecular modeling studies, which revealed the possible mechanism for potent antibacterial activity of the compound.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti Bhagat
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish Kumar Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gual Pahari, Gurugram, Haryana 122001, India
| | - Jatinder Vir Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harmandeep Kaur Gulati
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kamalpreet Kaur
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurinder Kaur
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Shally Sharma
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhineet Rana
- EMC Group of Hospital, Green Avenue, Amritsar, Punjab 143001, India
| | - Harbinder Singh
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: . Phone: +919463148367 (H.S.)
| | - Sahil Sharma
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (S.S.)
| | - Preet Mohinder Singh Bedi
- Department
of Pharmaceutical Sciences and Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: . Phone: +919815698249 (P.M.S.B.)
| |
Collapse
|
46
|
New Phenolic Derivatives of Thiazolidine-2,4-dione with Antioxidant and Antiradical Properties: Synthesis, Characterization, In Vitro Evaluation, and Quantum Studies. Molecules 2019; 24:molecules24112060. [PMID: 31151176 PMCID: PMC6600258 DOI: 10.3390/molecules24112060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress has been incriminated in the physiopathology of many diseases, such as diabetes, cancer, atherosclerosis, and cardiovascular and neurodegenerative diseases. There is a great interest in developing new antioxidants that could be useful for preventing and treating conditions for which oxidative stress is suggested as the root cause. The thiazolidine-2,4-dione derivatives have been reported to possess various pharmacological activities and the phenol moiety is known as a pharmacophore in many naturally occurring and synthetic antioxidants. Twelve new phenolic derivatives of thiazolidine-2,4-dione were synthesized and physicochemically characterized. The antioxidant capacity of the synthesized compounds was assessed through several in vitro antiradical, electron transfer, and Fe2+ chelation assays. The top polyphenolic compounds 5f and 5l acted as potent antiradical and electron donors, with activity comparable to the reference antioxidants used. The ferrous ion chelation capacity of the newly synthesized compounds was modest. Several quantum descriptors were calculated in order to evaluate their influence on the antioxidant and antiradical properties of the compounds and the chemoselectivity of the radical generation reactions has been evaluated. The correlation with the energetic level of the frontier orbitals partially explained the antioxidant activity, whereas a better correlation was found while evaluating the O–H bond dissociation energy of the phenolic groups.
Collapse
|
47
|
Design, Synthesis, Biological Activity and Molecular Docking Study of Coumarin Derivatives Bearing 2-Methylbiphenyl Moiety. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8310-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Ajani OO, Akande MM, October N, Siyanbola TO, Aderohunmu DV, Akinsiku AA, Olorunshola SJ. Microwave assisted synthesis, characterization and investigation of antibacterial activity of 3-(5-(substituted-phenyl)-4,5-dihydro-1 H-pyrazol-3-yl)-2 H-chromen-2-one derivatives. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1632141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Olayinka O. Ajani
- Department of Chemistry, Covenant University, CST, Ota, Ogun State, Nigeria
| | - Maria M. Akande
- Department of Chemistry, Covenant University, CST, Ota, Ogun State, Nigeria
| | - Natasha October
- Department of Chemistry, University of Pretoria, Hatfield, South Africa
| | | | | | | | - Shade J. Olorunshola
- Department of Biological Sciences, Covenant University, CST, Ota, Ogun State, Nigeria
| |
Collapse
|
49
|
Mahendran G, Ponnuchamy K. Coumarin–gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|