1
|
Oliveira BP, Buzalaf MAR, Silva NC, Ventura TMO, Toniolo J, Rodrigues JA. Proteomic profile of the acquired enamel pellicle of children with early childhood caries and caries-free children. Eur J Oral Sci 2023:e12944. [PMID: 37414726 DOI: 10.1111/eos.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Acquired enamel pellicle plays an important role in the pathogenesis of early childhood caries (ECC), working as a protective interface between the tooth and the oral cavity. The aim of this cross-sectional in vivo proteomic study was to compare the acquired enamel pellicle protein profile of 3-5-year-old children with ECC (n = 10) and caries-free children (n = 10). Acquired enamel pellicle samples were collected and processed for proteomic analysis (nLC-ESI-MS/MS). In total, 241 proteins were identified. Basic salivary proline-rich protein 1 and 2, Cystatin-B, and SA were found only in the caries free group. When comparing caries free and ECC groups, lower protein levels were found in the caries free group for hemoglobin subunit beta, delta, epsilon, gamma-2, globin domain-containing protein and gamma-1, neutrophil defensin 3, serum albumin, protein S100-A8, and S100-A9. The proteins histatin-1, statherin, salivary acidic proline-rich phosphoprotein ½, proline-rich protein 4, submaxillary gland androgen-regulated protein 3B, alpha-amylase 1 and 2B were found at higher levels in the caries free group. The exclusive and the proteins found at higher levels in the caries free group might have protective functions that play a role in the prevention of caries, besides providing important insights to be evaluated in future studies for the possible development of new therapeutic strategies for ECC.
Collapse
Affiliation(s)
- Bethania Paludo Oliveira
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Natália Caldeira Silva
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Júlia Toniolo
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jonas Almeida Rodrigues
- Department of Surgery and Orthopedics, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Hertel S, Hannig C, Sterzenbach T. The abundance of lysozyme, lactoferrin and cystatin S in the enamel pellicle of children - Potential biomarkers for caries? Arch Oral Biol 2023; 146:105598. [PMID: 36525870 DOI: 10.1016/j.archoralbio.2022.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, the abundance of the protective salivary proteins lysozyme, lactoferrin, and cystatin S was quantified in the in situ formed pellicle of caries-free and caries-active children to determine whether they may be possible biomarkers for caries. DESIGN Pellicle formation was performed in situ for 10 min on ceramic specimens from the oral cavity of children (5-8 years) with caries (n = 17) and without evidence of caries (n = 17). Additionally, unstimulated saliva was collected. Levels of lysozyme, lactoferrin, and cystatin S were measured in desorbed pellicle eluates and saliva using ELISA. RESULTS No statistically significant differences were found in the occurrence of cystatin S and lysozyme in saliva and pellicle between caries-active and caries-free children. However, significantly higher amounts of lactoferrin were detected in the pellicle of caries-active children. CONCLUSION The protective salivary protein lactoferrin may be a biomarker for caries susceptibility in children.
Collapse
Affiliation(s)
- Susann Hertel
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
3
|
Min H, Zhu S, Safi L, Alkourdi M, Nguyen BH, Upadhyay A, Tran SD. Salivary Diagnostics in Pediatrics and the Status of Saliva-Based Biosensors. BIOSENSORS 2023; 13:206. [PMID: 36831972 PMCID: PMC9953390 DOI: 10.3390/bios13020206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Salivary biomarkers are increasingly being used as an alternative to diagnose and monitor the progression of various diseases due to their ease of use, on site application, non-invasiveness, and most likely improved patient compliance. Here, we highlight the role of salivary biosensors in the general population, followed by the application of saliva as a diagnostic tool in the pediatric population. We searched the literature for pediatric applications of salivary biomarkers, more specifically, in children from 0 to 18 years old. The use of those biomarkers spans autoimmune, developmental disorders, oncology, neuropsychiatry, respiratory illnesses, gastrointestinal disorders, and oral diseases. Four major applications of salivary proteins as biomarkers are: (1) dental health (caries, stress from orthodontic appliances, and gingivitis); (2) gastrointestinal conditions (eosinophilic esophagitis, acid reflux, appendicitis); (3) metabolic conditions (obesity, diabetes); and (4) respiratory conditions (asthma, allergic rhinitis, small airway inflammation, pneumonia). Genomics, metabolomics, microbiomics, proteomics, and transcriptomics, are various other classifications for biosensing based on the type of biomarkers used and reviewed here. Lastly, we describe the recent advances in pediatric biosensing applications using saliva. This work guides scientists in fabricating saliva-based biosensors by comprehensively overviewing the potential markers and techniques that can be employed.
Collapse
Affiliation(s)
- Hayeon Min
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Sophie Zhu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Lydia Safi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Munzer Alkourdi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | | | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|