1
|
Bloomquist RF. Developmental basis of natural tooth shape variation in cichlid fishes. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:12. [PMID: 39869142 PMCID: PMC11772509 DOI: 10.1007/s00114-025-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates. In this study, signaling centers of gene expression with epithelial folding with similar molecular patterns to that of mammalian enamel knots are identified, and differences of asymmetric gene expression are identified between fish that possess species specific polymorphisms of either bicuspid or tricuspid teeth. Gene expression is then manipulated indirectly using a small molecule inhibitor of the Notch pathway, resulting in phenotypical aberrations of tooth shape and patterning, including a mimic of a tricuspid tooth in a fish with a naturally occurring bicuspid dentition. This study provides insight into the evolutionary origins of tooth shape and advances our knowledge of the molecular determinants of dental morphology with translational utility in regenerative dentistry.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Medicine, University of South Carolina, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA.
| |
Collapse
|
2
|
Shimomura-Kuroki J, Tsuneki M, Ida-Yonemochi H, Seino Y, Yamamoto K, Hirao Y, Yamamoto T, Ohshima H. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 2023; 111:839-853. [PMID: 36792749 DOI: 10.1007/s10266-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Collapse
Affiliation(s)
- Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan.
| | - Masayuki Tsuneki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-Ku, Fukuoka, 810-0042, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| |
Collapse
|
3
|
Saito K, Chiba Y, Yamada A, Fukumoto S. Identification and function analysis of ameloblast differentiation-related molecules using mouse incisors. PEDIATRIC DENTAL JOURNAL 2020. [DOI: 10.1016/j.pdj.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
5
|
Seino Y, Nakatomi M, Ida-Yonemochi H, Koga D, Ushiki T, Ohshima H. Three-dimensional configuration of apical epithelial compartments including stem cell niches in guinea pig cheek teeth. J Oral Biosci 2019; 61:55-63. [PMID: 30929803 DOI: 10.1016/j.job.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Continuously growing rodent incisors have an apically located epithelial stem cell compartment, known as an "apical bud" (AB). Few studies have described the morphological features of ABs and stem cell niches in continuously growing premolars/molars. We attempted to clarify the relationship between the three-dimensional configuration of ABs and the stem cell niches in guinea pig cheek teeth. METHODS We perfusion-fixed four-week-old guinea pigs, then decalcified their premolars/molars to produce serial paraffin sections, which we immunostained for Sox2. We reconstructed the serial sections using image processing and analysis software. We processed undecalcified samples for scanning electron microscopy by KOH digestion. RESULTS Two types of epithelia with M and Δ shapes surrounded the S-shaped dental papilla in the apical region of the premolars/molars, and there were three Sox2-positive epithelial bulges above the M- and Δ-shaped epithelia. Sox2-positive epithelial stem cell niches were restricted to the apical side, and cell proliferation and differentiation immediately proceeded in the crown-analogue dentin. The Sox2-positive epithelial stem cell niches were sparsely distributed and extended to the occlusal side. We also detected continuously proliferating cells in the cervical loop and Hertwig's epithelial root sheath of the root-analogue dentin. CONCLUSIONS Our findings suggest that guinea pig cheek teeth have three ABs, and the complex configuration of these types of teeth may be attributed to the prompt formation of crown-analogue dentin followed by the long-term formation of root-analogue dentin.
Collapse
Affiliation(s)
- Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa 078-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
6
|
Nakatomi C, Nakatomi M, Matsubara T, Komori T, Doi-Inoue T, Ishimaru N, Weih F, Iwamoto T, Matsuda M, Kokabu S, Jimi E. Constitutive activation of the alternative NF-κB pathway disturbs endochondral ossification. Bone 2019; 121:29-41. [PMID: 30611922 DOI: 10.1016/j.bone.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/29/2023]
Abstract
Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Falk Weih
- Research Group Immunology, Leibniz-Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, Jena 07745, Germany
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan; Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
7
|
Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell Tissue Res 2017; 369:497-512. [DOI: 10.1007/s00441-017-2632-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
|